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Abstract

The effort required to collect data and train a large neu-
ral network requires a significant investment from organi-
zations. Therefore, trained neural networks are often seen
as valuable intellectual property that needs to be protected.
At the same time, we are increasingly seeing applications
where a model is deployed on an edge device. This has
several benefits, including improved privacy and reduced
latency but it also opens up the possibility for third par-
ties to extract the trained model from the device and to
use it for their own purposes. Watermarking techniques
aim to safeguard neural networks from unauthorized us-
age. These methods alter the model’s behavior for specific
trigger inputs, enabling the owner to recognize stolen in-
stances. However, existing watermarking algorithms are
not suited for distributed edge AI scenarios as they only
create a single watermarked model instance. We introduce
a novel multi-bit watermarking approach capable of effi-
ciently generating a large number of model instances. Each
of these instances maintains functional equivalence but ex-
hibits unique behaviors when prompted with a predefined
trigger input. This allows the owner to trace the source of
a model leak to a potentially malicious user. We experi-
mentally validate our approach on the MNIST, CIFAR-10,
and ImageNet datasets, evaluating model performance and
resilience against watermark removal attacks.

1. Introduction

In the past decade, there has been a significant surge
in the practical applications of machine learning models.
Many business models now heavily rely on AI models to
provide revenue-generating services, making these trained
models a valuable form of intellectual property (IP) for
their owners. Typically, organizations have made substan-
tial initial investments in data collection and cleaning, the
hiring of qualified machine learning engineers, and the
use of computing infrastructure for model training and

(a) Watermark embedding

(b) Watermark extraction

Figure 1. Our technique can efficiently create a large number of
watermarked model instances, based on a pretrained model (a). To
extract the watermark from a suspected model, the model needs to
be queried with the key inputs (b), each watermarked model will
show distinct behavior for these inputs

maintenance. Consequently, malicious actors may attempt
to acquire these trained models for their own purposes, cir-
cumventing the significant development costs. In response
to this challenge, recent research efforts have proposed
watermarking techniques aimed at safeguarding these
models. These methods enable owners to provide evidence
of ownership, offering a form of protection against theft.

Despite being a relatively recent development, multi-
ple approaches for watermarking deep neural networks
(DNNs) have already emerged. The most promising
approaches allow for black-box verification, meaning that
no access to the weights of a model is needed in order to
validate the watermark. Instead, we only need to be able
to query the suspected model. A model is watermarked by
training it to behave in a very specific way when presented
with predefined trigger inputs. Watermarking techniques
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differ in the way the trigger inputs are obtained and how
the model is trained to respond to them. We describe the
most relevant approaches in section 2.

Our research focuses on a specific use case wherein
instances of the trained model are deployed on end-user
devices such as smartphones or Internet of Things (IoT)
devices. Edge deployment of AI models has been gaining
traction due to its potential to enhance privacy, robustness
and latency [34]. One drawback of this approach is the
necessity to transmit the model to an untrusted edge
device, thereby increasing the risk of model theft by
malicious users [20]. While encryption techniques and
trusted execution environments can mitigate some of these
risks [29], they may not be available on all edge devices
or may introduce substantial performance overhead. In
contrast, watermarking imposes no runtime overhead,
rendering it an attractive option, particularly in resource-
constrained edge AI applications. Most conventional
neural network watermarking methods are ill-suited for
this use case as they train only a single watermarked
model instance [40]. Our objective is to generate a large
number of functionally equivalent models, each embedded
with a unique watermark for individual users or devices.
Current state-of-the-art watermarking solutions typically
incorporate the watermarking process into the training
procedure, making it cost-prohibitive to create a substantial
number of model instances. Instead, we propose a novel
approach that quickly embeds a watermark into an already
trained model, greatly enhancing scalability.

Another significant challenge with current approaches
is their inherent limitation of having a one-to-one mapping
between a set of trigger inputs and a corresponding water-
mark string. This poses a considerable issue in the context
of edge AI applications, as it would necessitate the storage
of a distinct set of trigger inputs for each watermarked
instance. During the verification process, the only viable
option would then be to query the suspected model with
all trigger inputs to determine whether the model has been
compromised or not. In contrast, our approach offers a
more efficient solution. We employ a fixed set of trigger
inputs, and all watermarked models are trained to exhibit
distinct behaviors in response to these inputs. This design
eliminates the need for multiple sets of trigger inputs,
streamlining the verification process in edge AI scenarios.
Figure 1 illustrates this process.

The remainder of this paper is structured as follows.
First, Section 2 provides some background information on
watermarking techniques. We then formalize the threat
model and requirements for our watermarking approach
in Section 3. In Section 4, we present our proposed

watermarking scheme and experimentally validate it in
Section 5 by analyzing its robustness against common
watermark removal attacks. Finally, Section 6 summarizes
the findings and lists possible future research directions.

2. Related work
Despite still being in its infancy, the field of Deep

Neural Network IP protection is growing quickly. We can
distinguish two types of approaches: passive and active de-
fenses. Passive defenses are the most popular. These offer
a weaker protection in the sense that they cannot actively
prevent model theft but can still be helpful after the fact
to prove ownership. Passive defense techniques are either
based on watermarking or on model fingerprinting [13].
Active techniques, on the other hand, try to design a model
that can only operate when a certain access key is provided.
We will describe some of the most relevant approaches
in the next paragraphs and refer to some excellent survey
works for a more complete overview [3, 35, 41].

The idea behind watermarking is to embed some kind
of identification information into the model’s parameters
such that this information can be extracted at a later stage.
Some of the earlier works [30, 37, 38] assumed white-box
access to the model’s weights for verification which is less
realistic in practice. The stolen model will either be used
internally by the attacker, in which case passive defenses
offer no solution, or it will be made available as an online
API in which case the original owner cannot access the
model’s internals to verify the watermark. A more interest-
ing family of approaches allow for black-box verification
where the watermark can be retrieved by querying the
model through an Application Programming Interface
(API). Black-box approaches train a model to behave in
a distinct way when presented with certain trigger inputs
(also sometimes called key or carrier inputs [3]). Different
approaches have been proposed that either use adversarial
inputs [6, 17], abstract images [1], training images [31] or
unrelated images [45] as trigger inputs. The behavior of
the model when presented with these trigger images is then
used to encode a watermark. Different encoding schemes
result in a different capacity. A distinction is often made
between zero-bit and multi-bit watermarking schemes [3].
Where zero-bit watermarks can only be used to indicate
whether the model is watermarked or not, a multi-bit
watermark can store additional information in the form of
a bit string. Multi-bit watermarks can be used to embed a
user identification into the model, thereby creating a unique
link between user and model instance [39].

Simultaneously with these watermarking approaches,
several attacks have been proposed that can either de-
tect [33] the presence of a watermark or even corrupt
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the watermark through fine-tuning [37], pruning [2, 24],
quantization [35] or distillation [42]. Other attacks do
not directly target the model but perform a pre- or post
processing step as part of the model pipeline after the
stolen model is deployed. These for example include input
quantization [21], distortion, flipping or compression to
remove the influence of high frequency components that
are used during the watermarking process [8, 25]. Other
attacks add noise or perform smoothing of the predicted
labels in an attempt to disrupt the watermark verification
process [35].

Whereas watermarking techniques modify the weights
of the model, other techniques instead try to identify
a model based on a unique fingerprint. Similar to the
watermarking approaches, we can distinguish white-box
and black-box approaches. White-box approaches use the
weight values to calculate a checksum [7, 46] while the
black box approaches are based on the assumption that
every model’s decision boundary is unique, even if trained
with the same training set and network architecture due to
the many stochastic elements and parameters involved in
the training process [4]. Most approaches use adversarial
examples to characterize the decision boundary and trans-
late this into a fingerprint of the model [27].

Both watermarking and fingerprinting are passive ap-
proaches. These only offer a weak form of protection as
they cannot prevent model theft and can only be used after
the fact to verify the ownership. They also do not prevent
an attacker to use a stolen model internally. An interesting
research direction is therefore to include some sort of
access control mechanism into the model. It is for example
possible to train a neural network to only return accurate
predictions when a certain key is provided [5, 11, 32] or to
use cryptographic primitives to encrypt the model [12, 23].
While these techniques are promising, they typically incur
a significant performance overhead and/or a reduction in
model performance [41].

3. Threat model and requirements
Currently, many AI application developers opt to host

their models on cloud infrastructure. Nevertheless, there
is a growing trend towards the alternative approach of de-
ploying the model at the edge and executing it on end-user
devices, such as smartphones and IoT devices. This shift
can be attributed to several factors, including advancements
in model optimization techniques [36], the availability of
hardware accelerators within these devices [19] and an
increasing demand for robust data privacy assurances from
users [34].

However, despite the advantages of edge deployment,

model developers may be reluctant when it comes to
placing their models on untrusted end-user devices. This
is caused by the greater attack surface of edge devices,
potentially enabling competitors to access the trained
model and exploit it for their own gain [20]. In response to
this security concern, a watermarking technique emerges
as a potential solution. Such a technique would empower
legitimate owners to ascertain whether a model offered
through a black-box API is, in fact, employing a stolen
model in the background. Moreover, if a breach is detected,
it could identify the user responsible for the model leak,
thus adding an additional layer of protection.

To formalize this in terms of the taxonomy proposed
by Boenisch [3], we require a watermarking technique with
the following properties:

• Black box: No access to the model weights is required
during verification.

• Multi-bit with a high capacity: The watermark needs
to store a unique identifier for every user.

• Unique: Every instance of the model needs to have a
unique watermark.

• Robust: Attempting to remove the watermark should
greatly reduce the model’s performance.

In addition, the watermarking process needs to be efficient
in order to scale to a large number of devices and crucially,
every watermarked model needs to use the same set of trig-
ger inputs in order to easily retrieve the watermark as shown
in Figure 1.

4. Proposed watermarking Scheme
In this section, we describe our proposed watermarking

scheme that is able to quickly generate a large number
of watermarked model instances. It uses ideas from
Blackmarks [6] and IPGuard [4] and combines them in
order to fulfill all the requirements of Section 3.

The proposed watermarking scheme is split into the
following three phases:

1. Key generation phase: Takes as input a pretrained
model and generates a trigger set Xkey and an encod-
ing scheme f that is used to translate model predictions
into bits of the watermark string. The key generation
phase only needs to be executed once.

2. Signature embedding phase: This is repeated to cre-
ate new watermarked instances of the model. The pre-
viously generated trigger set is used to embed a new
signature into the pretrained model by changing the
desired output of the model.
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3. Watermark extraction phase: is used when a remote
model is suspected of being watermarked and the legit-
imate owner would like to verify its authenticity. The
output corresponding to each key input is recorded,
and the resulting signature is extracted from the sus-
pected model using the encoding scheme f .

The following section will discuss each phase in more
detail.

4.1. Key generation phase

The key generation phase starts with a procedure similar
to that of Blackmarks [6]: a subset of the training set is
passed through the pretrained model and the activations of
the output layer (before softmax activation) are recorded.
The mean values of the output activations for each class
are computed and K-means clustering is applied to these
mean activations. This clustering operations divides the
classes into two distinct groups that will correspond to bit
“0” and bit “1”, respectively. This mapping defines the
encoding scheme f : Y 7→ {0, 1} where Y denotes a class
label. An illustrative example of this mapping, as observed
on the CIFAR-10 dataset, is presented in Table 1, where
semantically related classes associated with vehicles are
designated as bit “0,” while those associated with animals
are designated as bit “1”.

The next step involves generating the trigger set of K
trigger inputs. Each of these inputs will correspond to
one bit of the watermark string. A larger value of K
results in a greater number of possible watermarked model
instances. In contrast to Blackmarks, which generates
different trigger inputs for every watermark string, our
approach demands the same set of trigger inputs for every
watermark. Therefore, we diverge from the Blackmarks
approach and instead employ a modified version of the
IPGuard optimization problem instead.

In essence, our goal is to acquire a set of K inputs
where the model exhibits equal confidence in two labels i
and j, each belonging to different bit-groups. Intuitively,
these inputs should reside near the decision boundary be-
tween two classes, and it should then be easy to finetune a
model instance to classify it as either label i or j, depending
on the desired bit in the signature. To generate the trigger
inputs, we randomly select two training samples, one from
a class mapped to bit “0” and one of a class mapped to bit
“1”. These images are then amalgamated by computing the
average pixel value for each pixel. However, this fusion
does not guarantee that the resulting combined input will
be situated close to the decision boundary. Consequently,
we employ gradient descent to further optimize the image.
We propose the following objective function:

Figure 2. Activation distribution of a normal training sample (left)
and an optimized sample that lies on the decision boundary be-
tween class 3 and 9 (right).

min
x

ReLU (k − Zi(x))+ReLU (k − Zj(x))+
∑
t̸=i,j

Zt(x)

(1)
Here, Z represents the logit vector of the model, i.e.,

the output from the final layer before the softmax activa-
tion. In essence, our objective is for the model to produce
high prediction scores for both classes i and j, while main-
taining low scores for all other classes. The first two terms
of the objective become non-zero only when Zi(x) ≥ k
and Zj(x) ≥ k, where k is a hyperparameter that sets a
lower threshold for the predictions of classes i and j. We
employ gradient descent in conjunction with the Adam op-
timizer [15] to optimize this loss function. It’s important
to note that during this procedure, the model remains fixed,
and only the input sample x undergoes modification. Figure
2 visualizes this process, the left graph illustrates the activa-
tion distribution for a typical training sample and the right
graph shows the activations after the optimization, clearly
demonstrating the model’s high prediction scores for both
selected classes.

4.2. Signature embedding phase

Each model is watermarked with a K bit binary string
where each bit corresponds to a specific trigger input
sample. As explained in the previous section, the trigger
inputs are optimized in such a way that they are close to
the decision boundary between two classes, each belonging
to a different bit group. During the signature embedding
phase we update the model using gradient descent to
slightly change the decision boundary in such as way that
each trigger input now results in the correct bit for a given
watermark string (see Figure 4). For a given trigger set with
size K, we can generate 2K different watermarked models.
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y airplane automobile bird cat deer dog frog horse ship truck

f(y) 1 1 0 0 0 0 0 0 1 1

Table 1. Illustration of an encoding scheme f for the CIFAR-10 dataset. Each label represents a bit, obtained using K-means clustering on
a training set.

Figure 3. Example trigger inputs for three datasets: MNIST, CIFAR10 and Imagenet. The left column shows combined samples before
the optimization step. The right column displays the same images after gradient descent has been used to move the images closer to the
decision boundary.

During the signature embedding phase, we employ
gradient descent to subtly alter the decision boundary of a
model instance. This adjustment ensures that each trigger
input now triggers the correct corresponding bit for a given
watermark string, as illustrated in Figure 4. Figure 3 shows
some examples of the obtained trigger inputs. With a given
trigger set of size K, we can quickly generate up to 2K

different watermarked models. Since the watermarking
process only needs to make small adjustments to the
decision boundary, this procedure is very fast.

4.3. Watermark extraction phase

The watermark extraction phase serves as the verifica-
tion method to extract the watermark from a model and de-
termine whether it is watermarked or not. When a remote
model is suspected of being stolen, the key set is used as
input and the output predictions of the model are recorded.
The outputs can then be converted to an extracted water-
mark signature using the encoding scheme f .

5. Experimental results

In this section, we experimentally validate our proposed
watermarking approach on three commonly used bench-
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(a) (b)

(c) (d)

Figure 4. The initial trigger inputs are random combinations of
existing train samples (a). These are then modified during the
key generation phase in order to move them close to the deci-
sion boundary between two classes, each belonging to a differ-
ent bit group (b). During the watermark embedding phase, differ-
ent model instances are trained by slightly tweaking their decision
boundary in order to move the trigger inputs to the desired bit (c,
d). In this example, model (c) and (d) will achieve similar accu-
racies but will behave differently when prompted with the trigger
inputs.

mark datasets: MNIST [10], CIFAR-10 [16], and Ima-
geNet [9] and three typical neural network architectures: a
plain Convolutional Network [18], a Wide Residual Net-
work [43], and a ResNet50 [14]. In all our experiments, we
used a watermark key size of K = 30. We first list some
benchmarking results and then discuss the robustness of our
watermarking approach against common attacks.

5.1. Performance

Table 2 shows some quantitative results for each of the
three benchmark datasets. We can see that embedding a
watermark into a pretrained model tends to decrease its val-
idation accuracy with up to 2% on the CIFAR10 and Ima-
geNet dataset. While this slightly reduced accuracy might
be acceptable in some cases, it is significantly higher for
our approach than for the Blackmarks technique which typ-
ically results in a drop of around 0.1%. The main benefit
of our approach is that it can generate a large number of
watermarked instances, all using the same trigger set where
a technique such as Blackmarks is limited to creating one
watermarked model. Another benefit of our approach is its
scalability. Creating a new watermarked instance takes only
a few seconds for our approach where the watermarking
procedure of Blackmarks is reported to be much larger with
2% to 8% of the total training time of training the model
from scratch [6].

5.2. Robustness

As proposed in [26], we evaluate the robustness of our
watermarks against common watermark removal attacks:

• Fine-Tune (FT): All weights are fine-tuned using the
original training set.

• Retrain (RT): The last layer’s weights are initialized
randomly, and then all the weights are fine-tuned using
the original dataset.

• Adversarial training (AT) [28]: A (sub)set of the
dataset is used to generate adversarial samples. The
model is then fine-tuned such that the model now re-
turns correct predictions for these samples..

• Fine-pruning (FP) [24]: This method first prunes the
least active nodes and then fine-tunes the model to re-
gain its previous drop in accuracy.

• Input Noising (IN) [44]: Gaussian noise is added to
the image before passing it through the model.

• Input Quantization (IQ) [22]: The input pixel val-
ues are quantized before passing the image through the
model.

Figure 5 shows the results of our proposed watermarking
approach when subjected to six different types of attacks,
across all three datasets. In these graphs, the red line
displays the watermark accuracy, which measures the
proportion of correctly retained watermark bits following
each attack. The blue lines depict the model’s validation
accuracy. We repeated all experiments 15 times and show
the mean accuracies, together with a confidence interval of
one standard deviation.

The most straight-forward attack is to simply fine-tune (FT)
the model further on the original training set in an attempt
to remove the effects of the watermarking procedure. The
watermark is however relatively robust against this attack.
With a key length of 30 bits, this attack results in at most 2
bits being flipped on the MNIST and CIFAR10 dataset and
at most 3 bits on the Imagenet dataset. The retraining attack
(RT) goes one step further and first initializes the weights
of the last layer randomly before finetuning the model on
the original training data. This attack is more effective,
resulting in up to 3, 1 and 10 incorrect watermark bits
on the MNIST, CIFAR10 and Imagenet dataset respectively.

The adversarial training attack is more sophisticated
as it involves generating adversarial inputs and retraining
the model to classify them correctly. While the CIFAR10
model seems to be quite robust against this attack, both the
MNIST and Imagenet model are more sensitive with a 20%
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Figure 5. Watermark performance on four model modification attacks, on the best configurations found for MNIST, CIFAR-10, and
ImageNet. the initial watermark accuracy is always one.
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Dataset MNIST CIFAR10 ImageNet

Model CNN Wide Residual Network ResNet50
Accuracy before watermarking 98.4 % 93.2 % 79.5 %
Accuracy after watermarking 98.6± 0.2% 91.8± 0.5% 77.5± 0.2%
Watermark embedding time 2s 8s 47s

Table 2. Illustration of an encoding scheme f for the CIFAR-10 dataset. Each label represents a bit, which is calculated by using K-means
clustering on a training set.

drop in watermark accuracy (6 watermark bits out of 30 are
now misclassified). A similar observation can be made for
the Fine-pruning attack (FP). Here both the watermark and
validation accuracy drop significantly after pruning. On the
MNIST and CIFAR10 datasets, it is possible to regain some
of the lost model accuracy but on the Imagenet dataset, the
accuracy can never reach its original value.

The final two attacks don’t alter the model itself but
rather disrupt the input. These attacks are relatively
straightforward to execute because they don’t rely on
gradient-based optimization and don’t necessitate access
to a representative dataset. In the case of the noise attack,
we introduce random Gaussian noise with a mean of zero
and an increasingly larger standard deviation (indicated
on the x-axis) to the input image. This attack leads to the
most significant decrease in watermark accuracy. On the
Imagenet dataset, the watermark accuracy even plunges to
just 50%, rendering the watermark ineffective. However,
simultaneously, the model accuracy also experiences a
significant decline, greatly diminishing its utility for the
attacker.

The last attack quantizes the input into a predefined
number of bins (shown on the x-axis). Similar to the noise
attack, it is possible to reduce the watermark accuracy
significantly but this also results in a severe drop of model
accuracy.

6. Conclusion and Future Work

In this work, we addressed the challenge of safeguarding
intellectual property in the form of neural networks in
distributed edge AI environments. We introduced an inno-
vative deep neural network watermarking technique that
allows for the rapid generation of numerous watermarked
model instances, each carrying a distinct embedded water-
mark. Unlike conventional methods, our approach permits
the retrieval of the watermark using a uniform trigger set
for all model instances, facilitating the identification of the
user responsible for leaking the model. We demonstrated
the robustness of our approach against typical watermark
removal attacks. The proposed technique can be improved

further by incorporating redundancy into the watermark
bit strings to improve the robustness against watermark
removal attacks.

Our hope with this work is to draw attention to the
potential risks of IP infringement in distributed edge AI
applications and to inspire further research into this area.
We argue that model watermarking, while being a relatively
new technology, could be part of the solution but it is
unlikely to provide sufficient protection on its own in
real-world applications.
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