SUPPLEMENTARY MATERIAL

A Introduction

We compare our layered model to single resolution diffusion models in Fig. A.1. All models in this study are trained for 500k steps when evaluated.

Figure A.1: 512×512 outputs from prompt *A black apple and a green backpack*. Finer detail textures can be seen in the layered model when compared with the single resolution model.

B Architecture

B.1 Noise Scaling

Figure A.2: Outputs of layered 256×256 model from prompt *A black apple and a green backpack*.

Noise Type	Target Resolution	FID	IS
Independent Sinc Interpolation	$\begin{array}{c} 256\times256\\ 256\times256\end{array}$	17.59 13.38	$\begin{array}{c} 29.32 \pm .46 \\ \textbf{29.62} \pm \textbf{.57} \end{array}$
Independent Sinc Interpolation	$\begin{array}{c} 512\times512\\ 512\times512\end{array}$	42.46 40.05	$\begin{array}{c} 28.89 \pm .22 \\ \textbf{28.74} \pm .\textbf{47} \end{array}$

Table A.1: Model performance for 256×256 and 512×512 layered models using independently sampled noise and scaled noise via sinc interpolation.

B.2 Cosine Schedule Shifting

Figure A.3: Outputs of layered 256×256 model from prompt *landscape photo of beach with proof* watermark. We note that for a more aggressively shifted noise delay (bottom), higher resolution features can be seen in the waves. We also note the advent of a water-mark looking feature in the first image.

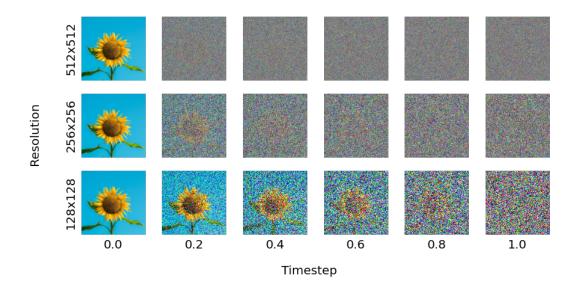


Figure A.4: Demonstration of the increasingly shifted noise schedules for higher resolution on a reference image [1]. No shifting is applied to the cosine noise schedule at 128×128 .

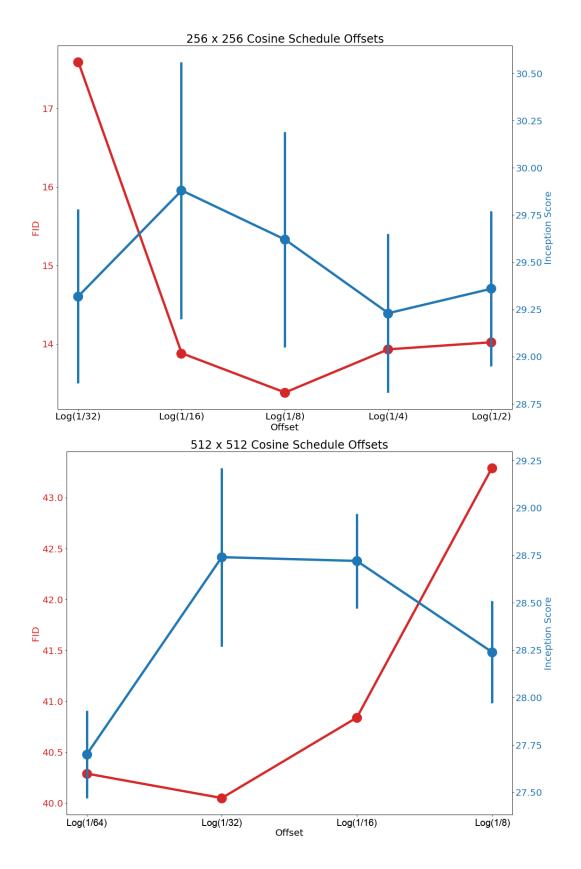


Figure A.5: Sweeps showing IS and FID values on MSCOCO validation set for models trained with varying noise offsets. For the 512×512 model, we use a cosine schedule offset of $log \frac{1}{8}$ for the 256×256 layer.

C Training Optimizations

C.1 Strategic Cropping

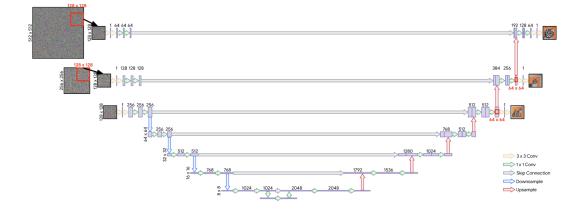


Figure A.6: Model architecture with cropping applied. During training, all input images are 128×128 . Observe in the upsampling stack, we take 64×64 crops prior to the upsampling convolution to ensure that the output is a 128×128 crop in the correct area.

C.2 Model Stacking

Model	Resolution	FID	IS
(a) Random Initialization(b) Load 128 × 128 Model	$\begin{array}{c} 256\times256\\ 256\times256\end{array}$	13.38 13.91	$\begin{array}{r} {\bf 29.62 \pm .57} \\ {28.85 \pm .03} \end{array}$
Random Initialization Load (a) Load (b)	$512 \times 512 \\ 512 \times 512 \\ 512 \times 512 \\ 512 \times 512$	40.05 42.21 43.53	$\begin{array}{c} \textbf{28.74} \pm \textbf{.47} \\ 27.82 \pm .21 \\ 26.85 \pm .26 \end{array}$

Table A.2: Model performance for 256×256 and 512×512 layered models utilizing different amount of pre-training. Despite parts of the model essentially encountering a higher number of training steps and thereby images, we see degraded FID and IS.

Figure A.7: 512×512 output images for prompt *A pizza on the right of a suitcase*. We note decreased image quality with increased initialization. However, we observe the opposite trend from the perspective of image alignment, where only the most initialized model generates the suitcase.

References

[1] Unsplash. Photo by michelle francisca lee on unsplash.