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Abstract

In this paper, an efficient video stabilization method is in-
troduced that exploits phase correlation on partial blocks.
The approach addresses very low computational complex-
ity on edge GPU devices for surveillance cameras. The
global motion of consecutive frames due to camera vi-
brations along horizontal and vertical axes are extracted
through phase correlation of informative blocks among the
video. The novelty of the proposed approach lies within the
extraction of sub-blocks with high suitability/reliability and
reliable merge of multiple block correlation maps. Pipeline
implementation of detection of informative blocks and uti-
lization of 4-8 sub-blocks during the shift estimation are the
key features of enabling up to 150 fps processing for HD
(1920x1080) video on Nvidia Jetson nano edge GPU device
without any accuracy loss. Utilizing a generic scheme and
reasoning as well as efficient GPU implementations, pro-
posed approach is highly adaptable to various video con-
tent by altering sub-block choices. Considering stabiliza-
tion as a pre-process step, the proposed algorithm reserves
sufficient computational room for further video analyses on
edge compute devices.

1. Introduction
The advances in computational capacity of edge devices en-
abled excessive use of cameras and algorithms for a large
variety of applications. Motion detection [34], smart ob-
ject detection-tracking [2],[5] and attribute classification for
human/vehicle re-identification [31] are the most endeav-
oured features applied on outdoor cameras for city, facility
and border surveillance. The common assumption behind
these surveillance algorithms is the immobility of the cam-
eras that enables use of consistent temporal data processing.
In this way, it is possible to interpret the changes in a scene
for motion detection, temporally associate frame-wise de-
tected objects and provide multi-object tracking. Besides,
the details in the scenes are observed consistently and not
affected from motion blur.

On the other hand, outdoor is an uncontrolled environ-
ment and the weather conditions affect the use of algorithms
in different manner. One of the most important effects is the
violation of the immobility of the cameras due to wind, pole
or basement vibrations. Little amount of vibration along
the camera mount is magnified by the camera field-of-view
(FOV). These vibrations mostly produce horizontal and ver-
tical shifts between consecutive frames that decrease the
sharpness, spatial resolution as well as introduce many rel-
ative artificial movements in the videos. Besides, the shaky
videos introduce eye fatigues and undesired observation ex-
perience for the security staff.

Though, video stabilization is an important task for out-
door computer vision applications. The are two main ap-
proaches to handle this problem, optical image stabilization
(OIS) and digital image stabilization (DIS). OIS is achieved
by additional hardware installment on the cameras, such as
inertial measurement units, that transfers the metric shift
on the camera head to the camera software that reverses
the motion according to its FOV. On the other hand, DIS
does not require additional hardware where image process-
ing techniques are utilized to estimate the shifts among the
consecutive frames and stabilize the video frames. OIS so-
lutions do not depend on the image content and are more
expensive depending on the sensitivity of IMUs; whereas
DIS provides cost efficient and light-weight solution that is
limited by the image content. This limitation is not valid
as long as the observed scenes involve sufficient features,
texture or content. That assumption is mostly met under
surveillance scenarios where streets, facility borders and
city squares involve various type of installations around.

At that point, it is important to note that the main purpose
of image stabilization is providing stable video frames for
computer vision applications. DIS is considered as a pre-
process step that is supposed to enhance image quality and
temporal consistency. Though, the computational complex-
ity of video stabilization should be as low as possible that
leaves computational room for the main algorithms. This
efficiency is vital for new age computer vision algorithms
that are based on deep neural networks (DNNs) executed
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mostly on mobile edge GPUs, such as Nvidia Jetson family.
This paper introduces an efficient video stabilization

technique that requires low GPU utilization without losing
accuracy. Piece-wise phase correlation and block decision
are the key features of the proposed algorithm that are to-
tally implemented on GPU such that up to 150 fps stabiliza-
tion is enabled on Jetson nano [1]. Giving the related work
on video stabilization, the details of the proposed algorithm
are given in the third section. In the following section, the
efficiency and accuracy of the proposed method are shown
by detailed experiments. The paper concludes by further
discussions and future directions in the final section.

2. Related Work
Video stabilization has been popular recently for online-
offline video editing, smooth video capture through a mov-
ing camera in addition to wide use case of pre-processing
step for computer vision application. The main blocks of
video stabilization [11] is the estimation of camera move-
ment among consecutive frames, motion modeling to filter
out spikes in the movement and finally warping (render-
ing) of current frame into its stabilized version. In tradi-
tional computer vision methods, each block is treated inde-
pendently while the recent neural network based techniques
[8],[30],[19],[32] merge these steps into same pipeline.

2.1. Scope of this Study

This paper considers the stabilization problem as a pre-
processing step rather than the main purpose of provid-
ing visually pleasing videos from shaky moving camera
captures. Moreover, it is assumed that videos are cap-
tured through stationary cameras where the vibrations due
to wind, pole or camera mount are the cause global hori-
zontal and vertical frame shifts among consecutive frames.
The output of stabilization, a.k.a temporally stable videos,
can be processed further on the edge for various computer
vision applications such as motion estimation [34], smart
object detection [2] and multi-object tracking [5]. In this
scenario, additional algorithms are considered on the edge,
therefore limited computational complexity is required for
video stabilization. Besides, zero motion models are forced
for the surveillance cameras because of their stationary
movement characteristics. Throughout this study, edge pro-
cessing platform is considered to be NVIDIA Jetson nano,
that enable prompt processing with mobile GPUs installable
into cameras.

A comprehensive review of DIS is given in [11], on the
other hand we classify DIS techniques into three groups ac-
cording to the utilization of representations for motion esti-
mation and rendering. The first group of algorithms rely on
the corner or feature points within the scene that have high
saliency to be tracked. The second group exploits phase
correlation that enables use of large dense pixel groups ef-

ficiently to extract global shifts in Fourier domain. Finally,
the recent advances in neural networks have enabled deep
learning techniques as in most computer vision application,
as an alternative video stabilization family.

2.2. Feature based Stabilization

In this category, corners points or feature points are ex-
ploited to get representation of a frame and several match-
ing techniques are utilized to associate those features among
consecutive frames. SIFT[20] FAST [26], SURF [4] and
ORB [27] are the most endeavored feature representations
in computer vision.

[14] and [3] exploit the fundamental frame work of fea-
ture based methods, including feature detection/tracking
and motion modelling to smooth-out un-desired vibrations.
[21] utilizes FAST [26] feature detector and then BRIEF
[7] representation to match those features among consecu-
tive frames. The paper optimizes for mobile GPU and runs
on Jetson nano and achieves 81 fps for HD videos. Sim-
ilarly, [13] performs stabilization in 30 ms on GTX2080
GPU for 720p videos by use of SURF features on GPU. [33]
incorporates feature based tracking and piece-wise scene
planarity modeling to warp consecutive frames in a content
preserving manner. [17] utilizes horizontal and vertical gra-
dients to detect corner points and then represents each fea-
ture point within 11x11 blocks. After a brute force search,
the best feature matches provide the temporal motion shifts.
The frame shifts are smoothed temporally to handle shaky
videos that is common for hand held cameras. The paper
compares well known feature representations FAST [26],
SURF [4] and ORB [27], where they improve execution
speed by a factor of 2 compared to FAST.

2.3. Phase Correlation based Stabilization

Phase correlation (PC) is a fundamental tool that provides
efficient convolutions in time domain as a single step mul-
tiplication in frequency (Fourier) domain [28]. It has been
excessively used for single object tracking [6],[12],[9] op-
tical flow estimation [25] due to fast and prompt execution.
Therefore, phase correlation has been a strong candidate for
real-time stabilization methods.

[24], [16] and [15] utilize PC on full frames as a sin-
gle large block for the estimation of frame-wise shift. The
methods provide high stabilization quality as long as the
image contents involve sufficient texture as a whole distri-
bution. [22] analyses several sub-blocks that cover various
parts of the image with alternating sizes then phase corre-
lation is conducted on the blocks to determine frame rota-
tion angle. The global shifts are estimated via cross cor-
relation where whole image is exploited as a single large
block for phase correlation. Utilizing different approaches
for angle and translational motion introduces computational
complexity for this study. Four blocks with fixed size and
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Figure 1. The flowchart of the proposed approach.

location are utilized in [10] in order to estimate pixel shifts
via phase correlation. Use of fixed blocks prevent this ap-
proach to be adaptive to various image content as well as
spatial shift in time.

2.4. Neural Network based Stabilization

These approaches mostly focus on video editing purpose
where stabilization is considered to the final outcome of
the processing. Therefore, they do not constrain com-
putational efficiency as the main concern and tackle the
problem as providing the most visually pleasing and sta-
ble videos. [8] consists of three sub-networks, coarse-
fine-margin nets, which consecutively include transforma-
tion estimator, scene parallax reduction and an in-painting
module. These techniques provide higher quality stability
among so called real-time neural network based techniques.
[19] gets multiple frames as input to their unified neural net-
work and outputs rendered frames in order to provide vi-
sually pleasing video capture from a hand-held camera. It
requires high computational power that is far from being a
cost efficient pre-processing step. StabNet [30] focuses on
transformation estimation approach through convolutional
neural networks where homography models are estimated
per frame and stable camera path is created for moving cam-
era captures. It is an efficient online alternative to offline
stabilizers with up to x30 speed-up on desktop GPUs such
as NVIDIA GTX 1080 Ti. [32] exploits neural networks to
estimate pixel-wise optical flow among consecutive frames.
The flow information is utilized to warp frames via motion
in-painting and smooth rendering.

According to the scope of this study, all of the neural net-
work based approaches, including real-time performers as
well, are computationally demanding and exploits desktop
GPUs to target 25 fps videos. This is not practical and ap-

plicable for edge-devices where mobile GPUs such as Jet-
son family (tx1, tx2, nano) are under consideration. Be-
sides, learning-based methods highly depend on the train-
ing data and can suffer from large motions. Due to the lack
of comprehensive training data sets that cover all cases in
surveillance, the conventional methods are more robust and
perform better in a general setting. In addition to the tech-
niques listed previously there are efficient alternatives that
exploits motion vectors extracted during video coding for
stabilization. [18] performs 50 fps stabilization for 720p
videos on CPU which looks promising in terms of real time
performance. On the other hand, it requires a percentage
of 50% for the number of valid inter motion sub-blocks in
coding step, that introduces additional computational cost.

3. Proposed Approach
The proposed method mostly relies on phase correlation due
to its efficiency of Fourier domain implementations (a.k.a
FFT) in many platforms as an alternative to image-domain
convolution. PC is utilized in the proper block determina-
tion step to identify the best blocks to track as well as in
the estimation of the shifts of the blocks among consecutive
frames. In general, PC is applied for pre-determined blocks
whose shift detection capability is limited by the size of the
blocks. Moreover, the size of PC blocks has an effect on the
FFT calculation as well. We adapt traditional full frame and
fixed block size approaches into sequential and multi-scale
process in order to meet real-time execution and large pixel
vibration handling capability.

There are four main functional blocks of the proposed
method whose flowchart is given in Figure 1. First, the in-
put image is divided in sub-blocks to determine the regions
proper for phase correlation. Then, PC between patches
at the same regions along consecutive frames is exploited
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to estimate shifts such that correlation maps of different
patches are merged according to their reliability scores. Es-
timating the shift in the third step, stabilized images are ren-
dered in the final step by shifting the current frame accord-
ing to horizontal and vertical motion.

3.1. Sub-Block Decision

One of the most crucial step of the proposed approach is the
determination of proper regions for PC within reference im-
ages. In that manner, the reference image is tiled into square
blocks and each block is auto-correlated after edge images
are extracted to get the characteristics and extract local fea-
ture distributions as shown in Figure 2. A block is proper
for phase correlation as long as the auto-correlation maps
has sharp peak at the center and low values along the out-
skirts. This enables clear differentiation of the block among
various possible shifts such that the shift during undesired
camera motion can be estimated with high reliability. It is
important to note that, edge detection dims the effect of
flattened and un-textured regions on the correlation maps
as well as noise and highlights intensity transition regions.
Though, salient pixels have much more impact on ACMs
and the peak analyses provide more reliable blocks.

The reliability of the blocks are determined by com-
paring the center peak (Rc

max) and out-of-center peak en-
ergy values (Roc

max) as well as the minimum value (Rmin)
in the auto-correlation map (ACM) according to ρ =√

(Rc max−R min)(Rc max−Roc max)

Rc max . The equation states
that the reliability of a patch is high as long as the peak
at the center is significantly higher than off-center peak and
the minimum value. If these values approach to center peak,
reliability decreases. The center area is considered to be
a bounded region around the center covering %4 area of
a patch as shown as red squares in Figure 2. The out-of-
center peak is the peak value within the remaining area.
Some typical patch ACMs are shown in Figure 2 where the
maps in the first row have sharp peakness and high reliabil-
ity while the maps in the second row belong to patches with
repetitive structures that generate multiple peaks distributed
around (shown in green arrows). Though, the second row
maps relate to un-reliable patches that are not proper for
PC. The ACMs are given for various patches in Figure 3
where proper and desired maps are circled in yellow. It is
clear that some patches with consistent vertical and hor-
izontal edges, such as the patches in the first row, have
multiple peaks along the edge directions. Besides, texture
free patches have flattened ACMs with insignificant center
peaks. These kinds of ACM structures indicate that those
patches do not provide discriminant and reliable correlation
distributions. On the other hand, patches with sharp ACMs
are sensitive to shifts in each direction that make them ideal
for PC based shift detection. In order to provide a good bal-
ance between accuracy and computational complexity, the

Figure 2. The reliability of a block is determined via auto-
correlation of edge images and center-surround peak analyses.

Figure 3. Some exemplary patches with their ACMs; repeti-
tive and texture free patches have un-reliable peaks while patches
shown in yellow circles have reliable ACMs.

best 4 or 8 blocks are chosen for the further steps along the
reference frame; that have the top-(4,8) reliability among all
sub-blocks.

3.2. Phase Correlation based Shift Estimation

In this step, pre-determined reference frame blocks (N) are
utilized to compare image content in the following frame.
The correlation between the blocks in the reference image
(I0) and current image (It) are conducted after edge detec-
tion and Fourier Transform as shown in Figure 4. For each
block, reliability (ρ), horizontal shift (∆x) and vertical shift
(∆y) values are extracted from the correlation map. Re-
liability is calculated via center-surround peakness analy-
ses around the highest correlation value, where the location
of this value also provides the shifts (∆x,∆y) of the cor-
responding block along consecutive frames. The final hor-
izontal and vertical shifts between frames is achieved by
the normalized weighted summation of the shift estimate of
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Figure 4. The flow of shift and reliability estimation between the
sub-blocks of consecutive frames.

each sub-block as given in Equation 1.

∆x, y =

∑N
k=1 ρk∆xk, yk∑N

k=1 ρk
(1)

Thus, the effect of a sub-block is related by its correla-
tion reliability at that time instant. The final correlation map
has a kind of non-maxima-suppression effect where the ac-
tual peak gets more contribution. Two examples for this
case are given in Figure 5; the correlation maps of the sub-
blocks highlighted in the full frames are merged and much
more clear correlation maps are obtained. The cluttered out-
skirts within sub-block correlation maps are suppressed that
results in more reliable peaks and shift estimations. Once
the horizontal and vertical motion vector is estimated, these
shifts are applied to the current frame in reverse directions
to obtain the stabilized frame with respect to the reference
frame. As mentioned previously, we do not need motion
modeling in this study due to the target surveillance cam-
eras that are fixed in position and no motion is expected.
Therefore, zero average motion is assumed in these kind of
cameras.

3.3. Multi-scale Adaptation

One of the disadvantages of sub-block usage is the limita-
tion of maximum shift amounts by the pre-determined size
of the blocks such that MxM blocks can handle only M/2
pixel shift in any direction. In order to extend and over-
come this limitation we adapt the proposed approach to run
in multi-scale while keeping the computational complexity
as low as possible. As shown in Figure 6, down-sampling
the image by a factor of α and preserving the sub-block size
MxM, the shift limitation is also increased by a factor of α.
Once shift values are determined in lower resolution, they
can be transferred to the actual resolution and the correla-
tion maps can be refined over the shifted sub-blocks. In

Figure 5. Merge of sub-blocks.

Figure 6. Left: Multi-scale extension enables larger horizontal and
vertical shifts to be handled, Right: sequential proper block search,
at each time a group ob blocks are checked.

Figure 6, the yellow rectangle in the lowest resolution cov-
ers a larger area in the actual frame resolution that provides
a range of [−α2M,α2M ] shifts. The fine tuning and little
pixel shifts can be handled in the highest resolution to com-
pensate the precision loss due to pixel resolution decrease.
This approach introduces additional pixel-shift estimation
which can be kept minimum by utilizing half of the blocks
(N/2) determined in the first step, while has no influence on
the sub-block determination. In general, using large block
size such as 128x128 is mostly sufficient to compensate 64
pixel-wide shifts; however, in case of un-expected camera
shakes down-sample factor of 2-3 can be used.

This multi-scale adaptation keeps FFT calculation on
fixed size blocks in the lower resolution image. One alterna-
tive to this approach is to utilize a larger sub-block around
the most reliable smaller block. This larger block, with size
of 256x256, can handle wider shifts in images. On the other
hand, single large block utilization is prone to errors due to
un-textured regions within. This is a natural effect; as the
area increases the probability of higher saliency decreases
(or peakness reliability in this study), though spliting a large
block into smaller distributed sub-blocks and searching for
high reliability of PC enables higher accuracy. We also in-
clude larger block implementation throughout the experi-
ments.
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3.4. Run-time Optimizations on GPU

In this section, we give further details about the GPU and
runtime optimization of the proposed approach. First of all,
block based operations are well suited for parallel process-
ing, that is actually one of the main design criteria in this
study. The other criteria is the efficient correlation capabil-
ity and embedded functions for Fourier-domain processing,
a.k.a FFT, on the GPUs. It takes under milliseconds on
a moderate mobile GPU to perform FFT for a block with
size 128x128 or lower. Considering the stabilization as a
pre-process step before additional computer vision analy-
ses, it is very important to make use of these computational
advantages.

It is known that FTT is optimized for square matrices
having dimensions in the powers of 2, thus we exploit
blocks of size 128x128 for the full HD (1920x1080) videos.
We also exploit a down-sample factor of 2 which enables
up to 128 pixel shifts in horizontal and vertical axes. Un-
der these circumstances, there are roughly 15x8 blocks and
we choose 8 as the upper limit for number of proper blocks.
This upper bound is due to the computational complexity
constraint as mentioned previously, stabilization should be
as fast as possible. In order to find proper blocks, all of
the blocks are required to be auto-correlated which takes
significant amount of time, violating the real-time execu-
tion. This is handled by sequential processing as summa-
rized on the right hand side of Figure 6, where at each time
instant, limited number of blocks, such as 8, is analyzed.
At each frame, different blocks are processed until all the
blocks are visited. Thus, the block decision is spread along
15 frames, and stabilization starts after the final group of
blocks are analyzed. This kind of pipeline processing en-
ables controlled time complexity per frame and prevents
frame skips. One drawback of this approach is that stabi-
lization is not provided for the first 15 frames that seems
to be not that critical. Once a decision is done, stabiliza-
tion is conducted through the chosen blocks as long as the
PC scores are above a threshold. The following decision
processes, if required due to scene/illumination change, can
be performed at any 15 frames time window that will not
interfere with stabilization. The square structure of blocks
enables prompt GPU partitioning such that each block is
divided into four GPU blocks that are analyzed via 16x16
thread structure as summarized in Figure 7. All the pro-
cesses apart from FFT and inverse FFT, are performed by
that thread-block tiling. The Fourier domain operations are
conducted on 128x128 sub-blocks in group operations such
that, the sub-blocks are batched then FFT and iFTT are per-
formed in single task. This batch processing enables faster
computation compared to a single larger block of same pixel
area. The correlation between the instant proper sub-blocks
and the reference sub-blocks is calculated by Fourier do-
main multiplications and then inverse Fourier Transform.

Figure 7. Two frames with their proper sub-blocks and the accu-
mulated correlation maps.

The correlation maps are analyzed by the same GPU tiling
given in the upper part of Figure 7 in order to get the peak
x,y position and reliability ρ.

4. Experimental Results
As in most of the efficient algorithm implementations, the
experimental results in this study are conducted in two
phases, stabilization accuracy and computational complex-
ity. Throughout the experiments, full HD resolution videos
(1920x1080) are perturbed with random horizontal and ver-
tical global shifts to model camera vibrations and their re-
sultant views. Thus, controlled ground truth data can be
utilized to measure stabilization performance numerically
rather than visual interpretation. This type of perturbation
is valid for surveillance cameras where mostly horizontal
and vertical motion is observed rather than any rotation ef-
fect. Therefore, rolling shutter effect is out of the scope of
this study where special attention is required per horizon-
tal line. The range of perturbations is chosen under uni-
form distribution in the range of [-120,120] at each frame in
both horizontal and vertical axes. These perturbations pro-
duce highly shaky videos with high intra-frame pixel shifts
that provides a challenge for stabilization. We utilize videos
from AI-City Challenge 2021 Track 4 [23] and SOMPT22
[29] that include wide view outdoor traffic and surveillance
videos. [23] involves low texture traffic high-way videos
while [29] involves high texture city and square views. The
choice behind these datasets is based on their surveillance
view points as well as texture characteristics that help the
comprehension of the capability of PC and FT for stabiliza-
tion. Some sample images from these datasets are shown
in Figure 8. The implementation platform is chosen to be
Nvidia Jetson nano [1], that is a low cost mobile GPU plat-
form adaptable for edge operations.

4.1. Stabilization Accuracy

We compare the proposed PC based approach with [14]
where a low cost (has almost similar steps with [21]) tradi-
tional feature based stabilization is applied based on widely
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Figure 8. Samples from [23] (first row and first two images in the second row) and [29] (last row and the last image in the second row) that
provide comprehensive outdoor surveillance dataset utilized for stabilization experiments in this study.

utilized feature trackers (FT) and image warping algorithms
given by openCV library. It is important to note that these
studies are adapted to horizontal-vertical shift handling by
ignoring affine transformation step to decrease computa-
tion as well. These methods enable a generic comparison
between phase correlation and feature based methods con-
sidering the fact that no special tricks are applied for the
matching step. Both techniques rely on the generalization
of mathematical techniques in phase correlation and fea-
ture tracking. For the sake of completeness, we also imple-
ment a fixed single large block based PC method that gets
a larger block (256x256) around the best sub-block in our
pipeline. The stabilization accuracy is measured by mean-
squared distance between the actual and estimated shifts
on various perturbed full HD videos. The results calcu-
lated over 20 videos of 1 minute-length and the random
shifts are generated in five different simulations. The re-
sults are given in Table 1 with respect to datasets which
indicate that proposed approach with 8 sub-block utiliza-
tion gives the best stabilization accuracy in both datasets.
As the texture within video increases, the performance of
all techniques increases, in our case SOMPT22 [29] has
more texture, therefore stabilization is more accurate on this
dataset. On the other hand, PC based methods improve
better as the texture and edge distribution become sharper
compared to FT methods. In AI-City videos, FT and 8 sub-
block PC have same stabilization accuracy, while the per-

Table 1. Mean-squared error (MSE) for proposed and feature
based method.

±120 px Feat.[14] Proposed
1-block 4-block 8-block

aicity [23] 0.39 0.45 0.43 0.39
sompt [29] 0.31 0.21 0.19 0.17
all videos 0.35 0.33 0.31 0.28

formance drops for lower number of sub-block utilization.
It is clear that, weighted merge of ACMs of sub-blocks and
the non-maxima-suppression play an important role to im-
prove accuracy. Another important factor apart from texture
characteristics is the video content of the surveillance cam-
era, such that SOMPT22 involve larger and more abundant
moving objects within the scene compared to AI-City. The
slight improvement in the performance of FT compared to
PC may relate to the contribution of independently mov-
ing objects within the scene, where false shifts due to large
objects’ motion can affect the global motion estimation of
FT methods as opposed to the increase in texture. Thus, a
predetermination of non-moving regions may be required to
handle such false contributions. On the over all, the average
MSE among all videos is around 0.3 pixel for the best per-
forming 8 sub-block approach, corresponds to an error rate
around quarter sub-pixel considering the range of perturba-
tions. This very low error rate stabilization is quite adequate
for further computer vision applications as well as observers
of the videos.
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Table 2. Computational complexity comparison.

Method GPU cores FPS
[3] Jetson TX1 256 60

[21] Jetson Nano 128 81.4
Proposed 1-block Jetson Nano 128 259.7
Proposed 4-blocks Jetson Nano 128 147.8
Proposed 8-blocks Jetson Nano 128 141.2

4.2. Computational Analyses

The run-time performance of the proposed approach is
given in Table 2 with a comparison of two real-time meth-
ods whose computational times on mobile GPUs are gath-
ered from [21]. We also provide the computational time of
a single larger block based PC. It is clear that proposed ap-
proach with both 4 and 8 sub-block configuration enables
much more efficient processing compared to [3] and [21].
Use of pre-selected sub-blocks tremendously decreases the
computational complexity, besides efficient FFT implemen-
tations speed-up stabilization to a new level with only up to
7 ms of requirement. Depending on the scene content, stabi-
lization can also be achieved in less than 4 ms by use of sin-
gle larger block, with a little sacrifice of accuracy. Though,
proposed approach provides a trade-off between single and
8 sub-block usage, that both yield high stabilization capa-
bility for proper surveillance camera views. The run-time
of FFT and proposed pipeline are not linearly scaled to the
the size of sub-blocks, such that when the size is doubled to
256x256, the frame-per-second drops to (165, 112 and 86)
for 1-4-8 block usage correspondingly. In that case, even
larger shifts can be handled under 10 ms.

The distribution of computation times with respect to
main functional blocks are given in Figure 9 for 4 and 8
sub-block usage. It is clear that most of the computation
is spent on peak analysis which involves merge of ACMs
of sub-blocks, localization and reliability calculation of the
peaks. That is the main reason of almost 2 time faster opera-
tion in single larger block which does not require any merg-
ing step. However, the merging step obviously improves
the stabilization accuracy and provide a comprehensive and
wide range of scene handling.

According to Table 1 and Table 2, use of 8-blocks en-
ables 140 fps with very low (under %1) stabilization er-
ror for surveillance camera views and seems to be the best
choice of the proposed approach. In case of sufficient tex-
ture, use of single large block is also an alternative with two
times faster execution. Though, our technique saves enough
computation for further computer vision analyses, being a
good candidate for stabilization of surveillance cameras.
Besides, the selection of sub-block number can be per-
formed dynamically such that optimum performance is pro-
vided depending on the scene structure.

Figure 9. The distribution of execution times with respect to func-
tional blocks.

5. Conclusion
We propose a novel and very efficient phase correla-
tion based video stabilization on mobile GPus under non-
moving and global shutter surveillance camera conditions.
The method exploits determination of salient sub-block and
application of block based phase correlation to this subset
of blocks in order to relate recent video frames to a refer-
ence. The phase correlation is achieved by GPU optimized
FFT, that also plays a significant role in salient block selec-
tion. The method merges the responses of each block into
a final map on which the peak response provides horizontal
and vertical frame shifts. Use of low number of discrim-
inant blocks has a significant impact on the efficiency of
the proposed approach. In order to handle large vibrations,
a multi-scale adaptation is also provided. The experiments
indicate that, stabilization on a mobile low cost GPU device,
Jetson nano, takes only up to 7 ms corresponding to roughly
150 fps without losing any stabilization accuracy. This
very low cost stabilization is a good alternative for a pre-
process step and saves sufficient computational space for
further analyses on the camera. Balancing between accu-
racy and computational speed, proposed approach enables
further optimizations to alternate between different num-
ber of block usages depending on the scene content. The
dynamic alternation of blocks is reserved for future direc-
tions.
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