
Dedicated Inference Engine and Binary-Weight Neural Networks for
Lightweight Instance Segmentation

Tse-Wei Chen∗, Wei Tao†, Dongyue Zhao†, Kazuhiro Mima∗,
Tadayuki Ito∗, Kinya Osa∗, and Masami Kato∗

twchen@ieee.org
∗Device Technology Development Headquarters, Canon Inc.,

30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan
†Canon Innovative Solution (Beijing) Co., Ltd.,

12A Floor, Yingu Building, No.9 Beisihuanxi Road, Haidian, Beijing, China

Abstract

Binary-weight Neural Networks (BNNs), in which
weights are binarized and activations are quantized, are
employed to reduce computational costs of various kinds
of applications. In this paper, a design methodology of
hardware architecture for inference engines is proposed to
handle modern BNNs with two operation modes. Multiply-
Accumulate (MAC) operations can be simplified by replac-
ing multiply operations with bitwise operations. The pro-
posed method can effectively reduce the gate count of in-
ference engines by removing a part of computational costs
from the hardware system. The architecture of MAC opera-
tions can calculate the inference results of BNNs efficiently
with only 52% of hardware costs compared with the related
works. To show that the inference engine can handle prac-
tical applications, two lightweight networks which combine
the backbones of SegNeXt and the decoder of SparseInst for
instance segmentation are also proposed. The output results
of the lightweight networks are computed using only bitwise
operations and add operations. The proposed inference en-
gine has lower hardware costs than related works. The ex-
perimental results show that the proposed inference engine
can handle the proposed instance-segmentation networks
and achieves higher accuracy than YOLACT on the “Per-
son” category although the model size is 77.7× smaller
compared with YOLACT.

1. Introduction
Deep neural networks, including convolutional neural net-
works (CNN) and vision transformers (ViT) [23], have re-
ceived considerable attention in recent years. Various kinds
of networks have already been applied to different computer
vision tasks. Not only can these algorithms be applied to

face detection and object detection [12, 25], they can also
be employed in other dense-prediction tasks such as seman-
tic segmentation [11] and instance segmentation [3, 7].

For mobile devices and embedded systems with limited
computational resources, it is necessary to reduce compu-
tational costs and power consumption. In modern neural
networks, Multiply-Accumulate (MAC) operations have a
much higher ratio than any other operations, such as max-
pooling or up-sampling operations. Many kinds of quanti-
zation algorithms [8, 19] and low-bit networks [10, 24] are
proposed to simplify the MAC operations, and many kinds
of hardware architectures are proposed to handle mixed-
precision networks with low bit widths [1] and binary-
weight neural networks (BNNs) with low computational
costs [6, 9, 15, 17, 18, 26, 30]. However, the accuracy might
decrease and fail to satisfy the requirement of some appli-
cations, such as instance segmentation, when the weights
of networks are binarized or quantized to low bits. To de-
sign a suitable system for embedded vision, it is necessary
to seek the balance between accuracy and bit widths in the
quantized networks.

In this paper, we focus on both hardware implementa-
tion methods and algorithm design approaches of BNNs, in
which activations are quantized and weights are binarized.
Two lightweight networks for instance segmentation and
a new hardware architecture of inference engine are pro-
posed. The contribution of this paper is twofold. First, we
propose a new design methodology to reduce the gate count
of the inference engine by removing a part of computational
costs from the hardware system. The methodology can be
applied to different variations of BNNs, and no multiply op-
erations are required. The values of binary weights can be
either {0, 1} or ±1. Second, we show that the proposed in-
ference engine can handle instance segmentation algorithms
with only 9.8% of computational costs compared with the

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2101



related works. The proposed algorithm and hardware can
handle dense-prediction tasks with acceptable accuracy.

The paper is organized as follows. In Sec. 2, the related
works are introduced. The architecture of the proposed in-
ference engine for BNNs is shown in Sec. 3. The experi-
mental results are discussed in Sec. 4. The conclusions are
given in Sec. 5.

2. Binary-Weight Neural Networks (BNNs)
Quantization is an important topic for hardware implemen-
tation of neural networks. Many algorithms are proposed
to quantize both activations and weights of CNN. Choi et
al. [8] propose a quantization scheme for activations during
training. Sambhav et al. [19] propose a method of train-
ing quantization thresholds, where the quantizers are suit-
able for hardware implementation. Gao et al. [14] propose a
systematic approach to transform the parameters of low-bit
quantized networks into multiple thresholds for hardware
implementation.

A number of researchers have implemented diverse ap-
proaches to design BNNs [22]. BinaryConnect is a method
which focuses on training networks with binary weights
during forward and backward propagations [10]. To further
reduce the computational costs, weights or feature maps
(activations) can be quantized to 1 bit. XNOR-Net [24] is a
network where weights and activations are binarized, so that
add operations can be replaced by logical operations, such
as Exclusive-OR (XOR) [31] and Exclusive-NOR (XNOR)
operations. However, when BNNs are employed in some
practical applications, the accuracy decreases because the
features extracted by the networks with binary weights and
binary activations are not sufficient. Some algorithms are
proposed to improve the training algorithm and to increase
the accuracy [29].

Most of BNNs can be used to handle object detection
problems and image classifications problems to achieve ac-
ceptable accuracy. However, there are few research pa-
pers showing that BNNs can be applied to difficult dense-
prediction problems, such as instance segmentation. Bolya
et al. [3] propose a real-time instance segmentation algo-
rithm, YOLACT, which includes a feature pyramid archi-
tecture. Cheng et al. [7] propose a fully convolutional
framework for real-time instance segmentation, SparseInst,
which contains a sparse set of instance activation maps.
However, these real-time networks are not quantized and
might not be suitable for embedded devices with limited re-
sources because a large number of processing elements are
required to calculate the inference results.

3. Proposed Inference Engine
The proposed inference engine, which can handle BNNs ef-
ficiently, is introduced in this section. We focus on the net-

Table 1. Two Operations of BNNs

(a) The First Operation (m = 0)
a′i,j wi a′i,j · wi

0 −1 0
0 +1 0
+1 −1 −1
+1 +1 +1

(b) The Second Operation (m = 1)
a′i,j w′

i a′i,j · w′
i

0 0 0
0 +1 0
+1 0 0
+1 +1 +1

Note: The values of parameters with the prime symbol (a′i,j and w′
i) are

{0, 1}. The values of parameters without the prime symbol (wi) are ±1.

works where the activations are multi-bit, and the weights
are binary. There are I activations, and each activation has
J bits, where J is set to 8 in this work. Each bit of the
ith activation is represented as a′i,j , where i denotes the in-
dex of activations, and j denotes the index of bits of the
ith activation. One weight has only 1 bit, and wi or w′

i

represents the ith weight. Table 1 shows the two kinds of
operations to handle modern BNNs and the corresponding
output results. Either of the two operations is selected ac-
cording to the operation mode m, where m ∈ {0, 1}. The
first mode handles convolutions where wi ∈ {−1, 1}, and
the second mode handles convolutions or matrix multipli-
cations [7] where w′

i ∈ {0, 1}. Multiply operations can
be removed from all MAC operations because only binary
weights are employed in the BNNs. The output of MAC
operations is shown in Eq. 1.

o =


∑I−1

i=0 a′iwi + β if m = 0∑I−1
i=0 a′iw

′
i + β otherwise

, (1)

where a′i,j ∈ {0, 1}, wi ∈ {−1, 1}, and w′
i ∈ {0, 1}.

The operations of the first mode are shown in Table 1(a).
The concept of XNOR-Net [24] is adopted to handle BNNs
with binary weights and binary activations, where both bi-
nary weights and binary activations are represented by ±1.
Since there are 3 possible values in the results, some addi-
tional operations are included in order to apply the XNOR
operations. The output of MAC operations is shown in
Eq. 2.

I−1∑
i=0

a′iwi + β =

J−1∑
j=0

(
2j

I−1∑
i=0

a′i,jwi

)
+ β. (2)

2102



Figure 1. Hardware architecture of the proposed dedicated inference engine.

Figure 2. Hardware architecture of the “bitwise operation unit” in
the dedicated inference engine.

For hardware implementation, the weights are represented
as w′

i, where w′
i ∈ {0, 1}. Activations have the same values

as their original values, but weights do not.

A multi-bit activation a′i can be decomposed into J bits,
which can be represented as

∑J−1
j=0 2j · a′i,j . The variable

β represents the bias term in the batch normalization [30]
or the quantization process [14]. The bit-wise operations in

the MACs operations can be obtained using Eq. 3.

I−1∑
i=0

a′i,jwi =

I−1∑
i=0

[(
2a′i,j − 1

)
+ 1

2

]
wi =

I−1∑
i=0

(a′i,j ⊙ w′
i) +

∑I−1
i=0 wi − I

2
, (3)

where ⊙ represents the exclusive-NOR (XNOR) operation,
and a′i,j represents the jth bit of the ith activation. Since
a′i,j ∈ {0, 1} and w′

i ∈ {0, 1}, the XNOR operations can be
applied to simplify multiply operations. The output in Eq. 1
can be expressed as Eq. 4.

J−1∑
j=0

[
2j

I−1∑
i=0

(a′i,j ⊙ w′
i)

]
+

J−1∑
j=0

[
2j ·

∑I−1
i=0 (wi − 1)

2

]
+ β =

I−1∑
i=0

J−1∑
j=0

(
2j · a′i,j ⊙ w′

i

)+ (β + γ) , (4)

where

γ =

(∑I−1
i=0 wi − I

2

)
· (2J − 1). (5)

It is shown that the convolution includes XNOR-accumulate
operations and add operations. The variable γ is a correc-
tion term, which can be computed according to the weights,
wi and the number of activations, I . Note that γ does not re-
quire any information related to the activations, and it does

2103



not have to be computed during the inference process. The
computations of BNNs can be simplified using the quanti-
zation algorithms of the IFQ-Net [14] after substituting the
bias term β with (β + γ).

The operations of the second mode are shown in Ta-
ble 1(b). Different from the first operation, there are only
2 possible values in the results. The output of the MAC
operations is shown in Eq. 6.

I−1∑
i=0

a′iw
′
i + β =

I−1∑
i=0

J−1∑
j=0

(
2j · a′i,j · w′

i

)+ β, (6)

where a′i,j ∈ {0, 1} and w′
i ∈ {0, 1}. Both activations

and weights have the same values as their original values.
It is shown that the MAC operations include only AND-
accumulate operations and add operations. No correction
terms are required in this mode.

Figure 1 shows the architecture of the dedicated infer-
ence engine, which includes 3 main components and the
memory. The main components are the “bitwise operation
and accumulation array,” the “adder array,” and the “quan-
tization and activation unit.” The “bitwise operation and ac-
cumulation array” computes the results of Eq. 2 and Eq. 6.
It includes multiple “bitwise operation units.” The architec-
ture is shown in Fig. 2, where each “bitwise operation unit”
includes J “logical operation units” to calculate the results
of XNOR or AND operations. When the first operation
mode is enabled, m is set to 0, and the circuit is equivalent
to multiple XNOR gates for the input weights and activa-
tions. When the second operation mode is enabled, m is set
to 1, and the circuit is equivalent to multiple AND gates for
the input weights and activations.

The “adder array” includes parallel adders to compute
the sum of the MAC results, the bias term β, and the cor-
rection term γ. The correction term γ does not have to be
computed during the inference process. Since it does not
require any information related to the activations, it can be
computed using any other processors and stored as param-
eters in advance. This approach can effectively reduce the
gate count of the inference engine. Removing the computa-
tions only related to weights from embedded devices is one
of the key ideas of this work. Besides, the “adder array” can
compute the results of element-wise add operations, which
are frequently employed in modern neural networks. The
“quantization and activation unit” quantizes the output of
the “adder array” and computes the pooling results accord-
ing to the network architecture.

4. Experimental Results
The experiments are separated into 2 parts, analysis of hard-
ware architectures and BNNs for instance segmentation.
The experimental results of both hardware and algorithms
are both discussed in this section.

4.1. BNNs for Instance Segmentation

To evaluate the performance of BNNs, two lightweight net-
works for instance segmentation, MSCAN-SparseInst BNN
and ConvNeXtV2-SparseInst BNN, are designed. Instance
segmentation is a representative task of dense prediction, in
which pixel-level labeling is required. It is not simple to
obtain high accuracy after binarizing the weights or activa-
tions in dense-prediction networks. To reduce the compu-
tational costs, the decoder of SparseInst [7] and the back-
bone networks of SegNeXt [16] and ConvNeXtV2 [28]
are combined. Besides, some regular convolutions are re-
placed by the partial convolutions in FasterNet [5] to reduce
computational costs of the proposed networks. The net-
works are trained using GeForce GTX TITAN X with 12GB
memory. Microsoft COCO [20] is employed for training
and evaluation, and the optimization method is AdamW.
The techniques in HWGQ [4], PACT [8], LSQ [13], and
LSQ+ [2] are used for quantization. The training parame-
ters are shown in Table 4. The number of training epochs
is 16, and the batch size is 16. To increase the accuracy of
BNNs, the training algorithm in PROFIT [21], which pro-
gressively freezes the most sensitive layer of the network, is
also employed.

The architecture of one of the proposed networks,
MSCAN-SparseInst BNN, is shown in Fig. 3. BConv de-
notes the convolutions with binary weights, and PConv rep-
resents partial convolutions in FasterNet [5]. The back-
bone network is modified from MSCAN-Tiny, which is in-
cluded in the architecture of SegNeXt [16]. It contains 3
down-sampling layers and 4 stages, which are followed by
4 batch normalization (BN) layers, and the number of build-
ing blocks in each stage is different. The architecture of
the building block in each stage in shown in Fig. 4, where
BDWConv denotes the depthwise convolutions with binary
weights. The rectangular filters in the original MSCAN are
removed to simplify the network. The activations from 3
BN layers are sent to the FPN-Encoder, which is modified
from the architecture of SparseInst [7]. The FPN-Encoder
contains 4 nearest-neighbor up-sampling layers, 6 convolu-
tion layers, and 1 coordinate position embedding layer. The
input of the coordinate position embedding layer is 126, and
the output is 128 channels since 2 coordinate channels (x
and y) are added into the layer. The activations from the co-
ordinate position embedding layer are sent to the decoder,
which is modified from the architecture of SparseInst [7].
The decoder contains 6 convolution layers, and 2 Batch-
Matrix-Matrix (BMM) layers. The inputs of 2 BMM lay-
ers are binarized to {0, 1} and ±1, respectively. To com-
pare different network architectures, a network architecture
modified from ConvNeXtV2-femto, which is the backbone
network in ConvNeXtV2 [28], is also evaluated.

In the two lightweight networks, the weights in the con-
volutions layers are all quantized to ±1, and the first mode

2104



Figure 3. Architecture of the proposed network, MSCAN-SparseInst BNN.

Table 2. Model Sizes and Computational Costs (VGA Images)

Type Model Size Computational Cost No. of Layers(MB) (GMACs)
YOLACT (ResNet50) [3] Float 34.98∗ 57.4 86

MSCAN-SparseInst Float 3.88 6.0 153
ConvNeXtV2-SparseInst Float 3.63 5.6 139
MSCAN-SparseInst BNN A8W1 0.49 6.0 153

ConvNeXtV2-SparseInst BNN A8W1 0.45 5.6 139

∗Networks with floating-point weights and activations are used for evaluation, but the model size is evaluated when the bit width of weights is 8 bits.

(m = 0) of the inference engine can be applied. In the de-
coder of the networks, there are some matrix operations in
BMM layers [7] employed to increase the accuracy. One
matrix multiplication has 2 input activations. One of them
is quantized to {0, 1} or ±1, so that the MAC operations can
be handled with the two modes (m = 0 or m = 1) of the
proposed hardware. The proposed networks, ConvNeXtV2-
SparseInst and MSCAN-SparseInst, are compared with
YOLACT [3]. The model sizes and the computational costs
are shown in Table 2. The full-precision (floating-point)
version of ConvNeXtV2-SparseInst is 9.6× smaller than
YOLACT when the bit width of weights is 8 bits, and the
binary version of ConvNeXtV2-SparseInst (ConvNeXtV2-
SparseInst BNN) is 77.7× smaller than YOLACT because

the weights are reduced from 8 bits to 1 bit. Compared with
YOLACT, ConvNeXtV2-SparseInst BNN has only 9.8%
of MACs, and the weights are binarized. The results of
MSCAN-SparseInst and MSCAN-SparseInst BNN are also
similar. The computational costs and the model sizes of
the two networks are effectively reduced compared with
YOLACT although they have more layers than YOLACT.

The accuracy is shown in Table 3. The mean average
precision (MAP) of each of the three categories, “Person,”
“Car,” and “Bus,” is evaluated. Some examples of instance
segmentation results are shown in Fig. 5, where it is ob-
served that the two lightweight networks have higher detec-
tion rates on the “Person” category than YOLACT [3]. Two
different versions of binary networks are designed for the

2105



Table 3. Comparison of Accuracy

Type MAP(%) (IoU: 0.50 – 0.95)
Person Car Bus

YOLACT (ResNet50) [3] Float 27.49 25.86 59.11
MSCAN-SparseInst Float 39.25 28.60 48.90

ConvNeXtV2-SparseInst Float 40.22 27.87 47.96
MSCAN-SparseInst BNN1 A8W1 32.97 21.15 40.22

ConvNeXtV2-SparseInst BNN1 A8W1 31.21 21.95 39.74
MSCAN-SparseInst BNN-A2 A8W1 14.35 11.57 21.13

ConvNeXtV2-SparseInst BNN-A2 A8W1 13.54 11.82 23.09

1With binary matrix multiplications where the values of input data are {0, 1} and ±1.
2With binary matrix multiplications where the values of input data are ±1 only.

Figure 4. Architecture of the building block in each stage of
MSCAN-SparseInst BNN.

two proposed networks. The BMM layer in the decoder of
SparseInst [7] includes two floating-point input activations.
In order to make them compatible with the proposed hard-
ware, one of the input activations is quantized to 1 bit. Also,
the normalization operations in the Instance Activation
Maps (IAM) of SparseInst [7] are removed to simplify the
operations. The results show that both MSCAN-SparseInst
BNN and ConvNeXtV2-SparseInst BNN achieve higher ac-
curacy than YOLACT on the “Person” category after bina-

Table 4. Training Parameters

Dataset COCO 2017 train/val [20]
Data Augmentation Random Flip, crop, resize

Optimization Method AdamW∗

No. of Training Epochs 300
Batch Size 16

Weight Decay 0.05
Multi-scale Training Yes

∗Base learning rate: 0.00005, Betas: 0.9, 0.999.

rizing the input of BMM operations. Moreover, MSCAN-
SparseInst BNN-A and ConvNeXtV2-SparseInst BNN-A
are designed for ablation study. MSCAN-SparseInst BNN-
A and MSCAN-SparseInst BNN have the same network ar-
chitecture, but the values of the inputs to the BMM layers in
MSCAN-SparseInst BNN-A are quantized to only ±1, not
{0, 1} and ±1. MSCAN-SparseInst BNN has higher ac-
curacy on the “Person” category (+18.6%) than MSCAN-
SparseInst BNN-A. It means that the functions to support
two kinds of binary weights effectively increase the accu-
racy of instance segmentation. The results of ConvNeXtV2-
SparseInst BNN also show the importance of the input val-
ues of binary operations.

4.2. Analysis of Hardware Architectures

The proposed MAC architecture (the “bitwise operation
and accumulation array”) is compared with related works,
which are shown in Table 5. The values of binary weights
supported by the related works [15, 17, 30, 31] are ±1.
The architectures implemented with XNOR [17, 30] and
XOR [31] operations are designed to handle 1-bit weights
and 1-bit activations. To compare them with this work,
some additional logic operations and adders are added into
the XNOR-based multiplier [17, 30] to support multi-bit

2106



(a) (b) (c)

Figure 5. Some examples of instance segmentation results of (a) ConvNeXtV2-SparseInst BNN, (b) MSCAN-SparseInst BNN, and (c)
YOLACT (ResNet50) [3].

Table 5. Comparison of Implementation Methods

Supported Network
XNOR operations [17, 30] A1W1

XOR operations [31] A1W1
Select operations [15] AJW1∗

∗Activations are quantized to J bits, and weights are quantized to 1 bit.

weights. The modified architecture is shown in Fig. 6(a).
The hardware architecture implemented with select opera-
tions [15] is designed to handle multi-bit weights and 1-bit
activations. The architecture, which is shown in Fig. 6(b),
can be directly compared with this work. The proposed
work is designed to handle multi-bit activations and 1-bit
weights, and the values of binary weights can be either
{0, 1} or ±1.

The relation between the gate count of the architectures
and the bit width of activations is shown in Fig. 7. The mod-

ules of the related works are re-implemented to fit the pro-
posed hardware architecture and synthesized with the reg-
ular threshold voltage (RVT) device model in the ASAP7
library [27]. The results in Fig. 7(a) show that the mod-
ified XNOR-based multiplier has similar gate counts with
the selector-based multiplier [15], and the trend does not
change with the bit width of activations. The results in
Fig. 7(b) show that, compared with the related works, the
gate count of this work is reduced to 52% of the modified
XNOR-based multiplier and 59% of the selector-based mul-
tiplier [15] when the bit width of activations is 8 and the
operating frequency is 2GHz. The higher the operating fre-
quency, the more reduction of gate counts. The comparison
of the related works and this work is summarized in Table 6.
The proposed work has lower costs than the related works
because the computations of the correction term shown in
Eq. 5 are removed from the MAC operations. Since the
correction term is merged into the bias term, no additional
operations are required in the inference process. Moreover,
this work can support two kinds of binary weights, {0, 1}

2107



Table 6. Comparison of Different Multipliers for 1-Bit Weights (Operating Frequency: 2GHz)

Supported Network Binary Weights Gate Count
Selector-based Multiplier [15] A8W1 ±1

356K
Modified XNOR-based Multiplier∗ A8W1 404K

This Work A8W1 {0, 1} or ±1 211K

∗Modified XNOR-based multiplier [17, 30] with additional logics.

(a)

(b)

Figure 6. Hardware architecture of (a) the XNOR-based multi-
plier [17, 30] with additional logics, and (b) the selector-based
multiplier [15].

and ±1, which increase the accuracy of instance segmenta-
tion as shown in Sec. 4.1.

5. Conclusion

A hardware architecture and a design methodology of ded-
icated inference engines for BNNs are proposed. The pro-
posed inference engine can handle instance segmentation
with only bitwise operations and add operations. The archi-
tecture of MAC operations can calculate the inference re-
sults of BNNs efficiently with only 52% of hardware costs
compared with the related works. A part of computation
costs can be removed from the system because they are not
dependent on activation maps and can be performed in ad-
vance using any other processors.

In addition, two lightweight networks for instance seg-
mentation and hardware architecture of inference engine
are proposed. The experimental results show that the pro-
posed inference engine can handle the proposed instance-

(a)

(b)

Figure 7. Comparison of gate counts among the selector-based
multiplier [15], the XNOR-based multiplier [17, 30] with addi-
tional logics, and the “bitwise operation and accumulation array”
in the proposed inference engine. (a) Operating frequency is set to
1GHz. (b) Bit width of activations is set to 8 bits.

segmentation networks and achieves higher accuracy as
YOLACT on the “Person” category although the model size
is 77.7× smaller compared with YOLACT.

Acknowledgment

This paper is based on results obtained from a project,
JPNP23015, commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO).

2108



References
[1] Ankur Agrawal, Sae Kyu Lee, Joel Silberman, Matthew

Ziegler, Mingu Kang, Swagath Venkataramani, Nianzheng
Cao, Bruce Fleischer, Michael Guillorn, Matthew Cohen,
Silvia Mueller, Jinwook Oh, Martin Lutz, Jinwook Jung,
Siyu Koswatta, Ching Zhou, Vidhi Zalani, James Bonanno,
Robert Casatuta, Chia-Yu Chen, Jungwook Choi, Howard
Haynie, Alyssa Herbert, Radhika Jain, Monodeep Kar, Kyu-
Hyoun Kim, Yulong Li, Zhibin Ren, Scot Rider, Marcel
Schaal, Kerstin Schelm, Michael Scheuermann, Xiao Sun,
Hung Tran, Naigang Wang, Wei Wang, Xin Zhang, Vinay
Shah, Brian Curran, Vijayalakshmi Srinivasan, Pong-Fei Lu,
Sunil Shukla, Leland Chang, and Kailash Gopalakrishnan.
A 7nm 4-core AI chip with 25.6TFLOPS hybrid FP8 train-
ing, 102.4TOPS INT4 inference and workload-aware throt-
tling. In Proceedings of IEEE International Solid-State Cir-
cuits Conference, pages 144–146, 2021. 1

[2] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. LSQ+: Improving low-bit
quantization through learnable offsets and better initializa-
tion, 2020. CoRR, abs/2004.09576. 4

[3] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
YOLACT: real-time instance segmentation, 2019. CoRR,
abs/1904.02689. 1, 2, 5, 6, 7

[4] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave Gaussian
quantization, 2017. CoRR, abs/1702.00953. 4

[5] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song
Wen, Chul-Ho Lee, and S.-H. Gary Chan. Run, don’t walk:
Chasing higher FLOPS for faster neural networks, 2023.
CoRR, abs/2303.03667v3. 4

[6] Tse-Wei Chen, Motoki Yoshinaga, Hongxing Gao, Wei Tao,
Dongchao Wen, Junjie Liu, Kinya Osa, and Masami Kato.
Condensation-Net: memory-efficient network architecture
with cross-channel pooling layers and virtual feature maps,
2021. CoRR, abs/2104.14124. 1

[7] Tianheng Cheng, Xinggang Wang, Shaoyu Chen, Wenqiang
Zhang, Qian Zhang, Chang Huang, Zhaoxiang Zhang, and
Wenyu Liu. Sparse instance activation for real-time instance
segmentation, 2022. CoRR, abs/2203.12827v1. 1, 2, 4, 5, 6

[8] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: parameterized clipping acti-
vation for quantized neural networks, 2018. CoRR,
abs/1805.06085v2. 1, 2, 4

[9] Ching-Che Chung, Yu-Pei Liang, Ya-Ching Chang, and
Chen-Ming Chang. A binary weight convolutional neural
network hardware accelerator for analysis faults of the CNC
machinery on FPGA. In Proceedings of International VLSI
Symposium on Technology, Systems and Applications (VLSI-
TSA/VLSI-DAT), 2023. 1

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. BinaryConnect: training deep neural networks
with binary weights during propagations, 2015. CoRR,
abs/1511.00363. 1, 2

[11] Gabriela Csurka, Riccardo Volpi, and Boris Chidlovskii. Se-

mantic image segmentation: Two decades of research, 2023.
CoRR, abs/2302.06378. 1

[12] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kot-
sia, and Stefanos Zafeiriou. RetinaFace: Single-stage dense
face localisation in the wild, 2019. CoRR, abs/1905.00641.
1

[13] Steven K. Esser, Jeffrey L. McKinstry, Deepika
Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned step size quantization, 2019. CoRR,
abs/1902.08153. 4

[14] Hongxing Gao, Wei Tao, Dongchao Wen, Tse-Wei Chen,
Kinya Osa, and Masami Kato. IFQ-Net: integrated fixed-
point quantization networks for embedded vision, 2019.
CoRR, abs/1911.08076. 2, 3, 4

[15] Lunyi Guo, Shining Mu, Yijie Deng, Chaofan Shi, Bo Yan,
and Zhuoling Xiao. Efficient binary weight convolutional
network accelerator for speech recognition. Sensors, 23(3):
1530, 2023. 1, 6, 7, 8

[16] Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu,
Ming-Ming Cheng, and Shi-Min Hu. SegNeXt: rethink-
ing convolutional attention design for semantic segmenta-
tion, 2022. CoRR, abs/2209.08575. 4

[17] Peng Guo, Hong Ma, Ruizhi Chen, and Donglin Wang. A
high-efficiency FPGA-based accelerator for binarized neural
network. Journal of Circuits, Systems and Computers, 28
(supp01), 2019. 1, 6, 7, 8

[18] Yuwei Hu, Jidong Zhai, Dinghua Li, Yifan Gong, Yuhao
Zhu, Wei Liu, Lei Su, and Jiangming Jin. BitFlow: Exploit-
ing vector parallelism for binary neural networks on CPU. In
Proceedings of International Parallel and Distributed Pro-
cessing Symposium, pages 244–253, 2018. 1

[19] Sambhav R. Jain, Albert Gural, Michael Wu, and Chris H.
Dick. Trained quantization thresholds for accurate and ef-
ficient fixed-point inference of deep neural networks, 2020.
CoRR, abs/1903.08066v3. 1, 2

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Mi-
crosoft COCO: common objects in context, 2014. CoRR,
abs/1405.0312. 4, 6

[21] Eunhyeok Park and Sungjoo Yoo. PROFIT: a novel train-
ing method for sub-4-bit MobileNet models, 2020. CoRR,
abs/2008.04693. 4

[22] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai,
Jingkuan Song, and Nicu Sebe. Binary neural networks: A
survey, 2020. CoRR, abs/2004.03333. 2

[23] Renë Ranftl, Alexey Bochkovskiy, and Vladlen Koltun.
Vision transformers for dense prediction, 2021. CoRR,
abs/2103.13413v1. 1

[24] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet classification us-
ing binary convolutional neural networks, 2016. CoRR,
abs/1603.05279v4. 1, 2

[25] Juan Terven and Diana Cordova-Esparza. A comprehensive
review of YOLO architectures in computer vision: From
YOLOv1 to YOLOv8 and YOLO-NAS, 2024. CoRR,
abs/2304.00501v7. 1

2109



[26] Tsung-Han Tsai and Yuan-Chen Ho. A CNN accelerator
on FPGA using binary weight networks. In Proceedings
of IEEE International Conference on Consumer Electronics
(ICCE), pages 1–2, 2020. 1

[27] Vinay Vashishtha, Manoj Vangala, and Lawrence T. Clark.
ASAP7 predictive design kit development and cell design
technology co-optimization: Invited paper. In Proceedings
of The International Conference on Computer-Aided Design
(ICCAD), pages 992–998, 2017. 7

[28] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei
Chen, Zhuang Liu, In So Kweon, and Saining Xie. Con-
vNeXt V2: co-designing and scaling ConvNets with masked
autoencoders, 2023. CoRR, abs/2301.00808. 4

[29] Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling
Shao, Yue Gao, Yonghong Tian, and Rongrong Ji. ReCU:
reviving the dead weights in binary neural networks, 2021.
CoRR, abs/2103.12369v2. 2

[30] Haruyoshi Yonekawa and Hiroki Nakahara. On-chip mem-
ory based binarized convolutional deep neural network ap-
plying batch normalization free technique on an FPGA. In
Proceedings of IEEE International Parallel and Distributed
Processing Symposium Workshops, pages 98–105, 2017. 1,
3, 6, 7, 8

[31] Shien Zhu, Luan H. K. Duong, and Weichen Liu. XOR-Net:
An efficient computation pipeline for binary neural network
inference on edge devices. In Proceedings of International
Conference on Parallel and Distributed Systems (ICPADS),
pages 124–131, 2020. 2, 6, 7

2110


