
Supplementary Material for
“Data-Efficient and Robust Task Selection for Meta-Learning ”

A. Introduction to Meta-Learning Algorithms
Gradient-based meta-learning The goal of gradient-based meta-learning is to learn initial parameters θ∗ such that taking
one (or a few) gradient steps on the support set Ds leads to a model that performs well on task T . Consider model-agnostic
meta-learning (MAML) [6] with base model f as an illustrative example. During the meta-training stage, the performance of
the adapted model fϕ (i.e., ϕ = θ − η∇θL (fθ;Ds), η denotes the inner-loop learning rate) is evaluated on the corresponding
query set Dq and is used to optimize the model parameter θ. Formally, the bi-level optimization process with expected risk is
formulated as:

θ∗ ← argmin
θ

ET ∼p(T) [L (fϕ;Dq)] .

During the meta-testing stage, for task Tt, the adapted parameter ϕt is found by fine-tuning meta-model θt on the support set
Ds

t . The almost no inner loop (ANIL) algorithm [33] simplifies the inner loop computation by only updating the classification
head during meta-training task adaptation while keeping the remainder frozen. ANIL achieves a comparable performance with
MAML with lower computational cost.

Metric-based meta-learning The aim of metric-based meta-learning is to conduct a non-parametric learner on top of
meta-learned embedding space. Taking prototypical network (ProtoNet) with base model fθ as an example [36], for each task
T , we first compute a class prototype representation {cr}Rr=1 as the representation vector of the support samples belonging

to class k as cr = 1
Nr

∑
(xs

k;r,y
s
k;r)∈Ds

r
fPN
θ

(
xs
k;r

)
, where Ds

r represents the subset of support samples labeled as class r,(
xs
k;r,y

s
k;r

)
denotes the data with corresponding label inDs

r , and the size of this subset is Nr. Then, given a query data sample

xq
k in the query set, the probability of assigning it to the r-th class is measured by the distance d between its representation

fθ (x
q
k) and prototype representation cr, and the cross-entropy loss of ProtoNet is formulated as:

L = ET ∼p(T)

−∑
k,r

log
exp (−d (fθ (xq

k) , cr))∑
r′ exp (−d (fθ (x

q
k) , cr′))


At the meta-testing stage, the predicted label of each query sample is assigned to the class with maximal probability, i.e.,
ŷq
k = argmaxr p (y

q
k = r | xq

k).

B. Efficient Gradient Estimation
The updating process of the meta-model with explicit task gradient ∇θL

(
fϕj ;D

q
j

)
is time-consuming and incurs a large

computational cost. As shown in [12], the variation of the gradient norm is mainly captured by the gradient of the loss function
with respect to the pre-activation outputs of the last layer. Therefore, for a few-shot classification task, the above estimation
only requires a forward computation on the last layer. E.g., for a softmax layer as the last, the gradients of the loss with respect
to the input of the softmax layer for

(
xq
i,j ,y

q
i,j

)
is li-yi, where li is the logits and yi is the encoded label. In this section, we

elaborate on the details of our efficient gradient estimation as mentioned in sec. 4.2. We extend the result of [32] to estimate
the task-gradient∇θL (fϕi ;D

q
i) and denote it as g̃i.

Generally, we follow the notation of [12, 32] to establish our analysis upon the estimated gradient. Suppose in a L-layer
multilayer perceptron network, θ(l) ∈ RMl×Ml−1 denotes the weight matrix for layer l with Ml hidden units and σ(l)(·) be a
Lipschitz continuous activation function. Then, for datapoint (xi, yi), let

x
(0)
i = xi

z
(l)
i = θ(l)x

(l−1)
i

x
(l)
i = σ(l)

(
z
(l)
i

)
fθ(x) = x(L)

where x
(l)
i denotes the output after the l-th layer of xi (l = 1, . . . , L). The gradient of the loss w.r.t. the output of the network

is shown to be

∇(i)

θ(L)L = ∇θ(L)L (fθ (xi) , yi)

and the gradient of the loss w.r.t. the output of layer l is denoted as

∇(i)

θ(l)L = ∆
(l)
i Σ′

L

(
z
(L)
i

)
∇(i)

θ(L)L

where

∆
(l)
i = Σ′

l

(
z
(l)
i

)
θTl+1 . . .Σ

′
L−1

(
z
(L−1)
i

)
θTL

Σ′
l(z) = diag

(
σ′(l) (z1) , . . . , σ

′(l) (zMl
)
)

Thus, datapoint i’s gradient w.r.t. the parameters of the l-th layer θ(l) can be written as

∇θ(l)L (fθ (xi) , yi) =
(
∆

(l)
i Σ′

L

(
z
(L)
i

)
∇(i)

θ(L)L
)(

x
(l−1)
i

)T
.

For a query set Dq
i of arbitrary task Ti, the gradient of meta-model fθ on Dq

i w.r.t. the l-th layer θ(l) is

∇θ(l)L(fθ;Dq
i) =

∑
k

∇θ(l)L (fθ (xik) , yik)

where xik and yik are the data and corresponding labels within query set Dq
i .

Specifically, following previous work, we use the below gradient estimation g̃i to approximate the gradient:

g̃i =
∑
k

Σ′
L

(
z
(L)
ik

)
∇(ik)

θ(L)L,

where L denotes the last layer.

Next, in Proposition 1 we show how to efficiently bind the task gradient with the adapted model via the gradient of loss
w.r.t. the input of the last layer.

Proposition 1 (Gradient Norm Upper Bound). Suppose the loss function is β-smooth, the norm of difference of task-specific
meta-gradients∇θL (fϕi

;Dq
i) and∇θL

(
fϕj

;Dq
j

)
can be upper bounded by a constant C1 times the norm of difference of g̃i

and g̃j (gradients of the last layer of meta-model θ) with adding another constant C2, i.e.,

∥∥∇θL(fϕi
;Dq

i)−∇θL(fϕj
;Dq

j)
∥∥ ≤ C1 ∥g̃i − g̃j∥+ C2.

Consider query sets Dq
i (with the same size) and Dq

j for two different tasks Ti and Tj , we have

∥∇θ(l) L(fθ;Dq
i)−∇θ(l)L(fθ;Dq

j)
∥∥ =

∥∥∥∥∥∑
k

∇θ(l)L (fθ (xik) , yik)−
∑
k

∇θ(l)L (fθ (xjk) , yjk)

∥∥∥∥∥
=

∥∥∥∥∥∑
k

(
∆

(l)
ik Σ

′
L

(
z
(L)
ik

)
∇(ik)

θ(L)L
)(

x
(l−1)
ik

)T

−
∑
k

(
∆

(l)
jkΣ

′
L

(
z
(L)
jk

)
∇(jk)

θ(L)L
)(

x
(l−1)
jk

)T
∥∥∥∥∥

≤
∑
k

{∥∥∥∆(l)
ik

∥∥∥ · ∥∥∥x(l−1)
ik

T
∥∥∥ · ∥∥∥Σ′

L

(
z
(L)
ik

)
∇(ik)

θ(L)L − Σ′
L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥

+
∥∥∥Σ′

L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥ · ∥∥∥∥∆(l)

ik

(
x
(l−1)
ik

)T

−∆
(l)
jk

(
x
(l−1)
jk

)T
∥∥∥∥}

≤
∑
k

{∥∥∥∆(l)
ik

∥∥∥ · ∥∥∥x(l−1)
ik

T
∥∥∥ · ∥∥∥Σ′

L

(
z
(L)
ik

)
∇(ik)

θ(L)L − Σ′
L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥

+
∥∥∥Σ′

L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥ · (∥∥∥∆(l)

ik

∥∥∥ · ∥∥∥∥(x(l−1)
ik

)T
∥∥∥∥+

∥∥∥∆(l)
jk

∥∥∥ · ∥∥∥∥(x(l−1)
jk

)T
∥∥∥∥)} By Triangle Inequality

≤
∑
k

{
max
l,k

(∥∥∥∆(l)
ik

∥∥∥ · ∥∥∥x(l−1)
ik

T
∥∥∥) · ∥∥∥Σ′

L

(
z
(L)
ik

)
∇(ik)

θ(L)L − Σ′
L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥

+
∥∥∥Σ′

L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥ ·max

l,i,j

(∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥+
∥∥∥∆(l)

j

∥∥∥ · ∥∥∥x(l−1)
j

∥∥∥)} Take Maximum over l,k,i,j

= max
l,k

(∥∥∥∆(l)
ik

∥∥∥ · ∥∥∥x(l−1)
ik

T
∥∥∥)︸ ︷︷ ︸

c1

·
∑
k

∥∥∥Σ′
L

(
z
(L)
ik

)
∇(ik)

θ(L)L − Σ′
L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥

+
∑
k

∥∥∥Σ′
L

(
z
(L)
jk

)
∇(jk)

θ(L)L
∥∥∥ ·max

l,i,j

(∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥+
∥∥∥∆(l)

j

∥∥∥ · ∥∥∥x(l−1)
j

∥∥∥)︸ ︷︷ ︸
c2

(6)

Thus, we derive the gradient of meta-model fθ on Dq
i w.r.t. the l-th layer θ(l) can be bounded by the gradient of the loss

w.r.t. the pre-activation outputs. c1 and c2 will be used for further derivation.
According to (6), we can show that two arbitrary query sets’ gradient of meta-model can be bounded by constant times the

gradient of the loss w.r.t. the pre-activation outputs of the neural network as

∥∥∇θL(fθ;Dq
i)−∇θL(fθ;Dq

j)
∥∥ ≤ L · c1

∥∥∥∥∥∥∥∥∥∥
∑
k

(
Σ′

L

(
z
(L)
ik

)
∇(ik)

θ(L)L
)

︸ ︷︷ ︸
g̃i

−
∑
k

(
Σ′

L

(
z
(L)
jk

)
∇(jk)

θ(L)L
)

︸ ︷︷ ︸
g̃j

∥∥∥∥∥∥∥∥∥∥
+ L · c2 (7)

Due to the bi-level optimization structure of meta-learning, the intrinsic gradient for outer loop meta-model updating
is ∇θL(fϕi ;D

q
i) for task Ti. Suppose the loss function L is β-smooth, the norm of the outer loop gradient difference

∇θL(fϕi
;Dq

i)−∇θL(fϕj
;Dq

j) can be bounded based on the result of (7):

∥∥∇θL(fϕi
;Dq

i)−∇θL(fϕj
;Dq

j)
∥∥

=
∥∥∇θL(fϕi

;Dq
i)−∇θL(fθ;Dq

i) +∇θL(fθ;Dq
i)−∇θL(fϕj

,Dq
j) +∇θL(fθ;Dq

j)−∇θL(fθ;Dq
j)
∥∥

≤ ∥∇θL(fϕi ;D
q
i)−∇θL(fθ;Dq

i)∥+
∥∥∇θL(fϕj ;D

q
j)−∇θL(fθ;Dq

j)
∥∥+

∥∥∇θL(f;Dq
i)−∇θL(fθ;Dq

j)
∥∥

= L · c1︸ ︷︷ ︸
C1

∥g̃i − g̃j∥+ L · c2 + β · (∥θ − ϕi∥+ ∥θ − ϕj∥)︸ ︷︷ ︸
C2

(8)

C. Proof of Theorem 1

We follow the high-level idea of [32] and adapt the analysis to the bi-level updating setting of meta-learning.
The updated formula:

θt+1 = θt − η∇
∑
i∈S

L(fϕi ;Dq)

where ϕi = θt − η′∇
∑

(x,y)∈Ds
i

L(fθ;Ds
i)

First, consider the task gradient:

∇θL(fϕi ;D
q
i) = ∇θL(fϕi ;D

q
i)

= ∇θϕi∇ϕiL(fϕi ;D
q
i)

= ∇θ(θ
t − η′∇θ

∑
(xi,yi)∈Ds

i

L(fθ; (xs
i , y

s
i))∇ϕi

L(fϕi
;Dq

i)

= (−η′
∑

(xi,yi)∈Ds
i

∇2
θL(fθ; (xs

i , y
s
i))∇ϕi

L(fϕi
;Dq

i)

(9)

Similarly, by the β-smoothness (Assumption 1) of loss function L(f,D) and µ−PL⋆ condition (Assumption 2), we can get:

L(θt+1;D)− L(θt;D) ≤ −η

2
∥∇θ

∑
i∈S

γjL(fϕi ;D
q
i)∥

2

≤ −η

2
(∥∇θ

∑
j∈M

L(fϕj
;Dq

j)∥ − ϵ)2 Substitute weighted subset gradient as full gradient and ϵ

= −η

2
(∥∇θ

∑
j∈M

L(fϕj
;Dq

j)∥
2 − 2ϵ∥∇θ

∑
j∈M

L(fϕj
;Dq

j)∥+ ϵ2)

= −η

2
(∥ − η′

∑
(xj ,yj)∈Ds

j

∇2
θL(fϕj

; (xs
j , y

s
j))

∑
j∈M

∇ϕj
L(fϕj

;Dq
j)∥

2 − 2ϵ∥∇θ

∑
j∈M

L(fϕj
;Dq

j)∥+ ϵ2) by (9)

≤ −ηη′m

2
∥
∑
j∈M

∇ϕjL(fϕj ;D
q
j)∥

2 + ηϵ∥∇θ

∑
j∈M

L(fϕj ;D
q
j)∥ −

η

2
ϵ2 Bounded Hessian

≤ −ηη′mµL(fϕ;Dq) + ηϵ∥∇θ

∑
j∈M

L(fϕi ;D
q
i)∥ −

η

2
ϵ2 By µ− PL⋆ Condition

= −ηη′mµ(L(fϕi ;D)− L(fθt ;D))− ηη′mµL(fθt ;D) + ηϵ∥∇θ

∑
j∈M

L(fϕi ;D
q
i)∥ −

η

2
ϵ2

≤ −ηη′mµL(fθt ;D) + ηϵ∥∇θ

∑
j∈M

L(fϕi ;D
q
i)∥ −

η

2
ϵ2 + ηη′mµ|L(fϕ∗;D)− L(fθ0 ;D)|

(10)
Let r = |L(fϕ∗;D)− L(fθ0 ,D)|, we obtain:

L(fθt+1 ;D) ≤ (1− ηη′mµ)L(fθt ;D) + ηϵ∥∇θ

∑
j∈M

L(fϕi
;Dq

i)∥ −
η

2
ϵ2 + ηη′mµr.

This implies:

L(fθt ;D) ≤ (1− ηη′mµ)tL(fθ0 ;D) +
t−1∑
k=0

(1− ηη′mµ)k(ηϵ∥∇θ

∑
j∈M

L(fϕi ;D
q
i)∥ −

η

2
ϵ2 + ηη′mµr)

≤ (1− ηη′mµ)tL(fθ0 ;D) + 1

ηη′mµ
(ηϵ∥∇θ

∑
j∈M

L(fϕi ;D
q
i)∥ −

η

2
ϵ2 + ηη′mµr),

giving:

E[(L(fθt ;D))] ≤ (1− ηη′mµ)tE[(L(fθ0 ;D))] + 1

ηη′mµ
(ηϵ∥E[∇θL(fϕ;D)]∥L∞

M
− η

2
ϵ2) + r

where

∥E[∇θL(fϕ;D)]∥L∞
M

= sup
Γ

∥∥∥∥∥∥E
∑
j∈M

(
∇θL

(
fϕj ;D

q
j

)
−∇θL

(
fϕΓ(j)

;Dq
Γ(j)

))∥∥∥∥∥∥ .
D. Implementation Details of Noisy Task Setting

We provide the detailed noisy task-generating mechanism as follows.

Algorithm 2 Noisy Task Generating Mechanism (5-way 5-shot)

Require: Task T ; generating rate λ ; noise threshold t
1: Draw 5 samples (λ1, · · · , λ5) ∼ Poisson(λ)
2: for λi do
3: if λi ≥ t then
4: λi = t
5: end if
6: end for
7: for class i do
8: Randomly draw λi samples (ci,1, · · · , ci,λi

) from other 4 classes
9: for ci,j do

10: Randomly draw data xci,j ,k from class ci,j and data xi,k from class i
11: Switch the label of two selected data
12: end for
13: end for
14: Randomly split task Ti into support set and query set
15: Output the constructed noisy task

Algorithm 2 is based on symmetric label swap for few-shot learning [18]. By the above label noise-generating mechanism,
the mislabeled data could exist in both the support set and the query set. The noise ratio is controlled by noise threshold t and
Poisson(λ) in Algorithm 2.

E. Additional Experiment

E.1. ResNet-12 as Large Backbone

To show DERTS works for a larger backbone, we explored the performance of ANIL and PN with ResNet-12 [30] in both
limited data budget and noisy label task (noise ratio 40%) settings on Mini-Imagenet. We keep the ResNet-12 configuration
details the same as CNN4.

From Table 6 and 7, we observe that DERTS generally holds the advantage of data efficiency and robustness for both
settings when shifting the backbone to ResNet-12. In the limited data budget setting, DERTS shows its faster learning
capability towards baselines. In the noisy label task setting, DERTS for ANIL outperforms baseline by at least 3% on accuracy,
which significantly shows DERTS is effective for larger backbones. One thing worth mentioning here is that ANIL-US and
PN-US perform comparably better on ResNet12 in the limited data budget setting than CNN4. We speculate the stronger
representation capability of ResNet12 empowers ANIL-US and PN-US with a better ability to be aware of the difficulty of
tasks, but it is still not robust in the noisy task setting compared to other methods.

E.2. Additional Experiment on Limited Data budget

In this subsection, we provide additional experiments and details for limited data budget setting. In the main context, we
present the experiment results on only training 16 classes (25% classes and 25% data). Here, we provide experiment results for
training 32 classes (50% classes and 50% data) in Table 8. According to the experiment results, DERTS outperforms all the

Dataset Mini-ImageNet (5-way 5-shot)
Iterations 10% 30% All
ANIL 52.33± 0.7 62.75± 0.8 68.01± 0.7
ANIL-US 56.08± 0.7 58.92± 0.7 68.34± 0.6
ANIL-ATS 51.20± 0.6 60.62± 0.8 67.25± 0.8
ANIL-DERTS 56.24± 0.7 67.19± 0.7 68.23± 0.6
PN 59.07± 0.8 61.13± 0.8 67.56± 0.6
PN-US 58.35± 0.8 60.91± 0.9 67.72± 0.7
PN-DERTS 60.17± 0.9 63.45± 0.8 67.81± 0.7

Table 6. Average accuracy of 5-way 5-shot Mini-ImageNet Classification with Limited Data Budget Setting (ResNet-12 as the backbone).
10% (30%) in the table denotes the performance after learning on 10% (30%) tasks during the episodic training.

Dataset Mini-ImageNet (5-way 5-shot)
Noise Ratio 40%
ANIL 62.60± 0.59
ANIL-US 55.16± 0.88
ANIL-ATS 60.17± 0.77
ANIL-DERTS 64.87± 0.72
PN 54.15± 0.68
PN-US 53.93± 0.70
PN-DERTS 55.43± 0.65

Table 7. Average accuracy of 5-way 5-shot Mini-ImageNe Classification with Noisy Task Setting (ResNet-12 as the backbone). 40% in the
table denote the noise ratio (percentage of mislabeled data).

Dataset Mini-ImageNet (32-Class)
Method 5-way 5-shot 5-way 1-shot
ANIL 54.86± 0.72 42.85± 0.71
ANIL-US 55.07± 0.70 42.72± 0.60
ANIL-ATS 54.61± 0.68 42.55± 0.64
ANIL-DERTS 56.10± 0.64 43.97± 0.58
ProtoNet 59.29± 0.69 43.17± 0.61
ProtoNet-US 59.21± 0.61 42.75± 0.72
ProtoNet-DERTS 60.17± 0.68 44.20± 0.71

Table 8. 5-way 5-shot / 5-way 1-shot Mini-ImageNet Classification with 50% Class Training Set.

baselines with an average of 1.2% in accuracy, which further indicates that DERTS captures the task diversity in this setting
with fewer training classes.

According to [46], the details of selected training classes are as follows. For 25% training classes (16 classes), we select:
{n02823428,n13133613,n04067472,n03476684, n02795169, n04435653, n03998194, n02457408, n03220513, n03207743,
n04596742, n03527444, n01532829, n02687172, n03017168, n04251144}.

In addition, the selected classes for 50% training classes are: {n03676483,n13054560,n04596742,n01843383,
n02091831, n03924679, n01558993, n01910747, n01704323, n01532829, n03047690, n04604644, n02108089, n02747177,
n02111277, n01749939, n03476684, n04389033, n07697537, n02105505, n02113712, n03527444, n03347037, n02165456,
n02120079, n04067472, n02687172, n03998194, n03062245, n07747607, n09246464, n03838899 }.

E.3. Case Study for Task Selection

We provide a brief case study for further analysis of the tasks selected and not selected by DERTS. Figure 3 displays typical
examples of both selected and unselected tasks. From the two unselected tasks presented, we observe that these tasks are
generally coarse-grained. The classes within the unselected tasks are easily distinguishable, indicating that they might be
relatively simpler. In contrast, the classes and images in the selected tasks tend to be more visually confusing. Task 3 includes

three different classes of dogs, making this task more fine-grained than some of the unselected tasks. Task 4 consists of two
visually similar pairs: the Seal and Diver pair, which might share the same background, and the Pot and Soup pair, which
could have similar shapes and colors. The selected subset of tasks likely offers better diversity and is more challenging to
learn, making them more informative for the meta-training process. This observation aligns with the claim made by related
works on task sampling [2, 19, 46].

Dog

Insect

Slippers

Lipsti
ck

Pot

Dinosaur

Dog

Warship

Bottle

Pot

Snake

Dog 1

Dog 2

Dog 3

Fence

Seal

Pot

Lipstick

Diver

Soup

Unselected Tasks Selected Tasks

Task 1 Task 2 Task 3 Task 4

Figure 3. Typical examples of selected tasks by DERTS and unselected tasks.

