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Abstract

In this paper, we present EdgeRelight360, an approach
for real-time video portrait relighting on mobile devices,
utilizing text-conditioned generation of 360-degree high dy-
namic range image (HDRI) maps. Our method proposes a
diffusion-based text-to-360-degree image generation in the
HDR domain, taking advantage of the HDR10 standard.
This technique facilitates the generation of high-quality, re-
alistic lighting conditions from textual descriptions, offering
flexibility and control in portrait video relighting task. Un-
like the previous relighting frameworks, our proposed sys-
tem performs video relighting directly on-device, enabling
real-time inference with real 360-degree HDRI maps. This
on-device processing ensures both privacy and guarantees
low runtime, providing an immediate response to changes in
lighting conditions or user inputs. Our approach paves the
way for new possibilities in real-time video applications, in-
cluding video conferencing, gaming, and augmented reality,
by allowing dynamic, text-based control of lighting condi-
tions.

1. Introduction

On-device video conferencing has emerged as a vital tool in
our daily communications. Customizing the background in
these platforms enhances user privacy, yet the default back-
grounds are usually confined to pre-existing 2D images, and
the mismatch in lighting between the subject and the virtual
background often compromises the quality of the immersive
experience.

In recent years, generative content creation, image/video
relighting, and edge computing have witnessed a surge in
quality and interest. In this context, we propose an on-
device inference pipeline involving the generation of a 360-
degree high dynamic range image (HDRI) map from a tex-
tual description provided by the user, followed by portrait
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Figure 1. Our proposed method for generating 360-degree envi-
ronment map from text prompt followed by video portrait relight-
ing in real-time on mobile devices.

relighting to seamlessly integrate a streaming user into the
newly generated scene.

To enable efficient and high-quality on-device deploy-
ments, there are several challenges in 360-degree HDRI
map generation and video relighting, respectively. HDRI
maps play a pivotal role in creating backgrounds and light-
ing for immersive on-device applications. Although an ex-
isting approach [10] can generate high-resolution HDRI
maps, this method involves a complex two-stage setup
which first generates a low dynamic range (LDR) 360-
degree image from text, before transforming it into an
HDRI map in the second stage. Unfortunately, the complex-
ity of the neural network designs used in this approach hin-
der its implementation on compute-constrained devices, and
the adversarial training framework often results in a lack of
diversity in the generated HDRI environment maps [10].

Relighting helps to naturally embed captured subjects
into new environments by synthesizing physically consis-
tent lighting effects. To cope with dynamic input lighting
and to better synthesize high-frequency lighting effects, re-
cent relighting methods [20, 27–29, 35, 43] first perform
learning-based intrinsic decomposition to obtain surface
normal and albedo, and then incorporate per-pixel lighting
representations as explicit priors into the network design.
Despite producing promising relighting results, their com-
plex structures, involving multiple networks or decoders,
hinder deployment on compute-constrained devices. Addi-
tionally, current state-of-the-art relighting approaches [28]
exhibit issues with temporal stability, particularly in cloth-
ing regions.
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In our work, we address the above challenges and pro-
pose a portrait video relighting framework at the edge using
text-conditioned generations of 360-degree HDRI maps. As
illustrated in Fig. 1, we generate a 360-degree HDRI map
with real-world brightness information from a text prompt.
To achieve this, we leverage the generative capabilities of a
Stable Diffusion [31] model to produce 360-degree HDRI
maps by training it on 8-bit quantized HDRI maps follow-
ing the HDR10 standard [32, 37].

Following this, we use the generated 360-degree image
as an omnidirectional illumination source in the proposed
portrait video relighting pipeline. A key novelty of our
relighting model is the balance between relighting perfor-
mance and computational efficiency. To enhance the com-
putational efficiency, we only leverage a single network to
infer surface normals for computing the diffuse light map
and propose a shading equation for relighting. And to en-
sure better relighting performance, we propose to add dif-
fuse shading to the input camera images for realism, and
apply a temporal filter to enhance temporal consistency.

Finally, we compute a diffuse light map from the gen-
erated HDRI map for the current view specified by the
user, apply lighting effects to the subject and composite
the relit portrait with the new background created from the
panorama.

In summary, our main contributions include:
• We propose an end-to-end on-device framework to gen-

erate 360-degree HDRI maps from text descriptions, and
use it to relight video portraits in real-time. By combining
HDRI map generation and lightweight video relighting,
users can virtually appear anywhere imaginable in video
applications at the edge.

• We present a diffusion-based text-conditioned 360-degree
HDRI map generation to produce diverse environment
maps on-device for relighting video portraits.

• We propose a light-weight video relighting framework
combining a normal estimation network and light adding
based rendering. Our on-device implementation shows
realistic, fast, and stable relighting results for in-the-
wild portrait videos, demonstrating the effectiveness, ef-
ficiency, temporal consistency, and generalization of the
proposed method.

2. Related work
Text-to-image: Most recent text-conditioned image gen-
erative models are based on diffusion [13, 21, 34], a tech-
nique which generates new samples via progressive denois-
ing from pure random noise. In order to reduce the compu-
tational footprint of such approaches, latent diffusion mod-
els, like Stable Diffusion (SD) [31], perform diffusion in
the latent space of a variational autoencoder (VAE) [22].
Text-to-image generation methods have unlocked other use
cases such as text-to-panorama with applications in virtual

Figure 2. We propose to combine PQ inverse EOTF used in the
HDR10 standard with 8-bit quantization to obtain the quantized
HDRI maps to generate the training dataset. Similarly, dequanti-
zation and the PQ EOTF can be performed to recover the original
HDRI map.

reality environments to enable immersive experiences. In
particular, several works [7, 9, 40] have extended SD mod-
els to generate panorama from text. However, these ap-
proaches only consider horizontal (left-to-right) panoramic
rotations. Lin et al. [24] use an adversarial setup for un-
conditioned seamless panoramic generation in a patch-wise
manner. More recently, LDM3D-VR [36] fine-tunes a pre-
trained SD v1.5 model to generate panoramic RGB images
with monocular depth. However, the generated image con-
tains a visible border seam due to mismatch in the generated
content on both ends of the image. Most text-to-panoramic
360-degree approaches are limited in their applications due
to the generation of LDR images. In contrast, HDRI
panoramas can assist in synthesizing 360-degree photore-
alistic lighting and reflections for scene or portrait relight-
ing. Text2Light [10] proposes a text-conditioned panoramic
360-degree HDRI map generation by using a complex dual-
stage architecture. Although the generated images are in
the HDRI space, the Text2Light framework lacks the image
diversity compared to text-to-image models based on diffu-
sion.

Portrait relighting: The pioneering work by Debevec
et al. [12] designs a spherical rig called Light Stage to
capture a person’s reflectance fields as one-light-at-a-time
(OLAT) images and uses image-based relighting to relight
static faces. Other approaches [16, 25, 44] utilize time-
multiplexed illumination or color gradient illumination to
relight dynamic subjects, but these methods require expen-
sive custom capture rigs that are known for being hard to set
up.

With the advancement in mobile photography, several
deep learning approaches to relight portrait images captured
in unconstrained environments have emerged. Zhou et al.
[47] and Sun et al. [38] are early works to apply deep
learning to portrait relighting by employing an encoder-
decoder network to take a single image as input, inject
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Figure 3. Encoding and decoding (a) quantized HDRI map with a pre-trained VAE leads to significant artifacts such as (b) blue patches
and RGB color distortions. However, these issues can be resolved by (c) fine-tuning the VAE on quantized HDRI maps, which reproduces
the quantized images close to the (d) dequantized original images.

Figure 4. To augment the perspective HDRI dataset, we generate
20 perspective HDR images for every 360-degree equirectangular
HDRI map. The images are tone mapped for visualization pur-
pose.

the target illumination into the bottleneck layer of the net-
work, and output the re-illuminated image. More recently,
pixel-aligned components such as normal, albedo, diffuse
light map, specular light map, visibility map, and shadow
map have been incorporated into network designs to im-
prove performance [20, 27–29, 35, 43]. However, these ap-
proaches often involve compute-heavy pipelines with multi-
ple large networks, hindering the portability of these meth-
ods to mobile devices. Additionally, these approaches lack
temporal consistency for in-the-wild videos.

In video relighting, it is critical to have a good balance
between high-quality, video stability, and model complex-
ity. Zhang et al. [46] introduces the flow-based temporal
loss supervised on dynamic OLAT dataset for explicit tem-
poral modeling. Despite showing real-time relighting on
mobile devices, the light-weight encoder-decoder network
cannot produce high-quality relit videos with sufficient fa-
cial details. Yeh et al. [45] propose to learn two temporal
residual networks for improving consistency of intermedi-
ate normal and albedo predictions, but the network size is

not designed for consumer device deployment.
Even several commercial relighting solutions do not sup-

port on-device inference and video relighting with HDRI
environments. Portrait Mode on iPhone [8] only provides 5
studio lights mode, mostly for photo editing. Portrait Light
on Google’s Pixel [41] and Google Meet [15] only assist
in relighting a subject with point light sources, rather than
using 360-degree environment light for illumination. Clip-
drop [11] offers controllability of point light sources, but
cannot relight videos. The recent SwitchLight [39] supports
video relighting, but it is a frame-based solution that run on
a remote server, hence not a real-time solution. In contrast,
our proposed video relighting method combines general-
ized normal estimation network and light adding based ren-
dering, leveraging mobile computing to achieve convincing
and coherent relighting results in real-time.

3. Text-conditioned 360-degree HDRI map
generation

Our goal is to enable on-device real-time video portrait re-
lighting by leveraging high dynamic range image (HDRI)
maps from a text-to-image generative model for relighting
with diverse background environments. To that end, we
leverage the generative ability of Stable Diffusion [31] (SD)
which we extend to 360-degree HDRI map generation.

3.1. Quantized HDR images

To synthesize 360-degree images from user text prompts,
we propose fine-tuning a pre-trained SD v1.5 model on
HDRI panoramas. However, since our end goal is to achieve
fast inference on the AI accelerator of a device with a
Snapdragon® Gen 3 Platform*, we aim to leverage 8-bit
model quantization [26] at test time to reduce the compu-
tational and memory footprint of our text-to-image models,
as previously done in [48]. Yet, it poses challenges for HDR

*Snapdragon branded products are products of Qualcomm Technolo-
gies, Inc. and/or its subsidiaries.
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prediction due to the disparity between the high-dynamic
range input and output signals (with luminance range ap-
proximately 200,000 using FLOAT32), and the INT8 quan-
tization applied to both weights and internal activations dur-
ing inference. To mitigate this potential performance drop
post-model quantization, we propose to preemptively quan-
tize the raw FLOAT32 HDRI maps using the perceptual
quantizer (PQ) based HDRI quantization workflow [32, 37]
to obtain 8-bit images while preserving the high-dynamic
luminance spectrum.

More specifically, we combine the perceptual quantizer
(PQ) used in the HDR10 standard [37] with an 8-bit UINT
quantization formula. As shown in Eq. 1, first the PQ in-
verse electro-optical transfer function (EOTF) is used to
convert from linear luminance to non-linear color values.
Then, the quantization formula [32] is applied to produce
quantized HDR images in UINT8 domain:

E′ = PQ−1
EOTF (FD)

PQ−1
EOTF (FD) =

(
c1 + c2 · Y m1

1 + c3 · Y m1

)m2

(1)

D′ = int(scale · E′)

where FD is the linear luminance in cd/m2, E′ is
the non-linear color value, Y = FD/10000, m1 =
0.1593017578125, m2 = 78.84375, c1 = 0.8359375,
c2 = 18.8515625, and c3 = 18.6875. For the quanti-
zation formula, we set scale = 198 to encode luminance
in original HDRI maps at a maximum of 200, 000 cd/m2.
The scale is set based on statistical analysis: among 624
real HDRI panoramas in PolyHaven[6], only 33 panoramas
have an average 4 pixels with values greater than 200, 000.

Post fine-tuning the SD v1.5 [31] on UINT8 quantized
HDR images (D′), at inference, the generated quantized
HDRI map is transformed to the original HDRI space by
applying the dequantization followed by PQ EOTF as indi-
cated in Eq. 2. An overview of the images generated from
the forward and reverse HDRI quantization are shown in
Fig. 2.

E′ = D′/scale

FD = PQEOTF (E
′) (2)

PQEOTF (E
′) = 10000

(
max[(E′1/m2 − c1), 0]

c2 − c3 · E′1/m2

)1/m1

3.2. Training setup

Training data: We combine PolyHaven [6] and Laval [14,
19], two publicly accessible yet relatively small-scale

Figure 5. An overview of the (1) text to 360-degree training setup
along with (2) the quantized HDRI generation. The generated
quantized image can be (3) dequantized with inverse PQ trans-
formation to produce the final HDRI map.

Figure 6. Overview of the proposed relighting pipeline. Given
an input image and segmentation mask from the camera, we gen-
erate a gamma-corrected foreground image to obtain the surface
normals from Geometry Net. The raw normal map prediction is
temporally stabilized with an average temporal filter. To perform
relighting, we first use the generated 360-degree HDRI map and
the filtered normal map to compute the diffuse light map, and then
use the shading equation to relight the portrait.

datasets offering 360-degree HDR images. PolyHaven con-
tains around 660 high-resolution equirectangular images
depicting a variety of indoor and outdoor scenes. Laval,
on the other hand, provides a collection of 2100 indoor and
206 outdoor 360-degree images. To augment our training
data, we also utilize Hypersim [30], which consists of stan-
dard HDR images, particularly during VAE fine-tuning. We
apply the transfer function specified in Eq. 1 to all three
datasets to generate quantized HDRI maps.

VAE: Utilizing the original VAE from the SD v1.5 [31]
pipeline to encode quantized HDR images leads to notable
color distortions and artifacts in the decoded images, as
shown in Fig. 3. To address this, we fine-tune the VAE
on quantized HDRI data. Given that the VAE does not
require to specialize on 360-degree images, we can sub-
stantially expand our dataset for this phase. Rather than
directly using the full 360-degree equirectangular images
from our combined PolyHaven-Lavel dataset, we construct
a data augmentation pipeline which entails rendering per-
spective views from these 360-degree images, as shown in
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Fig 4. Moreover, to further expand our training dataset, we
incorporate HDR images from the Hypersim [30] dataset.
Post-training, as depicted in Fig. 3, our fine-tuned VAE suc-
cessfully reconstructs HDR images devoid of color distor-
tions or other artifacts initially observed with the original
model.

Diffusion UNet: To fine-tune the original SDv1.5 dif-
fusion U-Net for text-conditioned 360-degree HDR gen-
eration, we adopt a two-stage training strategy to address
the limited availability of 360-degree HDRI data. In the
first stage, the objective is to adapt the diffusion U-Net
to the fine-tuned latents and learn a prior on the lumi-
nance range (HDR domain adaptation). For this, we do
not use 360-degree images and instead reuse the augmented,
perspective-based, quantized HDRI dataset constructed dur-
ing VAE fine-tuning. Text prompts are generated using the
BLIP [23] image captioning model, applied to tone mapped
low dynamic range (LDR) versions of the images.

In the second stage, we further fine-tune the latent diffu-
sion U-Net on 360-degree images this time. We use the
quantized images from PolyHaven and Laval along with
their BLIP-based captions. Remarkably, even with a rela-
tively limited dataset comprising only a few thousand 360-
degree images, the model effectively learns the capability to
generate consistently accurate 360-degree imagery. During
inference, we revert the generated quantized images back to
the original HDRI format using the inverse PQ function out-
lined in Eq. 2, thereby readying them for downstream tasks
such as portrait relighting. To ensure 360-degree consis-
tency at the edges of the generated equirectangular image,
we adopt the circular latent padding technique proposed
in [42] throughout all denoising timesteps. An overview
of the training, quantized data preparation and inference is
illustrated in Fig. 5.

4. Video portrait relighting
We propose a relighting pipeline to generate relit portrait
videos with temporal stability, high-quality and with light-
weight network architecture. Our proposed setup involves
a Geometry Net for surface normal map prediction, a aver-
age temporal filter for enhancing temporal consistency, dif-
fuse light map calculation, a shading equation for rendering
relit foreground, and background composition as shown in
Fig. 6.

4.1. Geometry Net

To estimate the surface normals, inspired by the Total Re-
lighting [28] framework, we develop a light-weight Geom-
etry Net with a similar but smaller UNet architecture with
13 layers. In addition, the size of network input is set to
512×512 to reduce computational complexity and to handle
both portrait and landscape camera captures. The Geometry
Net aims to produce per-pixel surface normal map Nt as a

Method Runtime Memory
(seconds) (GB)

Text2Light [10] (2048×4096) 61.25 3.1
Ours (512×512) 5.2 ∼3.4
Ours (512×1024) 14.8 ∼3.4

Table 1. We measure the runtime and memory requirements of
Text2Light [10] and our proposed 360-degree generative approach
on a single NVIDIA A100 GPU as Text2Light does not support
on-device inference.

Figure 7. Our Stable Diffusion [31] based text-conditioned 360-
degree HDRI generative model can generate realistic and diverse
environments compared to existing Text2Light [10] model. The
images are tone mapped for visualization purpose.

geometrical cue to calculate physically correct diffuse light
map. Given an input camera capture I , we leverage our
proprietary segmentation network with on-device support
to extract the foreground segmentation, but we can lever-
age any off-the-shelf segmentation network for this task. To
prepare the input to the Geometry Net, the camera capture
I is first gamma corrected and masked using the foreground
segmentation, then resized and padded to 512×512. As for
training, due to the challenges of setting up a light stage, in-
spired by [43], we use head meshes captured by the 3DMD
system [2], HDRI panoramas in PolyHaven[6], and 3D soft-
ware Blender [3] to create the synthetic normal dataset. The
synthetic normal dataset contains paired rendered images
and normal ground truths in camera space coordinates for
60 identities, each with 31 expressions. Please refer to the
supplementary material for more details on the network ar-
chitecture and the creation of synthetic normal dataset.

4.2. Average Temporal Filter

When applying the Geometry Net to video sequences, mi-
nor flickering occurs between consecutive normal estima-
tions because the network is frame-based. In addition, since
the head meshes in our synthetic normal dataset lack hair
and cloth geometry, the instability issue around hair and
cloth areas are severer. To further improve the temporal
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Method Image Video Run on Video HQ Target Controllability
relighting relighting mobile device consistency relighting light

Apple iPhone [8] ✔ ✗ ✗ ✗ ✔ Studio light Limited lighting options & no env. rotation
Google Pixel [41] ✔ ✗ ✗ ✗ ✔ Single point light Light direction & intensity
Google Meet [15] ✔ ✔ ✗ ✔ ✔ Multiple point lights Light direction, color & intensity
Clipdrop [11] ✔ ✗ ✗ ✗ ✔ Multiple point lights Light direction, intensity, color, distance & radius
SwitchLight [39] ✔ ✔ ✗ ✗ ✔ 360◦ HDR image HDR rotation degrees
Zhang et al. [46] ✔ ✔ ✔ ✔ ✗ 360◦ HDR image HDR rotation degrees
Yeh et al. [45] ✔ ✔ ✗ ✔ ✔ 360◦ HDR image HDR rotation degrees
Ours ✔ ✔ ✔ ✔ ✔ 360◦ HDR image HDR rotation degrees

Table 2. Unlike other existing approaches, our proposed relighting method supports all key features such as image and video relighting,
on-device inference, video consistency, high-quality relighting, relight with 360-degree HDR environment maps, and fine-grained control
over the HDR rotation.

Figure 8. Our text to 360-degree HDRI generative model can produce environment maps for diverse text prompts. We show both the
generated quantized HDR image and it’s dequantized with inverse PQ, and tone mapped image.

Method Runtime Model Size
(seconds) (MB)

Text-to-360-degree image ∼ 5 ∼ 1100

Video Relighting ∼ 0.04 ∼ 20.5

Table 3. Overview of the on-device runtime and model size
for both the 360-degree image generation and video relighting
pipelines on a Snapdragon Gen 3 platform. Note that the model
size for video relighting is the sum of the size of the video seg-
mentation network (∼ 17.3 MB) and the Geometry Net (∼ 3.2
MB).

consistency while maintaining low computation complexity
at edge, we do not add an additional temporal refinement
network to the architecture as [45], but adopt an effective
solution to apply the average temporal filter on three con-
secutive normal maps Nt−2, Nt−1, and Nt predicted by the
Geometry Net. The operation is formulated in Eq. 3:

Ñt =
1

3
(Nt−2 +Nt−1 +Nt) (3)

where Ñt is the average normal map used to calculate the
diffuse light map, which helps in mitigating flickering is-
sues in final relit sequences.

Figure 9. To demonstrate the strong generative capabilities of our
proposed text to 360-degree image generation, we compare the
results from an LDR variant of the model with LDM3D-VR [36].
For more qualitative comparison, please refer to the supplementary
material.

4.3. Light Adding based Rendering

Unlike state-of-the-art relighting methods [28, 45] which
require at least four sequential networks, to save calcula-
tions, we explore combining a neural network with physi-
cally based rendering (PBR). Additionally, when the sub-
jects are illuminated with physically reasonable diffuse
light, we observe that they appear to be in the virtual en-
vironment. Therefore, we propose a light adding based ren-
dering to produce a relit foreground by adding diffuse shad-
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Figure 10. Our proposed framework shows realistic relighting of
different portraits on diverse generative HDRI environment maps.
Our results can preserve facial details such as wrinkles and beards
and generate lighting effects that are consistent with diffuse sphere
references.

ing to the camera capture. Specifically, given a generated
360-degree HDRI map, we pre-compute the diffuse cube-
map by summing all diffuse light from the surrounding en-
vironment along each sample direction. For each frame, a
diffuse light map can be calculated by sampling the pre-
integrated diffuse cubemap using per-pixel normal vectors,
which is a popular technique in real-time PBR implemen-
tation [5]. To further render relit foregrounds, the shading
equation Eq. 4 is formulated as a scaled addition of raw
camera capture and diffuse shading, expressed as the multi-
plication of the low saturation camera capture IlowS and the
diffuse light map D:

R = s1 · I + s2 · IlowS ⊙D (4)

where ⊙ denotes the element-wise multiplication, and
s1,s2 are scaling constants. Note that generally the diffuse
shading is formulated as the multiplication of albedo and
diffuse light map [5, 27, 28]. Considering that adding an
sequential network after Geometry Net increases the oper-
ation time by ∼ 24 milliseconds for a 1024 × 768 albedo
estimation, it introduces a computational bottleneck for on-
device real-time video relighting. Therefore, we compute a
low saturation camera capture IlowS using Eq. 5 instead:

IlowS = 0.6 · I + 0.4 · Igray + 0.05 (5)

where Igray is the grayscale camera capture. Specif-
ically, IlowS is designed to be computationally efficient
without requiring color space conversion from RGB to
HSV, and the low saturation is designed to reduce the im-
pact of the input lighting’s hue.

Method CLIP ↑ FID ↓
LDM3D-VR [36] 28.73 42.04
Ours-LDR 29.94 39.79

Table 4. We measure the CLIP and FID metrics on the LDR im-
ages generated by LDM3D-VR and our LDR 360-degree model to
demonstrate the better generative capabilities.

5. On-device inference
To enable inference on Snapdragon Gen 3 platform, we
leverage network quantization and real-time rendering. For
on-device network inference, we use the AIMET [33] li-
brary to conduct post-training quantization from FP32 to
INT8 for both the 360-degree image generation and video
relighting models. Additionally, we implement the light
adding based rendering module in OpenGL Shading Lan-
guage [4] to save expensive floating-point operations on the
CPU.

6. Results
Our proposed framework achieves real-time video portrait
relighting based on text-prompted 360 degree image gener-
ations. We now present quantitative and qualitative analyses
to showcase the capabilities of our proposed pipeline.

6.1. Text to 360-degree HDRI map generation

We compare images generated by our text-conditioned 360-
degree HDRI generation against the Text2Light [10] ap-
proach in Fig. 7 and report the corresponding runtime on
a single A100 GPU for both approaches in Tab. 1. Al-
though the Text2Light model is capable of generating high-
resolution 360-degree HDRI maps from text, it exhibits a
lack of diversity and realism while requiring a significantly
higher runtime. Our approach, on the other hand, can gen-
erate high-quality 360-degree images in ∼ 5 seconds on an
A100 . More text-conditioned HDRI generations for both
indoor and outdoor scenes are shown in Fig. 8. Note that,
for the sake of visualization, we show the corresponding
tone mapped images.

We also conduct a study to compare with the recent
LDM3D-VR [36] method, which proposes a similar ap-
proach to ours but is limited to low-dynamic range predic-
tion. For this study, we adapt our training setup and fine-
tune the SDv 1.5 U-Net on 360-degree LDR images from
PolyHaven [6] and Matterport360 [1] with an image res-
olution of 512 × 1024 to match LDM3D-VR. We report
FID [18] and CLIP [17] scores for both models in Tab. 4.
On both metrics, our fine-tuned SD v1.5 model shows bet-
ter performance. This can be attributed to (i) our model’s
capacity to generate consistent 360-degree image thanks to
circular padding [42], and (ii) the fact that we only use real-
world images for fine-tuning unlike LDM3D-VR. Further-
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more, Fig. 9 provides a qualitative comparison to demon-
strate the superior quality of our generated images. For an
extended qualitative analysis of the generated LDR images,
we refer readers to the supplementary materials.

6.2. Video portrait relighting

To evaluate the proposed video portrait relighting method,
first, we relight in-the-wild portrait sequences under differ-
ent HDRI environments generated by our 360-degree image
generative model. Due to the lack of relight ground truth
for in-the-wild sequence, we render diffuse spheres to pro-
vide a lighting reference in the target HDRI environment.
And mirror spheres are also provided to indicate where the
main light source locates. As shown in Fig. 10, we are able
to produce physically-correct relighting results while pre-
serve facial details and can embed subjects naturally into a
variety of generated environments. Additionally, to show
temporal-consistency, we provide the recorded screenshots
of our on-device EdgeRelight360 application in the supple-
mentary material, demonstrating that our approach is stable
and flicker-free.

Second, we compare the runtime and relighting qual-
ity of publicly available SwitchLight [39], which also use
HDRI maps to relight images. The web version of Switch-
Light takes 10 more seconds to run a single image on their
remote server, while our method runs locally on the phone
and takes only 0.04 seconds per image. Their high compu-
tation cost origins from a complete intrinsic decomposition
pipeline (including normal, albedo, specular, and roughness
estimation), a neural renderer, and fine-grained foreground
matting. Fig. 11 shows that we can produce promising re-
sults and make subjects blend into the PolyHaven [6] HDRI
map naturally, while the default lighting effects of Switch-
Light is too strong and less consistent with the lighting ref-
erence. Also, consecutive frames from our talking test se-
quence is put in the supplementary material to demonstrate
that results from the web version of SwitchLight produce
relit images with flickering, while ours are more stable and
flicker-free.

6.3. On-device inference

The primary goal of our proposed approach is to enable end-
to-end on-device inference. To the best of our knowledge,
we are the first to run both 360-degree HDRI map gener-
ation and real-time video portrait relighting. We compare
some prior approaches that address image/video relighting
with and without on-device support in Tab. 2. In compari-
son to all the approaches, our proposed framework supports:
(a) image and video relighting, (b) runs on device, (c) en-
sure smooth temporal consistency, (d) enables high-quality
relighting, (e) leverages 360-degree HDRI maps, and (f) of-
fers fine-grained rotation control of the HDRI maps. In con-
trast, all the prior approaches only handle a subset of the

Figure 11. Compared with SwitchLight [39], our relighting
pipeline is more lightweight and can generate more natural, phys-
ically correct, and temporally consistent results.

features.
In Tab. 3 we show the runtime and model size of our pro-

posed framework deployed on a mobile device with Snap-
dragon Gen 3 processor. The time to generate a single
360-degree HDRI map is ∼ 5 seconds. For the end-to-end
process which performs face detection, video segmentation,
and video relighting concurrently, it runs at around 25 fps
using the neural signal processor (NSP) and GPU. Note that
we generate the 360-degree images at 480 × 480 resolu-
tion with 20 denoising steps and run the Geometry Net at
512× 512, while running rendering and produce relighting
results at 1024× 768.

7. Discussion
EdgeRelight360 supports real-time video applications
by introducing an innovative, on-device video portrait
relighting technique. By harnessing the power of text-
conditioned generated 360-degree HDRI maps, it offers
high-quality, realistic lighting conditions derived from
textual descriptions. This not only ensures privacy and
low runtime but also provides an immediate response to
changes in lighting conditions or user input. A potential
improvement to the existing 360-degree generation is to
generate higher resolution images to support different edge
screen resolutions with high-quality background images.
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