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Abstract

3D Semantic Occupancy Prediction offers a holistic
scene understanding with both spatial structure and seman-
tic analysis. Current research in this field primarily focuses
on single-modal inputs, relying either on images or point
cloud data. The potential of combining the complementary
attributes of images and point clouds has not been fully ex-
plored. Previous method transforms image features into 3D
space for direct concatenation with monocular depth esti-
mation, which may introduce noises due to inaccurate depth
prediction. It could also lead to substantial memory us-
age for explicitly constructing dense image feature volumes.
To this end, we propose PMAFusion, an effective fusion
module based on accurate multi-modal alignment. We first
project the point cloud onto images using camera param-
eters, thereby aligning each voxel with its associated pix-
els. A cross-attention module is then used to adaptively fuse
voxel-pixel features for improved representation. In order
to handle empty voxels that are difficult to obtain aligned
pixels naturally, we generate reference points through uni-
form sampling to supplement the missing spatial informa-
tion. With PMAFusion, We yield the best results on the
nuScenes-Occupancy dataset and conduct thorough experi-
ments to evaluate the effectiveness and efficiency of our pro-
posed method.

1. Introduction

With the rapid development of autonomous driving, the im-
portance of 3D environmental perception has greatly in-
creased. 3D Semantic Occupancy takes this a step further
than traditional 3D object detection. Rather than simply
identifying objects and their bounding boxes, it compre-
hensively understands the space they occupy and their se-
mantic attributes. Vital environmental information can be

*Corresponding author

gained through this detailed perception, thus ensuring driv-
ing safety and efficiency in diverse conditions.

3D semantic occupancy prediction needs to determine
whether each voxel in a scene is occupied and categorize it
with a semantic label. Identifying occupied voxels facili-
tates the detection of drivable areas, whereas the semantic
labeling contributes to a more holistic scene understanding.
However, publicly available occupancy datasets are mostly
for indoor scenes [6, 17, 18]. In recent years, with the
growing interest in outdoor tasks, occupancy datasets focus-
ing on outdoor scenes have gradually developed. Occ3D-
nuScenes[19] and nuScenes-Occupancy[21] provide anno-
tations for the NuScenes dataset in the realm of semantic
occupancy. Different from SemanticKITTI[1]’s approach
of front-view occupancy, their focus is on surrounding oc-
cupancy, assessing the area around an autonomous vehicle
to better meet the demands of outdoor applications.

Most existing semantic occupancy algorithms are of
single-modal input, each struggling with inherent limita-
tions. Images are generally considered to be rich in color
and texture, which is highly beneficial for extracting se-
mantic information. Yet, in the context of semantic occu-
pancy prediction within 3D environments, they fall short
in providing direct and accurate depth information. Algo-
rithms based on images[3, 10, 13] often require monocular
depth estimation for spatial information, a notoriously dif-
ficult and imprecise task. Methods that use point cloud as
the single input[15, 16, 23] rely heavily on 3D structural
feature. However, one of point clouds’ primary drawbacks
is their inherent sparsity, which often leads to representa-
tions that lack detail, especially when it concerns objects
that are distant or of small size. Notably, CONet[21] was
the first to propose a multi-modal fusion model to leverage
the strengths and compensate for the weaknesses of both
modalities. Their results underscore the effectiveness of
such fusion, highlighting the advantages of multi-modal in-
puts in 3D semantic occupancy applications.

In this study, we build upon the nuScenes-Occupancy
dataset and [21]’s multi-modal baseline to design an im-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3627



Im
ag

e
B

ac
kb

on
e

Sp
ar

se
En

co
de

r

…

…

Alignment

Fusion

O
cc

up
an

cy
D

ec
od

er

Se
m

. O
cc

.
H

ea
d

reference
points

multi-view
feature map

voxel 
feature

pixel 
feature

align by
projection

fuse by
cross attention

Figure 1. The architecture of our network is shown above. We begin by employing a 3D encoder and an image backbone to gather features
from point cloud and multi-view images. The colored blocks in the figure represent voxels filled with point cloud data, whereas the white
blocks indicate empty voxels. We then project reference points onto images to extract corresponding pixel features, thereby aligning voxel
and image features. Reference points for non-empty voxels come directly from point cloud data. For empty voxels, they are obtained
through spatial sampling. This is followed by the fusion of each voxel feature with its corresponding pixel features to create a unified
feature volume. The final semantic occupancy output is derived from an occupancy decoder and a semantic occupancy head.

proved fusion module. [21] uses depth estimation to lift
camera features to 3D space, then employs convolutional
modules for fusion. Our approach uses camera projection
for direct alignment of 3D voxel features with 2D pixel
features. The advantages of our method are as follows:
(1) We construct voxel-pixel alignment by camera projec-
tion instead of monocular depth estimation and back projec-
tion, bypassing the accuracy issues inherent in this ill-posed
problem as well as boosting computational efficiency. (2)
For empty voxels, we design an uniform reference points
generation process to ensure reliable spatial representation.
(3) We achieve the new SOTA for multi-modal models on
the nuscenes-Occupancy dataset with our design and con-
duct thorough ablation experiments to prove its efficiency.

2. Related Works
2.1. LiDAR-based Methods

Point clouds are widely used in 3D tasks due to their abil-
ity to provide direct depth information and their robust-
ness to lighting variations[15, 16, 22, 23, 27]. For instance,
JS3CNet[23] designs a multi-scale semantic scene comple-
tion module, leveraging semantic occupancy prediction to
enhance the accuracy of point cloud semantic segmentation.
SPCNet[27] interprets complex scenes with local deep im-
plicit functions, ensuring accurate predictions across var-
ied environments. Despite its suitability for 3D tasks, point
cloud generally requires more computational resources, es-
pecially when processing large-scale scenes. To counter
this, LMSCNet[16] proposes a lightweight 3D model that
handles point cloud data efficiently, thus providing insight
into real-time semantic occupancy prediction.

Nonetheless, point clouds face certain drawbacks. Their

typical sparsity results in less detailed representations of
distant and small objects, thereby posing challenges for ac-
curate prediction.

2.2. Camera-based Methods

Images offer rich semantic information but lack direct spa-
tial geometry. Compared to point clouds, images can be
captured and annotated at a lower cost and more readily in-
tegrated into practical systems. Consequently, many stud-
ies focus on utilizing multi-view images for predicting 3D
occupancy[8, 20, 24, 26]. MonoScene[3] is the first to use
monocular RGB images for deducing a scene’s geometric
and semantic properties. It combines 2D and 3D-UNet,
bridging the divide between 2D images and 3D scene un-
derstanding. VoxFormer[13], in contrast to MonoScene’s
CNN-based approach, employs an attention-based archi-
tecture and depth estimation to construct feature volumes,
boosting model performance. TPVFormer[10] further ex-
tends this concept by adopting a tri-perspective view for
3D feature, preserving comprehensive feature representa-
tion while reducing computational costs. OccFormer[26]
builds around a novel architecture that processes 3D vol-
ume data through a dual-path transformer network and ef-
ficiently adapts the decoder of Mask2Former[5] for 3D se-
mantic occupancy prediction.

In summary, while images are a valuable source of dense
semantic information, their limitation in conveying spatial
geometry still requires innovative algorithms to compen-
sate.

2.3. Multi-modal Methods

Currently, RGB-D input forms the basis of most multi-
modal occupancy prediction methods[7, 9, 11, 12, 14, 25].
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CCPNet[25] fuses RGB and depth images before feature
extraction, utilizing flipped TSDF(Truncated Signed Dis-
tance Function) for 3D spatial representation. In con-
trast, AIC-Net[12] processes RGB and depth images sep-
arately for feature extraction and combines them post back-
projection into 3D space. SISNet[2] introduces an inno-
vative framework that focuses on enhancing the semantic
completion accuracy of 3D scenes by fusing instance-level
and scene-level semantic information.These works are con-
ducted on indoor datasets, because the limited range of
RGB-D sensors makes them unsuitable for outdoor envi-
ronments.

To address outdoor scenarios, CONet[21] first proposes
a multi-modal solution, back-projecting surrounding image
features into 3D space based on monocular depth estima-
tions and integrates these with point cloud features through
3D convolution.

3. Method Description
3.1. Overview

Our model’s architecture, as illustrated in Figure 1, builds
upon the multi-modal baseline in [21]. We use ResNet50
to extract multi-view image features and a 3D sparse en-
coder to obtain voxel features for point cloud. This encoder
consists of submanifold 3d convolutions and sparse 3d con-
volutions, downsampling the original voxelized feature by a
factor of 8. The alignment between each voxel (both empty
and non-empty) and image pixels is established based on
reference points and camera projection. Next, we feed the
features of both modalities into the fusion module. Here,
voxel feature acts as the query while the aligned pixel fea-
tures serve as the key and value. Through cross-attention
mechanisms, we fuse these to obtain enhanced features.
These features are then processed by the occupancy encoder
for further refinement, with the occupancy head outputs the
corresponding category for each voxel.

In Section 3.2, we offer a comprehensive description
of our proposed fusion module. How we obtain reference
points for empty voxels is then explained in detail in Sec-
tion 3.3.

3.2. Accurate Alignment and Efficient Fusion

In the fusion module of CONet[21], monocular depth es-
timation is used to transform 2D image features into 3D
counterparts. These 3D image features are then concate-
nated with voxel features, and a 3D convolution with kernel
size of 1 × 1 × 1 is used to complete the fusion. Although
effective, this method has its drawbacks. Inaccuracies in
monocular depth estimation can cause misalignments be-
tween image and voxel features in the spatial domain. Fur-
thermore, each feature grid has a spatial size of 0.8m, cov-
ering a considerable range in both the point cloud and the
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Figure 2. Our fusion module is depicted in the schematic above.
First, in (a) alignment process, the set of voxel reference points S
is projected onto the multi-view image features FP . Bilinear in-
terpolation is then applied to sample corresponding pixel features
for each voxel, labeled as FV −P . In the (b) fusion stage, we use
the voxel feature FV as the query and the associated pixel features
FV −P as key and value. These are then fed into a cross attention
module, resulting in the fused feature Ffuse.

original image. This method of direct concatenation fails to
account for the distribution of points within these grids.

Cross attention is frequently employed to fuse diverse
input features. However, when dealing with multi-view im-
ages from Nview viewpoints, and considering Nvoxel voxels
with image features of size [H×W ×C], applying cross at-
tention on global image features results in a computational
complexity of O(NvoxelNviewHWC). This would lead to
a significant computational load and potentially hinder the
network’s convergence. A more efficient method is to fuse
each voxel with local image features that are highly corre-
lated with it, which requires establishing a specific align-
ment between voxels and image regions.

We construct accurate alignment by projecting reference
points onto multi-view images and fuse features using cross
attention, the process of which can be seen in Figure 2. This
method differs significantly from the ill-posed approach of
using monocular depth estimation for image-to-voxel align-
ment. By employing camera parameters, we ensure a deter-
ministic process, thereby reducing alignment errors.

Let FP = {F i
P }

Nview
i=1 represents the multi-view im-

age features, where Nview denotes the number of cameras.
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Each voxel V possesses a feature FV and a set of reference
points S = {sj}

Nref

j=1 , where Nref represents the number
of reference points in a voxel. We introduce the operation
ϕi(S), which projects each point in S onto the ith image,
sampling corresponding pixels feature based on bilinear in-
terpolation. Points that fail to project are discarded. The
process can be represented by the following equation:

ϕi(S) = {F i
V−P = G(Pi(s), F i

P ), s ∈ S}, (1)

where Pi(s) represents the projection of a 3D spatial point
s the image plane with the ith camera’s parameters, produc-
ing pixel coordinates p = (u, v). The operation G(p, F i

P )
refers to the grid sampling technique, which leverages bilin-
ear interpolation to extract the pixel feature at p on the ith

image feature map F i
P . The term F i

V−P denotes the set of
pixel features that correspond to the voxel in the ith image.

Hence, the set of pixel features FV−P corresponding to
FV across all Nview image features can be written as:

FV−P =

Nview⋃
i=1

ϕi(S). (2)

We use FV as the query, and FV−P as the key and value.
These elements are fed into cross attention, denoted as CA,
producing the fused feature Ffuse:

Ffuse = CA(FV , FV−P , FV−P ). (3)

3.3. Uniform Reference Points Generation

(a) center (b) uniform (c) random

Figure 3. Three sampling techniques are shown as above. The
white blocks represent empty voxels, and the colored dots denote
the positions of the sampling points.

We assign each voxel with a set of reference points and
use them for future aligned fusion. For non-empty vox-
els containing spatial points after voxelization, these spatial
points themselves serve as references, embodying valuable
voxel information. However, given the point cloud’s spar-
sity, numerous voxels lack spatial points. For empty voxels,
we uniformly sample 3D points within them, using these
sampled points as references.

We experiment with these three sampling methods, each
depicted in Figure 3: Center point, uniform sampling, and
random sampling. The center point method involves se-
lecting the voxel’s center as the sampling point. Uniform

sampling extends this by including six additional midpoints
along the ±x,±y,±z directions, alongside the center point.
For random sampling, we generate multiple random offsets,
using these offsets to derive new sampling coordinates.

Our final choice is uniform sampling because it effi-
ciently balances computational load while covering the en-
tire voxel. Through cross attention, features from all sam-
pling locations can be aggregated adaptively, resulting in a
more comprehensive representation of the voxel.

4. Experiment

4.1. Implementation Details

Dataset: We conduct experiments on nuScenes-
Occupancy[21], a newly proposed surround-view semantic
occupancy dataset. It builds upon the nuScenes point cloud
segmentation annotations and extends the classic nuScenes
dataset by adding dense semantic occupancy annotations,
aiming to create a large-scale surrounding semantic occu-
pancy prediction dataset. nuScenes-Occupancy consists of
28,130 training frames and 6,019 validation frames, with
17 semantic labels including drivable areas, pedestrians
and vehicles, which are consistent with those used in
segmentation tasks.

Algorithm 1 Custom Segmented Attention

Input: Flattened voxel feature fvox ∈ RN×C ; Flattened
pixel feature fpix ∈ RN×C ; Segment indices Igrid ∈
RN×1.

1: while training do
2: Wq,Wk,Wv ∈ RC×C

3: Q,K, V = Wqfvox,Wkfpix,Wvfpix
4: Attn = einsum(′nc, nc → n′, Q,K)/

√
C

5: Attn = scatter softmax(Attn, Igrid)
6: O = einsum(′nc, n → nc′, V, Attn)
7: ffuse = scatter add(O, Igrid)
8: end while

Output: Fused feature ffuse ∈ RM×C .

Custom Segmented Attention: When implementing
the PMA fusion module, we opt not to use the pre-defined
attention operation in torch, but instead implement cus-
tom cross attention using torch scatter. This decision was
informed by the fact that torch.nn.MultiheadAttention de-
mands the spatial alignment of features, which brings un-
necessary computational and memory costs. Scatter opera-
tors, however, compute based on given indices, ensuring a
sparse feature representation. This aligns more closely with
the design philosophy of PMA.

Sparse representation of 3D features usually consists of
an N × C flattened feature vector and an N × 4 loca-
tion vector, where the location is specified as [b, h, w, d],
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Table 1. Results on nuscenes-Occupancy val set
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MonoScene[3] C % 6.9 7.1 3.9 9.3 7.2 5.6 3.0 5.9 4.4 4.9 4.2 14.9 6.3 7.9 7.4 10.0 7.6
TPVFormer[10] C ! 7.8 9.3 4.1 11.3 10.1 5.2 4.3 5.9 5.3 6.8 6.5 13.6 9.0 8.3 8.0 9.2 8.2
3DSketch[4] C&D % 10.7 12.0 5.1 10.7 12.4 6.5 4.0 5.0 6.3 8.0 7.2 21.8 14.8 13.0 11.8 12.0 21.2
AICNet[12] C&D % 10.6 11.5 4.0 11.8 12.3 5.1 3.8 6.2 6.0 8.2 7.5 24.1 13.0 12.8 11.5 11.6 20.2
LMSCNet[16] L ! 11.5 12.4 4.2 12.8 12.1 6.2 4.7 6.2 6.3 8.8 7.2 24.2 12.3 16.6 14.1 13.9 22.2
JS3C-Net[23] L ! 12.5 14.2 3.4 13.6 12.0 7.2 4.3 7.3 6.8 9.2 9.1 27.9 15.3 14.9 16.2 14.0 24.9
C-Baseline[21] C ! 10.3 9.9 6.8 11.2 11.5 6.3 8.4 8.6 4.3 4.2 9.9 22.0 15.8 14.1 13.5 7.3 10.2
L-Baseline[21] L ! 11.7 12.2 4.2 11.0 12.2 8.3 4.4 8.7 4.0 8.4 10.3 23.5 16.0 14.9 15.7 15.0 17.9
M-Baseine[21] L&C ! 15.1 14.3 12.0 15.2 14.9 13.7 15.0 13.1 9.0 10.0 14.5 23.2 17.5 16.1 17.2 15.3 19.5
Ours L& C ! 16.9 15.9 14.9 15.7 17.4 14.6 17.9 16.5 10.1 10.4 15.6 26.3 19.3 19.2 18.1 17.1 21.2
C-CONet[21] C ! 12.8 13.2 8.1 15.4 17.2 6.3 11.2 10.0 8.3 4.7 12.1 31.4 18.8 18.7 16.3 4.8 8.2
L-CONet[21] L ! 15.8 17.5 5.2 13.3 18.1 7.8 5.4 9.6 5.6 13.2 13.6 34.9 21.5 22.4 21.7 19.2 23.5
M-CONet[21] L&C ! 20.1 23.3 13.3 21.2 24.3 15.3 15.9 18.0 13.3 15.3 20.7 33.2 21.0 22.5 21.5 19.6 23.2
Ours L&C ! 21.9 24.7 15.9 22.5 25.9 15.5 21.6 23.7 15.2 16.3 21.6 34.9 21.9 24.0 23.1 20.4 23.6

representing the batch index and 3D grid indices respec-
tively. In PMA, each voxel is associated with multiple ref-
erence points. We repeat and reshape the voxel features
and their location vectors according to the number of refer-
ence points, ensuring they are correctly matched after flat-
tening. Bilinear interpolation is then used to extract pixel
features from image features. Using torch.unique() on the
location vector with the return inverse option enabled can
conveniently retrieve segment indices. Features sharing the
same location are assigned the same inverse index, simpli-
fying the process of grouping pixel features by their voxel
association. The implementation of segmented attention is
shown in Algorithm(1). The original length of voxel fea-
ture is M = H ×W ×D and the total number of reference
points is N .

Experimental setting: In our experiments, we follow a
setup similar to [21]. The input image size is 1600 × 900,
and the point cloud’s range is [−51.2m, 51.2m] in the X,Y
directions and [−5m, 3m] in the Z direction. For train-
ing, we employ a loss function that includes cross-entropy
loss Lce, lovasz-softmax loss Lls, affinity loss[3] Lgeo

scal and
Lsem
scal . The overall loss is calculated as the sum of these

individual losses.

We replace the original fusion module with our design
in M-Baseline and M-CONet from [21]. We use AdamW
as the optimizer with a weight decay of 0.01. Training is
conducted on 8 A100 GPUs, utilizing a batch size of 16
with a learning rate of 4e−4 for M-Baseline, and a batch
size of 8 with a learning rate of 3e−4 for M-CONet.

4.2. Comparison with State-of-the-Art Methods

In this section, we compare our method with other ap-
proaches, as shown in Table 1. C, L, D, M denotes camera,
LiDAR, depth and multi-modal respectively. If ”Surround”
is checked, the method predicts surrounding occupancy di-
rectly. Otherwise, it predicts occupancy for each view sep-
arately. As can be seen, our method outperforms others sig-
nificantly. Compared with both M-Baseline and M-CONet,
our method shows an impressive improvement of 1.8, which
is considerable given the already high baseline.

Figure 4 gives a qualitative comparison. M-Baseline pro-
duces coarse prediction, while the output resolution of ours
and M-CONet is the same as that of ground truth. Our
method beats M-CONet in both completion and segmen-
tation.

We boosts model performance in the most crucial cate-
gories in autonomous driving, such as car, motorcycle and
pedestrian. We achieve a noticeable improvement of 5.7
in both the motorcycle and pedestrian categories, which
are challenging but crucial to outdoor driving scenes. Our
method is much better than CONet in vegetation, albeit
falling short of achieving the best results. It is probably
due to the sparse LiDAR points from irregular vegetation
surfaces, leading to information loss in the first place. This
problem needs to be solved in the future. In a nutshell, the
overall significant improvement fully demonstrates the ef-
fectiveness of our method.
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Figure 4. The first row shows a comparative analysis of our method against others. From left to right, the sequence includes visualization
of ground truth, M-Baseline, M-CONet, and our method with PMAFusion. Our method gains superior performance in both completion
and segmentation. For the second row, the first three images come from the sampling experiments detailed in Section 4.3.1 and the last one
comes from the ablation study of the projection module in Section 4.3.2.

4.3. Ablation Study

We examine different sampling methods in Section 4.3.1
and compare between fusion with and without projection in
Section 4.3.2. It is important to note that all experiments
discussed in this section are conducted with M-Baseline.

4.3.1 Comparison of Different Sampling Technique

Table 2. Comparison of different sampling technique

Sample Method mIoU (%)
Center Sample 16.6

Random Sample 16.3
Uniform Sample 16.9

Metric outcomes of various sampling methods are pre-
sented in Table 2. ’Center’ refers to center point sampling,
’Random’ indicates random sampling, and ’Uniform’ rep-
resents uniform sampling. The result indicates that uniform
sampling delivers the best performance, leading to an im-
provement of 0.6 points over random sampling, which is the
least effective. The second row in Figure 4 shows a qualita-
tive comparison. The outcomes of uniform sampling stand
out, delivering the best performance in completing drivable
surfaces and in the detailed representation of cars.

This superiority of uniform sampling can be attributed to
its ability to more effectively represent the inherent spatial
information of voxels, a feature crucial for accurate align-
ment.

Table 3. Effectiveness of aligned fusion

Method GPU Mem. mIoU (%)
w/o projection 35GB 11.8
w/ projection 17GB 16.9

Table 4. Efficiency Analysis on Aligned Fusion

Method GPU Mem. GFLOPs mIoU (%)
C-Baseline[21] 17 GB 2241 10.3
C-CONet[21] 35 GB 6677 12.2

L-Baseline[21] 7.5 GB 749 11.7
L-CONet[21] 8.5 GB 810 15.8

M-Baseline[21] 19 GB 3050 15.1
Ours 17 GB 1757 16.9

M-CONet[21] 24 GB 3066 20.1
Ours 19 GB 1780 21.9

4.3.2 Efficiency and Effectiveness of Aligned Fusion

A key contribution of this paper is an accurate multi-modal
alignment strategy. We conduct ablation experiment on
M-Baseline to show the effectiveness of projection-based
alignment. As shown in Table 3, the method labeled ’with-
out projection’ means employing an entirely learning-based
alignment, i.e. let each voxel learn weights for all image
pixels instead of those projected from reference points. It
is clear from the result that a restricted local cross atten-
tion leads to a remarkable improvement in accuracy, boost-
ing performance by 5.1 points. Furthermore, in comparison
to global cross attention, the adoption of local cross atten-
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Figure 5. Two figures show the strengths of our proposed fusion
module concerning GPU memory utilization and GFLOPs. PMA-
Fusion, while elevating mIoU, also excels in computational effi-
ciency.

tion results in a reduction of GPU memory consumption by
∼50%. This reduction not only boosts the model efficiency
but also significantly aids in the convergence of the net-
work. The natural match between voxel and its reference
points stands as a strong prior for voxel-pixel alignment.
This substantial increase demonstrates the effectiveness of
our alignment-based fusion strategy. Figure 4 offers a more
direct visual comparison.

In [21], the fusion module leverages monocular depth es-
timation results to construct a 3D image feature volume by
back projecting from multi-view feature maps. This repre-
sentation is then fused with a voxel feature volume of iden-
tical size generated from point clouds. Given the ill-posed
nature of monocular depth estimation, this approach consti-
tutes a relatively coarse alignment. Table 4 demonstrates the
efficiency gains achieved by our proposed fusion method on
both M-Baseline and M-CONet. By relying on projection-
based alignment, it lowers GPU memory demands, allowing
the high-resolution improved M-CONet to utilize memory
comparable to that of the original M-Baseline. Additionally,
it decreases GFLOPs by ∼40%, while gaining an enhance-
ment in mIoU. A more intuitive comparison is presented
in Figure 5. In comparison to the fusion techniques within
OpenOccupancy, utilizing projection alignment not only in-
creases the precision of alignment but also eliminates the

requirement for direct construction of 3D image volumes,
constituting a more resource-efficient and efficacious alter-
native.

5. Conclusion
In order to model the environment around the driving car,
we design an occupancy prediction network with a fusion
module that accurately fuses point cloud and image fea-
tures. It does not need monocular depth estimation and
relies solely on the projection of 3D points onto 2D im-
ages, thereby ensuring high accuracy and reliability. Un-
like previous approach, our method avoids the explicit con-
struction of 3D image feature volumes, relying instead on
a singe cross-attention mechanism for the fusion process.
This leads to reduced memory consumption and computa-
tional demands. Meanwhile, accurate alignment enables
our method to achieve the best accuracy. In the field
of multi-modal occupancy prediction, our projection-based
voxel-pixel aligned fusion can be extensively used as a plu-
gin module. How to select the reference points that best
represent each voxel is of great significance for future re-
search.
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