
Prune Efficiently by Soft Pruning

Parakh Agarwal Manu Mathew Kunal Ranjan Patel Varun Tripathi
Pramod Swami

Texas Instruments, India
{p-agarwal, mathew.manu, k-patel1, v-tripathi, pramods} @ti.com

Abstract

Embedded systems are power sensitive and have lim-
ited memory, hence inferencing large networks on such sys-
tems is difficult. Pruning techniques have been instrumental
in enhancing the efficiency of state-of-the-art convolutional
neural networks on embedded systems. Traditional algo-
rithms tend to eliminate weights abruptly during training,
which may not provide the best accuracy. The proposed
approach, called Soft Pruning using Weight Blending al-
gorithm (SPWB), is designed to retain critical information
by incrementally reducing the network’s weights to zero.
Additionally, our method of channel pruning is cognizant
of connections, allowing for optimal pruning that renders
the network compatible with various inference engines.
The findings demonstrate that SPWB algorithm can re-
duce computational complexity(measured in FLOPs) to half
for ResNet50, with only a minimal impact—a 0.65% de-
crease—in top-1 accuracy on the ImageNet dataset. We also
present our pruning results for both unstructured weight
sparsity as well as channel sparsity. Our method is easy
to use and provides enhancement in the network’s perfor-
mance and efficiency without compromising accuracy. The
method is available as a python package and can be eas-
ily integrated to other training scripts. The code is publicly
available here.

1. Introduction
Deep Convolutional Neural Networks (DCNNs) have been
pivotal in advancing various applications such as Image
Classification, Object Detection, and Image Segmentation,
among others. They are also increasingly utilized in indus-
tries that use embedded systems for Machine Vision, Indus-
trial Inspection, ADAS, and Autonomous Driving. How-
ever, the computational demands of cutting-edge networks
pose deployment challenges on hardware with limited re-
sources. Therefore, it’s crucial to delve into model com-
pression algorithms to curtail the parameter count and com-
putational overhead. These algorithms encompass neural

network pruning[25], quantization[1], neural architecture
search[19], and knowledge distillation[13]. In this research,
we focus on pruning, which involves eliminating network
components to create sparse models that facilitate accel-
eration and compression. The aim of pruning is to sub-
stantially reduce the parameter volume, computational com-
plexity and memory requirement while preserving the mod-
els’ performance.

Pruning plays a crucial role in network compression,
primarily because many large neural networks are over-
parameterized[17][5]. By selectively removing superflu-
ous or less significant weights, we can derive a more com-
pact and computationally efficient model without substan-
tially sacrificing performance. Pruning algorithms fall into
two main categories: unstructured and structured prun-
ing. Structured pruning adheres to a specific pattern for
the pruned weights, while unstructured pruning eliminates
weights in a random manner. Structured pruning itself en-
compasses various techniques, with N:M pruning [29] and
Channel pruning [10] being among the most prevalent.

In N:M pruning, a specific pattern is followed where any
N parameters out of every consecutive M parameters are
pruned. This method can be leveraged by hardware accel-
erators in embedded devices, provided the hardware is de-
signed to exploit that kind of sparsity. On the other hand,
channel pruning does not require specialized hardware or li-
braries for acceleration, as it inherently produces a smaller
network with pruned channels. Conversely, unstructured
pruning lacks a predefined pattern, necessitating hardware
or software optimization to avoid multiplications by zero for
any speed gains. Nevertheless, data compression techniques
can be employed to reduce the overall bandwidth required
to fetch parameters.

Numerous studies on pruning concentrate on identifying
the ideal parameters for pruning, often based on the mag-
nitude or norm of weights[16] [25]. These conventional
methods typically zero out chosen weights [7] , which are
then either retrained [17] or permanently removed. Such
abrupt pruning risks discarding critical information linked
to these weights. To circumvent this issue, our method

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2210

https://github.com/TexasInstruments/edgeai-modeloptimization/tree/main/torchmodelopt/edgeai_torchmodelopt/xmodelopt/pruning

adopts a gradual approach, incrementally nudging the se-
lected weights towards zero during the training process.
This strategy ensures the preservation of vital information,
maintaining the integrity of the network’s learning capacity.

Further, existing channel pruning methods often over-
look the removal of corresponding channels in layers that
share a residual connection[10] . This oversight can result
in suboptimal latency reduction when constructing a smaller
network. To address this, our approach prunes identical out-
put channels from the inputs of residual layers, ensuring the
creation of a more compact and efficient pruned network.
This method not only streamlines the network but also max-
imizes the potential speedup achievable through pruning.

In our research, we have developed a comprehensive
framework that facilitates the implementation of either un-
structured or structured sparsity, depending on the specific
requirements. Our key contributions are summarized as fol-
lows:
• We introduce the Soft Pruning using Weight Blending

(SPWB) algorithm, which is designed to incrementally
reduce neural network weights towards zero, thereby
maintaining essential information.

• Our in-depth analysis of channel sparsity and inter-layer
dependencies has led to the creation of an inference-
engine-agnostic network structure. The SPWB algorithm
is then applied to achieve efficient pruning.

• We provide a toolkit that enables the induction of both un-
structured and structured sparsity within any neural net-
work architecture.

2. Related Work
In this section, we aim to review the seminal contributions
to the literature on inducing sparsity in Convolutional Neu-
ral Networks (CNNs). The concept of unstructured prun-
ing was pioneered by LeCun et al. [16], who introduced
the use of saliency as a metric for determining the signifi-
cance of individual weights within a network. This method-
ology laid the groundwork for subsequent advancements in
the field. Following this, Han et al. [7] refined the prun-
ing process by employing l1 regularization to iteratively
prune weights and then retraining the network to recover
performance. These early efforts in unstructured pruning
have set the stage for the development of more sophisticated
sparsity-inducing techniques in deep learning architectures.

The Lottery Ticket Hypothesis (LTH) [5] is a signif-
icant concept in neural network pruning. It posits that
within a pretrained network, there exist smaller subnet-
works—’winning tickets’—that can be trained to achieve
comparable accuracy to the full network. The process in-
volves iteratively pruning weights based on their magnitude
and then retraining the remaining weights from their orig-
inal initialization. This approach challenges the traditional
belief that pretrained weights are necessary for retraining

and suggests that these ’winning tickets’ can be trained in-
dependently to reach similar performance levels as the orig-
inal dense network.

Recent studies have brought new insights into LTH. The
work by Ma et al. [23] offers a more rigorous definition of
LTH, which helps in more accurately identifying the win-
ning tickets within neural networks. Their findings suggest
that the success of finding these winning tickets is signifi-
cantly influenced by various training settings and architec-
tural characteristics. Key factors include the learning rate,
the number of training epochs, and specific features of the
network architecture such as its capacity and the presence of
residual connections. A smaller learning rate or a sufficient
number of training epochs appear to increase the likelihood
of discovering winning tickets. This understanding of LTH
could lead to more effective strategies for neural network
pruning and optimization.

Hao et al. [17] introduced a method that utilizes the l1-
norm of filters to select channels for pruning, with the ra-
tionale that filters with lower norms result in weaker acti-
vations and thus have a lesser impact on the final classifi-
cation. On the other hand, Yang et al. [11] demonstrated
through their Soft Filter Pruning (SFP) approach that the
l2-norm is more effective than the l1-norm for this pur-
pose. Additionally, in another study, they proposed that fil-
ters close to the Geometric Median [12] within a layer are
likely to be redundant. Therefore, instead of relying solely
on norm values, pruning should target these filters to elim-
inate shared information and reduce redundancy. This per-
spective shifts the focus from pruning less important filters
to those that are less unique to the network’s functionality.

Soft Threshold Reparameterization (STR) [15] presents
a novel approach to pruning by introducing a learnable
layer-wise threshold for weight pruning. This method, akin
to a denoising operator in signal processing, enables the
learning of a non-uniform sparsity budget that is optimized
for each layer individually. By doing so, STR smoothly
induces sparsity while learning the pruning thresholds, re-
sulting in a more efficient and effective allocation of the
model’s parameters. This technique stands out by allowing
for a tailored sparsity budget across different layers of the
network, which can lead to improved prediction accuracy
and reduced inference costs.

The methods prioritize the selection of filters for prun-
ing, but this can lead to a loss of crucial information due to
the reduction in optimization space post-pruning. Dynamic
pruning or soft pruning techniques aim to mitigate this by
maintaining a dynamic pruning mask throughout the train-
ing process, thus preserving the model’s capacity to repre-
sent data effectively [9]. Soft Filter Pruning (SFP) embodies
this concept by creating a mask at each epoch post-update,
setting the filters to zero instead of removing them entirely.
This allows the weights the opportunity to be updated in

2211

subsequent epochs. The practice of pruning weights to zero
and subsequently allowing updates presents a methodolog-
ical expansion of the optimization space. This approach af-
fords the network a degree of flexibility that is beneficial for
iterative refinement post-pruning. However, it is accompa-
nied by a non-negligible risk: the potential loss of critical
information during the initial pruning phase. Another lim-
itation of SFP is the need for manually setting the prune
ratios for each layer, which can be a meticulous and time-
consuming process[2].

The method proposed by Liu et al. [20], known as Net-
work Slimming, employs a novel approach to streamline
neural networks. It introduces a scaling factor for each
channel, which is trained alongside the network weights.
Sparsity regularization is applied to these scaling factors
during training, and their magnitudes are utilized to score
and select filters for pruning. Practically, the γ (gamma) pa-
rameters from Batch Normalization (BN) layers are repur-
posed as these scaling factors. This technique effectively re-
duces the model size and computational requirements with-
out compromising accuracy, making it a valuable strategy
for optimizing deep neural networks.

3. Method

In this section, we delve into the intricacies of the Soft Prun-
ing using Weight Blending (SPWB) method. At the heart of
this technique lies the concept of guiding selected parame-
ter weights toward a target value—zero in the context of
inducing sparsity—while concurrently allowing the remain-
ing weights to compensate for any performance deficits that
arise from this process. The following subsections will
elaborate on this methodology, providing a granular anal-
ysis of its implementation and efficacy.

3.1. Problem Formulation

Let us consider a Convolutional Neural Network (CNN)
denoted by M(L(1), L(2), ..., L(N)), comprising N layers.
Here, L(i) represents the i-th convolutional layer, equipped
with c

(i)
out convolutional filters. These filters are symbol-

ized as W (i) = [w
(i)
1 , w

(i)
2 , ..., w

(i)

c
(i)
out

] within the space

Rd(i)×c
(i)
out , where d(i) is defined as c

(i)
in · w(i) · h(i). The

terms c(i)in , w(i), and h(i) denote the number of input chan-
nels, and the width and height of the filters, respectively.

The sparsity target, St, is applicable to both unstructured
and structured pruning. In the context of unstructured prun-
ing, St indicates the proportion of weights within W that
are to be pruned. Conversely, in channel pruning, St refers
to the ratio of output channels c

(i)
out that need to be pruned

from W (i). For N : M pruning, one must specify both the
sparsity target St and the number of contiguous weights m.

While the forthcoming sections will primarily address

unstructured pruning, it is important to note that the prin-
ciples outlined can be seamlessly adapted to other pruning
methodologies.

3.2. Weight threshold

In the process of pruning, weights are initially selected for
removal based on a weight threshold determined by the
sparsity target. This selection can be achieved through var-
ious methodologies. We experimented with two distinct
methods for weight selection: L2 norm [17] of weights and
FPGM [12] strategy. Both methods yielded comparable out-
comes, indicating that the specific technique used to select
weights for pruning does not markedly influence the accu-
racy of the final pruned network.

Finally, we opted for the method that prunes weights
with the lowest l2 norm. Weights falling below the weight
threshold, denoted as Wt, are pruned. The original number
of weights in the network is represented by Norig, and the
weights that remain post-sparsity are represented by Nkept.
The calculation of these values is as follows:

Norig =
∑

i d
(i) × c

(i)
out

Nkept = (1− St)×Norig

(1)

The weight threshold, Wt, which determines the demar-
cation between weights to be pruned and those to be re-
tained, is calculated as the mean of the largest weight des-
ignated for pruning and the smallest weight that will be pre-
served. Mathematically, this can be expressed as:

Wh = topk(W,Nkept, largest = True)

Wl = topk(W,Norig −Nkept, largest = False)
(2)

Wt =
min(Wh) +max(Wl)

2
(3)

3.3. Weight Blending

In this section, we formulate the principle of weight blend-
ing, which entails the gradual integration of the original
model’s weights towards a specific target value—zero, in
the context of achieving sparsity. The model undergoes
training for Einit epochs before the induction of sparsity.
Full sparsity is realized by the conclusion of Eknee epochs,
typically set at 75% of the total training epochs, denoted as
Etotal. The weights designated for pruning are modulated
by a factor αi, where αi ∈ R[0,1] and i ranges from 0 to
Etotal − 1. The computation of αi is as follows:

2212

αi = 1.0−max(min(
Ei − Einit

Eknee
, 1.0), 0.0) (4)

The parametrization factor αi plays a pivotal role in the
computation of new weights during the loss and gradient
calculations. It is important to note that during the param-
eter update phase, the original, non-parameterized weights
are utilized to update them towards the target value. The up-
date of new weights during the gradient calculation phase is
conducted as follows:

Wnew = αp
i ·W (5)

Here, Wnew represents the updated weights and W de-
notes the current weights. The parameter, p, is pace of
pruning, which will be discussed in the next section. This
formulation ensures that the weights are incrementally ad-
justed towards the zero, allowing the network to adapt and
compensate for the induced sparsity progressively.

3.4. Pace of Pruning

In the proposed Soft Pruning using Weight Blending
(SPWB) method, while a linear decay of weights towards
the target value is feasible, it is observed that during the
initial epochs, the network learns more efficiently since
the weights are proximal to the local minima. Conversely,
in the later epochs, as the weights designated for pruning
approach zero, training the network becomes increasingly
challenging. To address this, we introduce a ’pace of prun-
ing’ factor, denoted by p, which modulates the rate at which
weights are pruned. This factor is instrumental in ensuring
that the network continues to learn effectively throughout
the pruning process, even as the weights converge towards
zero. The implementation of p is designed to balance the
network’s learning pace with the progression of sparsity in-
duction, thereby preserving the network’s performance dur-
ing training.

Figure 1. The decay of weights as the pace of pruning is varied.

Choosing a higher ’p’ value proves beneficial, especially
for complex operations such as channel pruning or when

aiming for a significant reduction in pruning ratios. A larger
’p’ implies a quicker convergence of weights towards zero
in the initial epochs compared to later ones. This is advan-
tageous as adjustments for weight reductions are more man-
ageable in the early stages when weights are nearer to their
initial values. The impact of the pruning pace is evident in
the results, where the accuracy is observed with varying ’p’
values.

To encapsulate all factors, the update formula for
weights for SPWB is established as:

w′ =

{
w |w| ⩾ wt

αp
iw |w| < wt; p ⩾ 1

(6)

4. Applications to Structured Pruning
In this segment, we discuss the utilization of N:M prun-
ing and channel pruning, along with their implementation
specifics.

4.1. N:M Pruning

N:M structured pruning [29] , involves selecting N weights
to prune from every set of M consecutive weights. This ap-
proach yields a sparsely connected network that strikes a
balance between compression efficiency and computational
performance. It leads to a reduction in the total number of
parameters, thereby decreasing latency. Both the stream-
ing and inference engines can benefit from N:M pruning,
enabling accelerated processing speeds using the hardware
accelerator. For instance, in a 2:4 sparse network configu-
ration, there are at most two non-zero weights within any
sequence of four contiguous weights. This is achieved by
pruning the smallest two weights by magnitude within each
group of four, rather than applying a fixed weight thresh-
old. Further, the weight blending approach is used on those
weights to obtain the pruned network. We show our results
on 41:64 structured pruning in table 4.

4.2. Channel Pruning

In this section, we elucidate the integration of SPWB for
channel pruning and its connection-aware aspect. Rather
than computing the l2 norm for individual weights, the l2
norm for a layer’s channels is determined, and those with
the minimal l2 norm are earmarked for pruning. Conse-
quently, a channel pruning sparsity target of 30% implies
the elimination of 30% of the channels within each layer.
This results in an approximate 51% acceleration, as the re-
maining 70% of the channels reduce the network’s com-
plexity to 49% of its original state.

Moreover, to attain sparsity that is agnostic to inference,
it is essential to align the corresponding output channels
of all the inputs of the residual layer. This principle ex-
tends beyond the residual layer to any layer with shared in-

2213

put channels, characterizing it as connection-aware channel
pruning. The subsequent figures illustrate this concept.

Figure 2. The pruning of different output channels in parallel con-
nection results in the inability to achieve a smaller network. Gray
color represents the pruned channels in A and B layers.

In the figure 2, for the convolutional layer A, the filter
2 and 4 are getting pruned, because the L2 norm for those
channels are the least, however, for the layer B, filters 1 and
4 are pruned. When the outputs from A and B would be
added, then the channels 1 and 2 will not be pruned, thus it
is not as efficient. Thus, these layers cannot be removed to
achieve lesser FLOPs. The layer D shows the output of the
residual branch.

Figure 3. Creation of a more compact network after pruning the
same output channels

Conversely, when the pruning of channels in layers A
and B is matched, these layers can be seamlessly removed,
resulting in a leaner network with fewer FLOPs. This
matching is achieved by mapping layers that share output
channels and using the average L2 norm of these mapped
layers rather than the individual norms during the pruning
process.

5. Experiments
In this section, we present the results of the SPWB approach
for ResNet50 and ResNet101 for both unstructured as well
as channel pruning.

5.1. Experimental Setup

Our research showcases the efficacy of our novel differ-
entiable pruning approach on the ImageNet1K dataset [3],
which encompasses 1000 categories. We conducted exper-
iments on two convolutional networks: ResNet50[8], and
ResNet101[8], utilizing models and training pipelines from
torchvision[24]. We have used the v1 pretrained weights
for the models. Further, we do not augment the images for
training, however it can be explored for better accuracy.

Training Procedure: The training unfolds in three
stages, as delineated in our methodology. Initially, the
model undergoes training for Einit epochs to stabilize the
weights at a low learning rate, typically spanning 5 epochs
in our experiments. Subsequently, sparsity is introduced as
per equation 7, with Eknee epochs set at 55. The final phase
involves training the pruned network for an additional 20
epochs to restore any accuracy deficits. Overall, the net-
work is trained for a total of 80 epochs during our sparsity
regimen.

In our research, we’ve used the SGD optimizer[26],
alongside a cosine annealing scheduler [22]. The learning
rate and pruning pace (p) are tailored to the task’s complex-
ity. The weight decay is set at 4 × 10−5, as it does not sig-
nificantly impact the pruning outcomes. For simpler tasks, a
lower learning rate and pruning pace are recommended. For
instance, achieving 60% unstructured sparsity in ResNet50
involves a learning rate of 1 × 10−3 and a p value of 1.5.
Conversely, more challenging tasks and higher pruning ra-
tios necessitate a higher learning rate and pruning pace. For
example, 30% channel pruning is conducted with a learning
rate of 1× 10−2 and a p value of 3.5.

Pruning Pruned Top-1 Params
Method Top-1 Acc Acc. Drop (in M)

ResNet50 76.16 0.00 25.56
One-Shot [7] 75.90 0.26 10.22
Gradual [30] 76.10 0.06 10.22
Cyclical [27] 75.80 0.36 10.22
SPWB (Ours) 76.36 -0.20 10.22

ResNet101 77.37 0.00 44.55
SPWB (Ours) 77.89 -0.52 17.82

ResNet152 78.31 0.00 60.20
SPWB (Ours) 78.74 -0.43 24.08

Table 1. Results of 60 % Unstructured Sparsity on ImageNet1K

2214

Model Pruning Baseline Pruned Top-1 FLOPs FLOPs Parameters Parameters
Method Top-1 acc (%) Top-1 acc (%) Acc Drop (in G) Drop (%) (in M) Drop (%)

FPGM [12] 76.15 75.59 0.56 2.40 41.00 - -
SFP [11] 76.60 74.60 2.00 2.40 41.00 - -

MetaPruning [21] 76.60 75.40 1.20 2.30 43.80 - -
AutoSlim [28] 76.60 75.60 1.00 2.00 51.00 - -

ResNet50 DMCP [6] 76.60 76.20 0.40 2.20 46.20 - -
ABCPruner [18] 76.15 74.84 1.31 2.45 40.80 16.92 33.80

DCFF [18] 76.13 75.18 0.95 2.25 45.00 15.16 40.70
SPWB (Ours) 76.13 75.62 0.51 2.01 51.00 12.94 49.40

SFP 77.37 77.03 0.34 4.51 42.20 - -
ResNet101 SFP (fine-tuned) 77.37 77.51 -0.14 4.51 42.20 - -

SPWB (Ours) 77.37 77.28 0.09 3.83 51.00 22.23 50.10
SPWB (Ours) 77.37 75.07 2.30 1.98 74.60 11.68 73.75

ResNet152 SPWB (Ours) 78.31 78.00 0.31 5.68 50.65 29.89 50.35

Table 2. Results of Channel Sparsity on ImageNet1K

5.2. Unstructured Sparsity

In this section, we will be showing the performance of
SPWB unstructured pruning approach on ResNet models
for 60% as well as 80% unstructured sparsity. We are com-
paring our results against other pruning approaches to show
the effectiveness of SPWB pruning approach.

Models obtained after SPWB approach are able to obtain
better accuracy than the baseline model on all the three net-
works, even when 60 % of the total weights are pruned out
from the network. We compare the results against cyclical
pruning, one shot pruning as well as gradual pruning, and
we obtain better accuracy than the compared networks in ta-
ble 1. The value of p used here is 1.5 as the task is relatively
easy for the network to learn.

Pruning Pruned Top-1 Params
Method Top-1 Acc Acc. Drop (in M)

ResNet50 76.16 0.00 25.56
One-Shot [7] 75.40 0.66 6.79
Gradual [30] 74.90 1.26 6.79
Cyclical [27] 75.30 0.86 6.79
SPWB (Ours) 75.71 0.45 6.79

ResNet101 77.37 0.00 44.55
SPWB (Ours) 77.32 0.05 8.91

Table 3. Results of 80 % Unstructured Sparsity on ImageNet1K

Further, after pruning 80 % of the total weights from the
network, we see a slight drop in accuracy for ResNet50,
however, out method performs better than the compared
networks. Further, we see almost no loss in case of

ResNet101 and ResNet152 even when 80% of the network
weights are removed. The results are shown in table 3 where
the value of p being used is 4, as the task of 80% pruning is
slightly more difficult.

5.3. N:M Sparsity

In this section, we show the performance of our approach
on 41:64 sparsity, i.e. atleast 41 elements are zeroed out
of 64 contiguous elements. The weight sparsity is 64.06%
for these networks, the value p used for them was 2. The
loss in ResNet50 is minimal, whereas for MobileNetV2, it
is slightly more because of the already compact nature of
the network. The results are shown in table 4.

Pruning Pruned Top-1 Params
Method Top-1 Acc Acc. Drop (in M)

MobileNetV2 72.15 0.00 3.50
SPWB (Ours) 70.37 1.78 1.26

ResNet50 76.16 0.00 25.56
SPWB (Ours) 75.98 0.18 9.18

Table 4. Results of 41:64 Structured Sparsity on ImageNet1K

5.4. Channel Sparsity

The section will cover the performance of SPWB approach
on pruning out 30% and 50% of the channel in the net-
work. Further, the connection aware aspect of pruning is
considered as well that gives optimal performance. The
30 % channel pruning approach gives 50% FLOPs reduc-
tion, whereas 50% channel pruning provides close to 75%
FLOPs reduction in the network. We compare our algo-
rithm against few other channel pruning alorithms and we

2215

obtain better performance than the compared algorithms.
SPWB algorithm is able to get a 2x smaller network with
just 0.5 % accuracy drop in ResNet50 and negligible loss in
case of ResNet101 and ResNet152 networks. The value of
p used for 30 % channel pruining was 3.5, whereas for 50%
channel pruning was 7, it being more difficult task. The
results are shown in table 2. The baseline accuracy are dif-
ferent for different approaches because various studies are
using their checkpoints for evaluation of the method. Thus,
we compare the accuracy drop for each of the methods as
well.

6. Conclusions
Our approach effectively introduces unstructured, N:M,
and channel sparsity into any neural network, resulting in
improved accuracies compared to most existing methods.
While additional training epochs [4] [14] can further en-
hance accuracy , we prioritize simplicity and speed when
introducing sparsity without compromising overall accu-
racy. Our algorithm performs well even with fewer train-
ing epochs. By using our approach, the process of model
sparsification and complexity evaluation on devices can be
expedited without significant accuracy loss. Furthermore,
our work can be extended to Transformer Network Spar-
sity.

References
[1] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-

ing 4-bit quantization of convolutional networks for rapid-
deployment. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2019. 1

[2] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A
survey on deep neural network pruning-taxonomy, compari-
son, analysis, and recommendations, 2023. 3

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[4] Xiaohan Ding, Tianxiang Hao, Ji Liu, Jungong Han, Yuchen
Guo, and Guiguang Ding. Lossless CNN channel pruning
via gradient resetting and convolutional re-parameterization.
CoRR, abs/2007.03260, 2020. 7

[5] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Training pruned neural networks. CoRR,
abs/1803.03635, 2018. 1, 2

[6] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.
DMCP: differentiable markov channel pruning for neural
networks. CoRR, abs/2005.03354, 2020. 6

[7] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2015. 1, 2, 5, 6

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 5

[9] Yang He and Lingao Xiao. Structured pruning for deep con-
volutional neural networks: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, page 1–20, 2024.
2

[10] Yihui He, Xiangyu Zhang, and Jian Sun. Channel prun-
ing for accelerating very deep neural networks. CoRR,
abs/1707.06168, 2017. 1, 2

[11] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. CoRR, abs/1808.06866, 2018. 2, 6

[12] Yang He, Ping Liu, Ziwei Wang, and Yi Yang. Pruning fil-
ter via geometric median for deep convolutional neural net-
works acceleration. CoRR, abs/1811.00250, 2018. 2, 3, 6

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network, 2015. 1

[14] Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun
Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, and
Sun-Yuan Kung. Chex: Channel exploration for cnn model
compression, 2022. 7

[15] Aditya Kusupati, Vivek Ramanujan, Raghav Somani,
Mitchell Wortsman, Prateek Jain, Sham M. Kakade, and Ali
Farhadi. Soft threshold weight reparameterization for learn-
able sparsity. CoRR, abs/2002.03231, 2020. 2

[16] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. In Advances in Neural Information Processing Sys-
tems. Morgan-Kaufmann, 1989. 1, 2

[17] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. CoRR,
abs/1608.08710, 2016. 1, 2, 3

[18] Mingbao Lin, Rongrong Ji, Bohong Chen, Fei Chao,
Jianzhuang Liu, Wei Zeng, Yonghong Tian, and Qi
Tian. Training compact cnns for image classification using
dynamic-coded filter fusion. CoRR, abs/2107.06916, 2021.
6

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. CoRR, abs/1806.09055,
2018. 1

[20] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. CoRR,
abs/1708.06519, 2017. 3

[21] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting (Tim) Cheng, and Jian Sun. Metaprun-
ing: Meta learning for automatic neural network channel
pruning. CoRR, abs/1903.10258, 2019. 6

[22] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with restarts. CoRR, abs/1608.03983, 2016. 5

[23] Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi
Chen, Xiaohan Chen, Ning Liu, Minghai Qin, Sijia Liu,
Zhangyang Wang, and Yanzhi Wang. Sanity checks for lot-
tery tickets: Does your winning ticket really win the jackpot?
CoRR, abs/2107.00166, 2021. 2

[24] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com/
pytorch/vision, 2016. 5

[25] M. Mathew, K. Desappan, P. Swami, and S. Nagori. Sparse,
quantized, full frame cnn for low power embedded devices.

2216

https://github.com/pytorch/vision
https://github.com/pytorch/vision

In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 328–336, Los
Alamitos, CA, USA, 2017. IEEE Computer Society. 1

[26] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 5

[27] Suraj Srinivas, Andrey Kuzmin, Markus Nagel, Mart van
Baalen, Andrii Skliar, and Tijmen Blankevoort. Cyclical
pruning for sparse neural networks. CoRR, abs/2202.01290,
2022. 5, 6

[28] Jiahui Yu and Thomas S. Huang. Network slimming by
slimmable networks: Towards one-shot architecture search
for channel numbers. CoRR, abs/1903.11728, 2019. 6

[29] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing N: M fine-grained structured sparse neural networks from
scratch. CoRR, abs/2102.04010, 2021. 1, 4

[30] Michael Zhu and Suyog Gupta. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression, 2017.
5, 6

2217

	. Introduction
	. Related Work
	. Method
	. Problem Formulation
	. Weight threshold
	. Weight Blending
	. Pace of Pruning

	. Applications to Structured Pruning
	. N:M Pruning
	. Channel Pruning

	. Experiments
	. Experimental Setup
	. Unstructured Sparsity
	. N:M Sparsity
	. Channel Sparsity

	. Conclusions

