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Abstract

Large language and vision models have recently
achieved state-of-the-art performance across various tasks,
yet due to their large computational requirements, they
struggle with strict memory, latency, and power demands.
To meet these demands, various forms of dynamic sparsity
have been proposed that reduce compute on an input-by-
input basis. These methods improve over static methods
by exploiting the variance across individual inputs, which
has steadily grown with the exponential increase in train-
ing data. This dynamic sparsity has been explored within
the hidden dimension and attention heads. Yet, the increas-
ing depth within modern models, currently with hundreds
of layers, has opened opportunities for dynamic layer spar-
sity, which skips the computation for entire layers. In this
work, we explore the practicality of layer sparsity within
pre-trained models by profiling residual connections and
establish the relationship between model depth and layer
sparsity. For example, the residual blocks in the OPT-66B
model have a median contribution of 5% to its output, and
ViT-Huge has approximately a 7% contribution. We also
find these contributions decrease linearly with model size,
implying that state-of-the-art models have near a 1% me-
dian contribution on each layer, which creates significant
opportunities for dynamic layer sparsity. We then insert or-
acles at each layer and threshold on these residual contri-
butions to find that these models can support significant dy-
namic sparsity, with median dynamic depth close to 75% of
their original depth.

1. Introduction

Large language and vision models have recently achieved
state-of-the-art performance across various tasks, yet due to
their large computational requirements, they struggle with
strict memory, latency, and power demands. As these trans-
formers grow larger, they create opportunities for dynamic
layer sparsity, which can skip individual layers on an input-
by-input basis, as shown in Figure 1. For instance, our

Figure 1. Dynamic Layer Sparsity – As transformers grow larger,
each layer contributes less to the output and shows significant vari-
ation on a token by token basis. Dynamically pruning these layers
allows for models to grow significantly without corresponding in-
creases in model latency. Early profiling results suggest that indi-
vidual layers contribute around 1% within modern state-of-the-art
language models.

residual block profiling in Section 4 suggests that modern
state-of-the-art transformers likely have a median contribu-
tion around 1% to the output at each block, and that these
contributions are dynamic, varying token by token. This
type of sparsity was impractical at smaller scales and with
previous neural architectures. At smaller scales, every layer
contributes significantly to the computation for each input,
and with previous architectures, e.g., convolutional neural
networks (CNNs), models change their intermediate dimen-
sions throughout their depth, making layer skipping imprac-
tical.

This work shows that the layer contributions vary among
models and tasks, and often the earlier layers of the net-
work contribute more than the later layers. This indicates
that early-exit methods, which dynamically prune the later
layers in the network, often focus on the wrong set of lay-
ers. This dynamic contribution can be exploited at the
token-level if it can be predicted accurately and efficiently
at runtime. This work explores the opportunities for dy-
namic sparsity within modern transformers by focusing on
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Figure 2. Sparsity Granularity – Bits form the basis for ele-
ments (weight or activations), which create blocks (rows, columns,
heads), which then form individual layers. This leads to a sparsity
spectrum where the smaller units are easier to prune without ac-
curacy loss yet more difficult to accelerate. Layer sparsity has the
highest potential for inference speedup and largest support within
current hardware.

the OPT family of models [9] for language and ViT mod-
els [3] for vision. It profiles the residual blocks to quantify
the importance of each intermediate layer to its output and
then highlights trends across model size and block types.
Then, it inserts oracles at every layer to calculate various
accuracy proxies and simulate greedy decisions on which
layers to dynamically skip per token.

2. Related Work

Sparsity research with deep neural networks has a long his-
tory, and broadly can be categorized in terms of granularity,
structure, and mode (static vs. dynamic) [4]. Figure 2 shows
sparsity granularity, beginning with bits that construct pa-
rameter elements, elements that build blocks, and blocks
that form layers. As the unit becomes larger, it becomes
more difficult to arbitrarily prune without accuracy loss yet
easier to accelerate with modern hardware. For instance,
unstructured element sparsity in weights leads to high com-
pression levels while maintaining model accuracy, yet it re-
quires specializing sparse accelerators to translate compres-
sion into end-to-end speedup.

In addition, the sparsity mode can either be static or dy-
namic. Static sparsity leads to more regular patterns that can
be optimized by compilers and simpler architectures that do
not need additional sparsity predictors. In contrast, dynamic
sparsity can take advantage of input-dependent characteris-
tics to increase model accuracy at higher levels of compres-
sion. This work focuses on dynamic layer sparsity, which
can take advantage of the recent explosion in model depth
within language and vision models.

2.1. Dynamic Sparsity

Multiple prior works have proposed dynamic sparsity to ac-
celerate DNNs across granularities. For example, Channel

Figure 3. Residual Blocks – There are two types of residual
blocks within transformers, attention (ATT) and feed-forward net-
work (FFN). These blocks offer natural points to profile layer
strength since block inputs and outputs are combined at a single
point. To establish an upper bound on the effectiveness of dynamic
layer sparsity, oracles are inserted before each block that know the
layer contribution beforehand.

Gating introduced a method for dynamic channel sparsity
that reduced the compute of CNN workloads by up to 8⇥
without significant accuracy loss [5]. Precision Gating con-
tinued this line of research by applying dynamic sparsity
at the bit level to reduce the required compute by up to
3⇥ [10]. Later, DejaVu applied a similar approach within
LLMs to induce dynamic sparsity on the channels within the
FFN layer and across the heads of the attention layer [6].

2.2. Early Exit

In addition to dynamic sparsity along the network width,
multiple prior works have explored sparsity in the depth di-
mension. For instance, early-exit DNNs use dynamic spar-
sity along the depth dimension by allowing the computation
to exit prematurely at fixed points within the network [1, 7].
This process must be trained end-to-end using a joint loss
function that weights the contributions from each early-exit
layer. However, this work shows that in many models, the
earlier layers in the model often contribute more, and there-
fore early-exits are significantly more difficult to apply post-
training.

3. Layer Sparsity

Transformer layers contain two residual blocks: attention
(ATT) and feed-forward network (FFN) [8]. These blocks
each contain the main residual branch R(x), which com-
prises multiple individual layers, and the identity branch x,
which bypasses the residual branch and simply returns its
input. They combine these branch outputs together to com-
pute R(x)+x, so that during training the main branch only
has to learn the function residual R(x)� x.

These blocks offer natural breakpoints within the model
to profile and induce layer sparsity since they already pro-
vide skip-connections that have been trained along with the
model. Figure 3 shows a lower-level view of these blocks
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Figure 4. Residual Ratio – As models grow larger, the residual
ratio decreases for each layer, and therefore more layers contribute
less to the overall output. Each data point represents a residual
ratio for a single token for both attention and feed-forward blocks.

within two transformer layers. It shows that the main branch
and skip connections are combined at an addition node be-
fore they are passed to the next block. This structure en-
ables easy profiling of the blocks by measuring the relative
magnitudes into these additions.

This figure also shows the insertion of oracles that can
switch on and off the main branch using various accuracy
proxies, such as the residual ratio as defined in Section 4.1.
When they are switched on, the block operates normally
by combining the skip and residual branches, and when
switched off, only the skip connection is active. This work
focuses on the opportunities for dynamic layer sparsity and
simulates layer skipping by allowing these oracles to have
access to future information.

4. Profiling

The primary proxy used by these oracles is the residual ra-
tio, which captures the relative importance of the main and
skip branches. This section uses this ratio to analyze the
layer sparsity within OPT and ViT models with examples
taken from WikiText-2 and COCO. The WikiText-2 exam-
ples are packed together to avoid the use of padding to sim-
ulate batch-size one inference. This batch-size one setting
is very common in practice and avoids many complications
with dynamic layer sparsity that arise when using batches
of examples.

4.1. Residual Ratio

To profile these opportunities for dynamic sparsity, this sec-
tion defines the residual ratio r as:

Figure 5. Dynamic Depth – The deeper layers in the network con-
tribute more than the earlier layers, except for the very first layers.
This relationship benefits from a routed architecture as opposed
to early-exit, since early-exit skips the deeper layers. In addition,
there is significant variance in the dynamic depth of the model, al-
lowing for token-specific sparsity.

r =
kR(x)k2
kxk2

(1)

This simple quantity captures the contribution of the
residual branch, and acts as an efficient post-training proxy
for more expensive metrics, such as empirical layer sensi-
tivities. For example, a block with a 2% residual ratio in-
dicates the main branch provides a 2% average contribu-
tion at the output, although there can be large element-wise
variance. Therefore, skipping blocks with ratios this small
should have little overall effect on the output of the network.

4.2. Model Size

This ratio can be used to understand the relationship be-
tween model size and dynamic sparsity. Figure 4 explores
this by plotting the residual ratio across OPT models for the
residual attention or feed-forward block (more plots shown
in Appendix A). Each data point represents a single to-
ken during the model generation phase. It shows that as
the model size grows, the ratio distribution becomes more
skewed to the left, indicating that opportunities for layer
sparsity expand with model size. For instance, while the
median residual ratio for OPT-125M is only 20%, it drops
to 5.9% for OPT-66B.

In addition, the ratio seems to track the number of model
parameters, not just the number of layers. For example,
OPT-2.7B and OPT-6.7B have the same number of layers,
differing only in their hidden dimensions, yet the ratio for
OPT-6.7B continues the decreasing trend. This trend likely
continues for even larger models, making dynamic layer
sparsity more practical within modern state-of-the-art mod-
els with greater than one trillion parameters.

4.3. Dynamic Depth

Dynamic layer sparsity leads to dynamic depth networks
that adjust their depth based on their model inputs. Fig-
ure 8 shows the residual ratio across the layers of an OPT-
13B model (all models shown in Appendix A). All values

8282



Figure 6. OPT-13B Routing – The majority of skipped layers are
in the earlier part of the network, implying that traditional early-
exit techniques may target the wrong set of layers. A layer skip is
assumed when the residual ratio drops below 5%. ATT and FFN
layers are interleaved in the diagram.

shown are mean residual ratios taken across tokens from
Wikitext-2 data using a sequence length of 256. The ratio
variance is highlighted in lighter colors centered around the
mean. It demonstrates that the earlier residual blocks con-
tribute more compared to the later layers, except for the first
few layers. In addition, there is significant variance across
tokens suggesting the opportunity to apply dynamic layer
sparsity to only the tokens with lower ratios.

This figure additionally shows the dynamic depth in-
duced by this layer sparsity. It assumes oracles that thresh-
old the residual ratio at each block and skip the residual
branch if it falls below this threshold. Since computing the
ratio requires running the residual branch, this is only used
for profiling and simulation purposes. Each data point rep-
resents an inference of a single token using a ratio thresh-
old of 5%. The figure confirms a spread within the net-
work depth, where most tokens only need between 40 and
70 blocks, instead of the full network at 80 blocks.

4.4. Routing Traces

For more detailed analysis, Figure 6 shows the routing for
the OPT-13B model across a batch of WikiText-2 examples.
It reveals how the lower residual ratios in Figure 8 lead to
a significant number of skipped layers in the beginning of
the model. This again motivates the use of dynamic layer
sparsity over early-exit models, since early exit can only
skip later layers, which contribute the most to the network.

4.5. Vision

This analysis so far has focused on large language mod-
els, since they are currently 10 to 100⇥ larger than large
vision models. Yet, recent vision transformers have been
proposed with tens of billions of parameters [2]. These
weights are not yet released, yet the trends between the
smaller language and vision models can still be aligned at
smaller scales to suggest the behavior of large vision models
with billions or trillions of parameters.

Figure 7 shows a comparison for the largest released ViT

Figure 7. Vision Profiling – Current vision transformers are sub-
stantially smaller than language models yet demonstrate similar
trends with residual ratio and dynamic depth. ViT-Huge (632M)
shows median ratios comparable to OPT-350M, and the dynamic
depth assumes skipping layers with lower than 10% residual ratio.

model, which contains 632M parameters across 24 layers. It
shows that vision transformers at this size have comparable
residual ratios to the similarly sized OPT-350M. In addition,
Appendix A lists smaller ViT versions and shows a similar
trend between model size and residual ratio, suggesting that
as vision transformers increase in size they will benefit from
the same layer sparsity opportunities as the OPT models.

5. Conclusion

In the past, dynamic layer sparsity has not been practical
due to small model sizes and incompatible neural archi-
tectures, which caused large contributions from each layer
and varying internal dimensions. For these reasons, dy-
namic layer sparsity has only been possible with techniques
like early-exit, which require expensive, specialized train-
ing. Yet, as language and vision transformers grow, each
layer contributes less to output, creating opportunities for
post-training dynamic layer sparsity. Following the trends
in Figure 4, modern language models with over one trillion
parameters likely have median residual ratios less than 1%.
And in the future, as vision and multi-modal models catch
up to language models, their residual ratios should follow
similar scaling trends.

This work establishes the opportunities for dynamic
layer sparsity, yet future work will need to measure the ef-
fects on model accuracy, the correlation of the residual ra-
tio with end-to-end accuracy, and the ratio prediction ac-
curacy during inference. First, this will involve establish-
ing a strong upper bound on model accuracy using more
advanced oracle methods, such as token-level layer sensi-
tivities. Then, additional accuracy proxies should be com-
pared with residual ratio to confirm that these track the or-
acle methods. Finally, small routing networks will need to
be trained to replace the oracles and provide accurate and
efficient sparsity predictions during inference.
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