
RAVN: Reinforcement Aided Adaptive Vector Quantization of Deep Neural
Networks

Anamika Jha †, Aratrik Chattopadhyay †, Mrinal Banerji †, Disha Jain †

†Mercedes-Benz Research & Development India
{anamika.jha, aratrik.chattopadhyay, mrinal.banerji, disha.jain}@mercedes-benz.com

Abstract

In the expanding field of deep learning, deploying deep
neural networks (DNNs) in resource-constrained environ-
ments presents daunting challenges due to their complexity.
Existing methodologies try to reduce the model complex-
ity through the quantization of the DNNs. Adaptive quan-
tization (AQ) is one such quantization technique for reduc-
ing model complexity. The drawbacks of current adaptive
quantization techniques include limited adaptability to dif-
ferent datasets and models, suboptimal codebook genera-
tion, high computational complexity, and limited general-
ization to unseen scenarios. In contrast, we propose to
address these issues through a sophisticated AQ methodol-
ogy which incorporates vector quantization (VQ) of weights
and Quantization-Aware Training (QAT) in tandem with re-
inforcement learning (RL). The above-mentioned approach
facilitates dynamic allocation of quantization parameters of
the DNN models, thereby reducing complexity, power uti-
lization and ease of deployment on edge devices. We eval-
uated our proposed approach on three publicly available
benchmark datasets namely, CIFAR-10, CIFAR-100 and Im-
ageNet on state-of-the-art floating-point DNN architectures
and showed a boost of up to 4% in their respective quan-
tized counterparts. The source code of the proposed ap-
proach will be available here upon acceptance of the work.

1. Introduction

The field of deep learning has seen a significant expansion,
with deep neural networks (DNNs) becoming central to a
range of applications, from image recognition to natural
language processing. Despite their success, deploying these
networks in environments with limited computational re-
sources, such as mobile devices or IoT sensors, presents sig-
nificant challenges. The core issues stem from the substan-
tial network sizes and the intensive computational demands
of DNNs, which are not ideally suited for such resource-

constrained platforms. Traditional approaches to mitigating
these challenges primarily involve quantization techniques
that convert floating-point weight variables of DNNs into
lower precision formats. While effective in reducing net-
work sizes and computational requirements, these conven-
tional methods often result in significant accuracy loss and
exhibit limited adaptability to different data sets and ar-
chitectures. Furthermore, they struggle with high compu-
tational complexity and suboptimal codebook generation,
leading to diminished performance in unfamiliar scenar-
ios. In response to these limitations, adaptive quantiza-
tion (AQ) has emerged as a promising solution. AQ dis-
tinguishes itself by dynamically adjusting the quantization
levels to suit specific data distributions and network char-
acteristics. This approach not only aims to preserve the
original network’s accuracy but also adapts to various op-
erational contexts. However, existing AQ techniques still
face challenges regarding adaptability and efficiency. Our
work addresses these issues by introducing a sophisticated
AQ methodology that integrates vector quantization (VQ)
with reinforcement learning (RL). This novel combination
allows for the dynamic allocation of quantization parame-
ters, thereby streamlining the complexity and energy con-
sumption of DNNs while facilitating their deployment on
edge devices. By leveraging RL, our approach optimizes
codebook generation and reduces computational demands,
leading to better generalization across diverse datasets and
scenarios. We have thoroughly evaluated our proposed
method on publicly available benchmark datasets, including
CIFAR-10, CIFAR-100, and ImageNet, using state-of-the-
art DNN architectures. The results demonstrate significant
improvements in network’s compactness and performance,
showcasing the potential of our approach in making DNNs
more accessible for devices with limited computational ca-
pabilities. Moreover, we provide insights into the implica-
tions of our findings for future research and practical ap-
plications, highlighting the versatility and efficiency of our
proposed AQ framework.
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2. Related Works
The field of neural network quantization has been a focal
point of research due to the increasing need to deploy deep
learning networks on resource-constrained devices. This
section outlines seminal works and recent advancements
underpinning our proposed methodology, highlighting con-
tributions in the realms of vector quantization, reinforce-
ment learning in quantization, and adaptive quantization ap-
plications

2.1. Vector Quantization in Neural Networks

Vector Quantization (VQ) has long been employed in sig-
nal processing and image compression. The adaptation of
VQ for neural network weights was pioneered by [6], who
demonstrated significant network size reductions without
commensurate losses in accuracy. Subsequent research ex-
panded upon these findings, exploring various clustering
techniques to optimize the balance between compression
and performance. For instance, [7] integrated VQ with
pruning and Huffman coding, achieving unprecedented
compression rates. Our approach builds upon this founda-
tion, applying VQ through K-means clustering to quantize
neural network weights more efficiently.

2.2. Reinforcement Learning for network Compres-
sion

The integration of Reinforcement Learning (RL) in our ap-
proach introduces a dynamic aspect to quantization. One of
the pioneers in the field to leverage RL for determining the
sparsity levels in neural networks was done by [27], paving
the way for more nuanced compression strategies. More
recently, [5] applied RL to automate the selection of quan-
tization parameters, demonstrating enhanced performance
over static quantization schemes. Our methodology extends
this paradigm by employing RL, not only to adjust quantiza-
tion levels but also to dynamically assign bit-widths across
different layers, an approach that has not been extensively
explored in prior studies.

2.3. Adaptive Quantization

Adaptive quantization (AQ) represents a significant ad-
vancement over traditional quantization approaches by in-
troducing mechanisms that dynamically adjust the quantiza-
tion parameters during the training process. This adaptabil-
ity allows the quantization process to account for the unique
characteristics of each network and dataset, potentially
leading to better preservation of accuracy. Techniques such
as BinaryConnect[1] and Ternary Weight Networks[16]
have explored binary and ternary quantizations, respec-
tively, but with limited adaptability. Recent studies have
focused on more sophisticated adaptive quantization frame-
works. HAWQ[3], HAWQ-V2[4], and AdaQuant[14] intro-
duce novel methods for adaptive quantization that consider

the Hessian information of the network parameters, en-
abling more effective bit-width assignment without signifi-
cant loss of accuracy. In contrast to the previous methods,
the proposed method synergizes various elements to pro-
vide a cohesive framework which dynamically tunes quan-
tization parameters, facilitating an optimal balance between
efficiency and performance.
• Integrates Vector Quantization (VQ) and Reinforcement

Learning (RL): The approach dynamically adjusts bit-
widths during the Post-Training Quantization (PTQ) pro-
cess, improving the trade-off between network compact-
ness and performance.

• Preservation of network Accuracy: Despite the reduction
in network size and computational demands, the approach
maintains high fidelity to the original full-precision net-
works, thereby ensuring minimal loss in accuracy.

• Efficient Deployment on Edge Devices: Reduces com-
plexity, power utilization, and increases ease of deploy-
ment on edge devices, making advanced AI solutions
more accessible for real-world applications.

• Addresses Adaptability Issues: Overcomes the limita-
tions of current adaptive quantization techniques such
as limited adaptability to different datasets and net-
works, suboptimal codebook generation, high computa-
tional complexity, and limited generalization.

Through this, we aim to advance the frontier of efficient
deep learning network deployment, particularly in environ-
ments where computational resources are at a premium.

3. Methods
Let us consider an image I which is propagated through an
N layered neural network Φ = Φ1 ◦Φ2 ◦ . . .ΦN parameter-
ized by floating-point weights W = {W1,W2, . . . ,WN}
and generates features F = {F1,F2 . . .FN} such that the
feature generated by layer Φi is Fi = Φi(Fi−1). Next, we
will elaborate on the important constituents of our proposed
approach as illustrated in Fig. 1.

3.1. Vector Quantization

Traditional quantization frameworks entails a careful choice
of precision of weights in a deep neural network. Neu-
ral network weight precision (bit-width) generally dictates
the network size and complexity. VQ is one such approach
which proposes to reduce network complexity by assigning
similar precision (bit-widths) to similar weight variables in
a network. This selective approach clusters weight variables
in different groups and assigns each group the same bit-
width instead of allocating different bit-widths to individual
weight variables which leads to an increase in the size of the
network. Hence, this approach allows for a more nuanced
network compression thereby reducing network complex-
ity. Our proposed approach develops on the VQ framework
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Figure 1. Overview of the proposed RAVN framework. The bit-widths are initialised from VQ which is passed as input to our proposed
RAVN framework. The network weights of Φ are quantised via backpropagation through our proposed loss LRAV N using our ReAQ
optimisation framework to produce final network weights Φq.

as discussed below.
Let Wi = {w(i)

1 ,w
(i)
2 , . . .w

(i)
k } be the set of weights

for a given layer Φi, where w
(i)
j ∈ Wi, 1 ≤ j ≤ k are

individual weight variables associated with network layer
Φi. In order to cluster together similar weights across N
layers in Φ, we apply K-means [8] to group the weights into
M clusters with cluster centroids c(i)m , where 1 ≤ m ≤ M .
The clustering process can be mathematically represented
as below:

Li
C = min

c
(i)
1 ,c

(i)
2 ,...,c

(i)
m

M∑
m=1

∑
w

(i)
j ∈Wi

∥w(i)
j − c(i)m ∥2 (1)

where Li
C denotes the clustering loss for the layer Φi. Next,

following [8] each weight w
(i)
j is assigned to the clos-

est computed cluster centroid c
(i)
m and a corresponding bit-

width value bij following the rule as mentioned below. Let
bi be a set of values whose each element denotes the bit-
widths assigned to the weight variables w

(i)
j ∈ Wi. Then

the elements in bi can be constructed as

bij = bik if{wi
j ,w

i
k} ∈ cim,∀j ̸= k

̸= bik if wi
j ∈ cim&wi

k /∈ cim,∀j ̸= k
(2)

Hence we assign equal bit-width values to the weight
variables wi

j ∈ Wi if they belong to the same cluster cen-
troid cim, otherwise we assign different values to them. The
allocation of bit-widths can be extended for the network Φ

as B = {b1,b2, . . . ,bN} where bi denotes the bit-widths
allocated to a network layer Φi. Since the assigned bit-
width variables are responsible for controlling the network

precision and it’s performance, we will associate network
precision with bit-width in the rest of the paper. The pro-
posed dynamic bit-width allocation approach through VQ
laid the stepping stones for a robust quantization framework
and forms the backbone of our proposed approach.

3.2. Reinforced Adaptive Quantization (ReAQ)

The integration of the proposed bit-width aware VQ ap-
proach (refer Sec.3.1) in our framework provided a robust
method of bit-width allocation between similar and dissim-
ilar floating-point (FP) network weight variables. However
a random bit-width allocation may lead to a reduction in
the performance of a floating-point (FP) network and intro-
duce quantization loss which we want to minimise. Hence,
we seek for an optimal distribution of bit-widths across all
the network weights in Φ which will not only minimise the
quantization loss but also help us achieve a given target per-
formance. We propose to satisfy the above constraints via
our LReAQ loss which we will describe subsequently.

Let us consider a bit-width assignment bi to Φ in the
layer Φi. Since assignment of a new bit-width changes the
weights of Φ, we refer to the changed network layer as Φq

i .
The change in the networks-weights will introduce a quan-
tization loss which we denote as Lquant = f(Φi,Φ

q
i ,bi)

(Sec 3.3). Additionally, let g(Φi,bi) and gf denote the
measure of performance of the network and target perfor-
mance respectively whose difference we want to minimise.
Since, we want to reduce our quantisation loss Lquant and
the difference between g(Φi,bi) and gf , the formulation of
our final loss LReAQ can be represented as:

LReAQ = f(Φi,Φ
q
i ,bi) + λ(m(g(Φi,bi), gf )) (3)
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where m(.) is a distance metric (e.g MSE) which rep-
resents the loss incurred in network performance and λ is
a trainable hyperparameter. However, the formulation of
the loss function in Eq. 3 has one caveat. We can choose
to maximise the network performance g(.) by using higher
precision network parameters(bigger elements in bi) and
still reduce LReAQ. In other words, theoretically we can
reduce the loss in Eq. 3 to zero by copying the weights in
Φi to the weights in Φq

i and maximise the network perfor-
mance g(.) to match gf . However, this in turn increases
the network size, thereby nullifying the benefits of network
quantization. Hence, we propose to address this shortcom-
ing by adding another constraint in the formulation of our
loss function.

Let sQ and sf denote the sizes of the quantized and
floating-point network respectively. We choose to maximise
the difference between sQ and sf since we want the quan-
tized network to be lesser in size compared to the floating-
point counterpart. Hence the final formulation of LReAQ

along with the proposed constraint can be mathematically
represented as:

LReAQ = f(Φi,Φ
q
i ,bi) + λ(m(g(Φi,bi), gf ))

subject to sQ ≤ sf
(4)

Next, we will discuss the formulation of our quantization
loss.

3.3. Fidelity Loss

In this section, we explain the choice of the quantization
loss f (.) (mentioned in Sec 3.2) of our proposed approach.
A robust formulation of a quantization loss should ensure
that the semantics in the floating-point network is preserved
in the quantized counterpart. Hereby, we propose to lever-
age the structural similarity between feature maps obtained
from the respective networks as a cue to quantify the seman-
tic difference between both which we will describe below.

Let a bit-width allocation B (refer Sec 3.1) to the weights
in Φ inject a quantization loss f(.) resulting in a quantized
network Φq . Let the features generated from the quan-
tized network Φq = Φq

1 ◦ Φq
2 ◦ . . .Φq

N be denoted as
Fq = {Fq

1,F
q
2, . . . ,F

q
N} where feature generated from Φq

i

is Fq
i = Φq

i (F
q
i−1). Similarly the features generated from

the floating-point network Φ for layer Φi can be represented
as Fi = Φi(Fi−1) (refer to Section 3). The structural simi-
larity between Fi and Fq

i can be measured using a distance
metric d(.) (eg. L2) which we want to minimise. This is
equivalent to minimising the loss function as mentioned be-
low:

Li
fidelity = d(Fi,F

q
i ) (5)

We can extend the above formulation for N number of lay-
ers in the network which yields our proposed loss Lfidelity.

Lfidelity =

∑N
i=1 d(Fi,F

q
i )

N
(6)

Integration of the proposed loss function (Lfidelity) into
our method forces the network to not only maintain the per-
formance, but also preserve the internal dynamics and rep-
resentation thus ensuring a more faithful and effective quan-
tization.

Hence substituting Lfidelity in Eq.4 and generalising bi,
Φi for the whole network our final loss can be formulated
as below:

LRAVN = Lfidelity + λ(m(g(Φ,B), gf ))

subject to sQ ≤ sf
(7)

where B denotes the bit-width assignment for the whole
network Φ. It is to be noted that, LRAVN integrates VQ
within a formalized framework, while LReAQ is dedicated
exclusively to Adaptive Quantization using Reinforcement
Learning, without VQ

We propose to minimise the loss-function in Eq. 7
through an iterative optimisation framework in a reinforce-
ment learning paradigm. In our proposed framework, the
assigned reinforcement learning agent receives a reward
for minimising LRAVN and increasing the network perfor-
mance through an imposed constraint such that sQ is lesser
than the floating-point network size sf . In doing so, the
agent ensures that not only the quantized network has com-
petitive performance by minimising LRAVN but gets pe-
nalised if the network size increases through the imposed
constraint in Eq. 7. Hence, the proposed approach re-
sults in less complex and competitive quantized networks
Φq thereby proving its efficacy as a robust quantization al-
gorithm. The steps of the training procedure of the proposed
algorithm is elucidated through a pseudocode in Algorithm.
1.
4. Experiments and Analysis
We evaluated our proposed approach RAVN against state-
of-the-art floating-point(FP) and 4-bit architectures on three
publicly available benchmark datasets for image classifi-
cation tasks namely, CIFAR-10, CIFAR-100 and a widely
chosen subset of the ImageNet dataset. We chose the widely
used average precision as our accuracy metric and used it
for the evaluation of classification tasks. We will refer to
average precision as accuracy throughout the rest of our pa-
per.

4.1. Datasets

The CIFAR-10 [15] dataset has 60000 color images of
shape 32x32 and consists of 10 classes where each class
consists of 6000 images. The CIFAR-100 [15] dataset has
50,000 training images and 10,000 test images. The dataset
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Network CIFAR-10 (%) CIFAR-100 (%) ImageNet (%)

Float 4bit Proposed Float 4bit Proposed Float 4bit Proposed

ResNet-20[12] 90.12[11] 88.07 89.35 72.14[17] 70.67 71.03 81.15[11] 80.78 80.19
ResNet-50[12] 85.21[31] 81.04 82.97 80.93[31] 77.03 78.39 80.42[30] 77.31 79.50
ResNet-152[12] 86.22[12] 83.81 84.39 83.31[12] 81.02 81.92 80.62[9] 78.18 78.57
EfficientNet[26] 89.52[22] 88.14 87.64 73.82[23] 71.11 72.84 77.01[29] 76.42 76.39
MobileNet[13] 89.12[24] 87.81 88.22 70.73[25] 69.06 69.98 75.20[28] 71.03 73.97
ResNet-200[10] 83.12[10] 82.17 82.79 77.79[10] 75.92 76.98 83.83[28] 82.08 82.09

Table 1. Performance comparison of different architectures across datasets for varied precision levels. Results in bold indicate better
performance.

Algorithm 1 Training of the Proposed RAVN approach

Input:
• Input image (I)
• Floating-point Network weights (Wi)
• Floating-point Feature Maps (Fi)
• Floating-point network size (sf )
• Number of layers in Floating-point network (N)
• Floating-point network performance (gf )
• Initial random bit-width assigned B =
{b1,b2, . . . ,bN}

Output: Quantized network weights (Φq)
while not converged do

while i < N do
Assign bi to Φi following Eq. 2
and produce Φq

i

Fq
i ← Φq

i (I)
Li
fidelity ← d(Fi,F

q
i )

ri ← g(Φq
i ,bi)

Li
RAV N ← Li

fidelity + ri subject to sQ ≤ sf
end while
Compute LRAVN following Eq. 7
Update weights Φq and bit-widths B

end while

consists of a wide variety of images from 100 classes where
each class consists of 600 images including 500 training im-
ages and 100 test images. Additionally, the dataset also pro-
vides 20 superclass tags grouped from the 100 fine classes.
The images present in the dataset have a shape of 32×32
and similar to CIFAR-10 have three channels representing
color dimensions. The chosen ImageNet dataset [2] con-
tains around 50,000 training images, and 10,000 validation
images annotated following the WordNet hierarchy. The
dataset is used as a benchmark in image classification and
object detection tasks and consists of a wide variety of ob-
jects from 100 diverse classes with manually annotated ob-
ject bounding boxes for each image.

4.2. Implementation details

The implementation of the proposed approach uses the pop-
ular Pytorch framework [20]. We used a training batch size
of 64 and learning rate is set at 1e-3 using a cosine sched-
uler [18] with a 0.1 annealing factor. We minimize our
proposed loss functions using the Adam-W optimizer [19],
which enhances generalization through effective regulariza-
tion by incorporating a weight decay of 5e-4. We chose
our training hyperparameter λ as 1 to maintain a consistent
scale across various tests, ensuring comparability of results.
The bit-widths B are initialized randomly in the range [2,8].
The scale factor sf is set to match the floating-point accu-
racy targets, optimizing the conversion from floating-point
to fixed-point formats while preserving computational pre-
cision. Finally, we quantize the floating-point (FP) archi-
tectures iteratively using the proximal-policy optimization
algorithm (PPO) [21] through our novel RAVN framework,
which supports robust and efficient optimization strategies.

4.3. Results

In this work, we introduce a novel quantization technique
for deep neural networks aimed at optimizing both com-
putational efficiency and environmental impact, without
sacrificing the accuracy of the networks. The objective
of the proposed method is not to compare the accuracies
across different architectures; instead, it aims to evaluate the
performance differences between floating-point networks
and their corresponding quantized counterparts. Our pro-
posed method is evaluated across three benchmark datasets
namely, CIFAR-10, CIFAR-100, and ImageNet, and com-
pared with traditional 32-bit floating point (Float) and 4-
bit quantized networks through average precision metric as
shown in Table 1. We will refer to the average precision
metric as accuracy in the rest of our paper. Additionally, we
also summarise the average bit-width consumed for each of
the architectures quantized through our framework in Table
3. Since the average bit-width consumed in our framework
is approximately 4.5, we chose the networks quantized with
bit-width of 4 as our closest baseline to demonstrate the ef-
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ficacy of the proposed method. Moreover, we compare the
efficacy of the proposed method in reducing network com-
plexity and carbon emission through Table. 2 and Table. 4
respectively.

4.3.1 Comparison with 4-bit

Our proposed method demonstrates significant improve-
ments in accuracy compared to the conventional 4-bit
quantized versions across all the mentioned networks and
datasets. For instance, on the CIFAR-10 dataset, our
method achieves a 1.45% increase in accuracy for ResNet-
20 over the 4-bit counterpart. Notably, on the more chal-
lenging ImageNet dataset, our approach enhances the per-
formance of ResNet-50 by a margin of 2.83% compared to
its 4-bit counterpart. On both the networks we are able
to achieve and average performance gain of up to 2.28%
with a 0.4 increase in bit-width. This translates to a mi-
nor increase of 2.5MB in network size while using only
an additional 0.1kg CO2 footprint. Moreover, the proposed
method is capable of increasing the performance of deeper
neural network architectures like ResNet-152 by a margin
of 1.11% on the CIFAR-100 dataset while consuming an
additional 6MB network size and 0.2kg CO2 footprint. We
show a similar improvement in performance on the 4-bit
counterpart of the ResNet-200 architecture with our pro-
posed method outperforming by a margin of up to 1.4% on
the CIFAR-100 dataset while keeping the carbon-footprint
levels under check. These enhancements in accuracy, par-
ticularly for complex datasets, assures that the proposed
quantization approach not only maintains the integrity of
the predictive power of the network but also keeps the net-
work complexity and environmental impact at a check.

4.3.2 Comparison with Float (32-bit)

We also compare the performance of the proposed method
with floating-point counterparts on different architectures as
depicted in Table. 1. However, since the performance of the
quantized networks can be as good as their floating-point
counterpart, we will focus on the reduction achieved in net-
work complexity and carbon-footprint as our baseline for
comparison. Our proposed method reduces the size of the
ResNet-20 architecture from 52 MB to 22 MB, a stagger-
ing 136% reduction along with an 89% reduction in carbon
footprint. However, the proposed approach still manages
to achieve almost similar performance on the CIFAR-100
and ImageNet datasets showing an average minor perfor-
mance drop of 0.5% over both the datasets. This highlights
the capability of the proposed method in maintaining the
performance of the floating-point architectures with min-
imal loss but significantly reducing computational burden
and complexity through network size reduction. In ResNet-
200, our method manages to reduce the network size from

Network Float (32bit) 4-bit Proposed
(MB) (MB) (MB)

ResNet-20 52 19 22
ResNet-50 110 28 30
ResNet-152 185 48 54
EfficientNet 150 29 32
MobileNet 125 24.5 28
ResNet-200 230 37 58

Table 2. Network sizes for various bit-widths.

230MB to 58 MB showing a 75% reduction in size and gen-
erating 85% less carbon footprint. However, the proposed
method still maintains the accuracy loss to a minimal value
of 1% even for complex datasets like ImageNet. This trend
of modest decrease in performance for substantial gains in
network size reduction and carbon footprint is consistent
across all evaluated architectures, indicating the practicality
of our method in resource-constrained environments.

Additionally, we also extend our evaluation in terms of
the computational resources, where we observe significant
reductions in RAM usage on the NVIDIA A100 as shown
in Table 5. Notably, in ResNet-50 architecture the RAM us-
age shows a considerable decrease of 82.5% from 12 GB
to 2.1GB. These reductions in memory requirements are
crucial for deploying advanced neural network networks on
edge devices and in data centres, where memory is often a
limiting factor.

In summary, our proposed quantization method provides
a compelling balance between accuracy, storage efficiency,
environmental sustainability, and computational resource
utilization. It presents a significant step forward in the de-
velopment of efficient and environmentally friendly neural
network quantization techniques. The strategic trade-offs
between a slight increase in network size and bit-width from
4-bit to our proposed method result in substantial perfor-
mance boosts and efficiency gains, making it an optimal
solution for real-world applications that demand high per-
formance with computational and environmental efficiency

Network Average Bit-Width

ResNet-20 4.5
ResNet-50 4.3
ResNet-152 4.4
EfficientNet 4.5
MobileNet 4.3
ResNet-200 4.4

Table 3. Average Bit-Width of different quantized architectures
using the proposed RAVN framework
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Network Float (32-bit) 4-bit Proposed
(kg CO2) (kg CO2) (kg CO2)

ResNet-20 2.1 0.24 0.23
ResNet-50 7.3 1.0 1.2
ResNet-152 4.2 1.0 1.2
EfficientNet 1.0 0.08 0.1
MobileNet 0.5 0.11 0.11
ResNet-200 8.3 1.2 1.3

Table 4. Carbon Footprint emission of different architectures for
different bit-widths

Network Float (32-bit) 4-bit Proposed
(GB) (GB) (GB)

ResNet-20 5.2 1.4 1.9
ResNet-50 12 2.0 2.1
ResNet-152 13.8 3.25 3.28
EfficientNet 7 1.22 1.22
MobileNet 3 0.57 0.58
ResNet-200 20 4.2 4.6

Table 5. RAM usage of different networks with varying bit-widths
on NVIDIA A100.

Method Dataset Accuracy(%) Network Size

VQ CIFAR-10 78.32 45
AQ CIFAR-10 82.86 42
RL+AQ CIFAR-10 81.25 37
Proposed CIFAR-10 83.97 30

VQ CIFAR-100 76.41 47
AQ CIFAR-100 80.44 41
RL+AQ CIFAR-100 79.85 35
Proposed CIFAR-100 81.39 34

VQ ImageNet 74.51 44
AQ ImageNet 77.0 47
RL+AQ ImageNet 77.91 37
Proposed ImageNet 79.5 38

Table 6. Ablation Studies

5. Ablation Studies

In this section, we delve into an ablation study conducted
to evaluate the individual contributions of the main compo-
nents in our RAVN framework namely, Vector Quantization
(VQ), Reinforcement Learning (RL), and Adaptive Quanti-
zation (AQ) with ResNet-50 as our baseline choice of net-
work architecture. The purpose of this study is to under-
stand the impact of each component of the proposed frame-
work on the overall performance of the quantized deep neu-

ral network networks across different datasets and used Av-
erage Precision (AP) as our metric for comparison. The
comparative analysis of the proposed framework is depicted
in Table 6.

Figure 2. T-SNE plot of ResNet-50 weights before applying VQ.
Different colours indicate different clusters

Figure 3. T-SNE plot of ResNet-50 weights after applying VQ.
Different colours indicate different clusters

5.1. Vector Quantization(VQ)

Initially, we isolated the vector quantization component by
disabling the RL and AQ elements from our proposed ap-
proach. This modification allows us to assess the effec-
tiveness of VQ in reducing network size while maintain-
ing network performance. On CIFAR-10, CIFAR-100, and
ImageNet, neural networks quantized using VQ achieved
accuracies of 78.32%, 76.41%, and 74.51% respectively.
The efficacy of the VQ component in our framework is also
elaborated through the T-SNE plots of weight variables for
ResNet-50 architecture. While, it can be seen from Fig. 2
that the weight parameter values are scattered throughout,
the ResNet-50 weight variables quantized through VQ as
shown in Fig. 3 demonstrate better clustering, emphasizing
the crucial role of VQ in our proposed approach. Hence, we
chose VQ as our baseline setting for the comparison with
the rest of the components of our proposed approach.
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5.2. Adaptive Quantization (AQ)

In this configuration, we examined the role of AQ in a quan-
tization framework by removing the VQ and RL compo-
nents of our proposed approach. The specific component
showed a remarkable boost in network performance by at
most 5% in the CIFAR-10 dataset and 2% in the CIFAR-100
dataset respectively. Moreover, the network demonstrated a
staggering boost of 8% in network performance compared
to the standard RL setting achieving an accuracy of 77%
on the ImageNet dataset. The general boost in performance
achieved through the adoption of an adaptive quantization
technique necessitates the requirement of a similar strategy
in quantization frameworks.

5.3. RL+AQ

RL+AQ offers a refined perspective on the collaborative ef-
fectiveness of combining the two components of our pro-
posed approach, namely RL and AQ. By applying this
joint strategy, we attained significant network accuracies of
82.08% on CIFAR-10, 79.86% on CIFAR-100, and an en-
hanced 77.91% on the ImageNet dataset. The synergy be-
tween RL and AQ not only achieved a notable improvement
in accuracy by 1% on the ImageNet dataset when compared
with AQ setting, but also succeeded in dynamically quan-
tizing the network, thus reducing the network size by 19%
across all datasets. It is to be noted that there are mini-
mal performance variations of up to 1% as observed in the
CIFAR-10 and the CIFAR-100 datasets. However, the mas-
sive reduction in network size underscores the advantage of
integrating RL with AQ through the RL+AQ component of
our proposed approach. Additionally, this also leaves room
for analysing the potential for Vector Quantization (VQ) to
further enhance our approach through complementary syn-
ergy, thereby suggesting promising avenues for future en-
hancements.

5.4. Full RAVN Framework

The proposed framework integrates Vector Quantization
(VQ), Reinforcement Learning (RL), and Adaptive Quan-
tization (AQ), achieving substantial improvements in ac-
curacy and network size. This configuration yielded the
highest accuracies among all variants tested: 83.97% on
CIFAR-10, 81.39% on CIFAR-100, and 79.5% on Ima-
geNet. The incorporation of the VQ component alone en-
hanced performance by an average of 2%. Moreover, this
framework significantly reduced network sizes by an aver-
age of 13% across these datasets, illustrating its effective-
ness in both preserving accuracy and minimizing network
footprint. These outcomes highlight the benefits of com-
bining VQ with RL-guided AQ, demonstrating considerable
size reductions while maintaining accuracy, particularly for
complex datasets.

Finally, our ablation study delineates that each compo-
nent of the proposed RAVN framework plays a vital role
in enhancing the efficiency and effectiveness of adaptive
quantization for deep neural networks. The integration of
these components allows for navigating the trade-offs be-
tween network size, computational cost, and performance,
particularly crucial in the context of deploying deep learn-
ing networks in resource-constrained environments.

6. Discussions
The RAVN framework combines vector quantization with
reinforcement learning for adaptive DNN weight quanti-
zation, enhancing layer-specific and overall network effi-
ciency without significantly sacrificing accuracy, as shown
in tests on CIFAR-10, CIFAR-100, and ImageNet. This
approach facilitates DNN deployment in resource-limited
settings like edge devices and mobile phones by reducing
model size while retaining high accuracy. Our methodol-
ogy, while promising, has few limitations. The use of rein-
forcement learning can extend the training duration. Suc-
cess depends on the initial model quality, the reinforcement
learning algorithm, and data diversity.

7. Future Works
Future research directions for the RAVN includes enhanc-
ing the clustering algorithms within the AQ framework, in-
corporating additional loss metrics to minimize quantiza-
tion loss, and broadening its application to domains beyond
image classification, such as natural language processing,
speech recognition, and time-series analysis. RAVN’s prin-
ciples could significantly impact the deployment of efficient
and high-performing deep learning models on resource-
limited edge devices. The proposed method can be further
adapted for hardware-embedded systems that support dy-
namic mixed precision, even at lower bit-widths. This adap-
tation is particularly beneficial for implementations on edge
devices, where efficiency and compactness are crucial.

8. Conclusions
This work introduces RAVN, a novel framework merging
vector quantization (VQ) and reinforcement learning (RL)
for adaptive bit-width adjustment in Post-Training Quan-
tization (PTQ), enhancing neural network quantization by
reducing size and computational needs while maintaining
accuracy. RAVN’s RL-based dynamic quantization marks a
significant shift from static methods, optimizing codebook
generation and reducing complexity for improved perfor-
mance and applicability. RAVN is a considerable advance-
ment in adaptive quantization, offering a solution for deep
neural network deployment in resource-limited settings and
laying groundwork for future efficient model quantization
research.
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