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Abstract

Optical flow estimation is crucial to a variety of vision
tasks. Despite substantial recent advancements, achieving
real-time on-device optical flow estimation remains a com-
plex challenge. First, an optical flow model must be suffi-
ciently lightweight to meet computation and memory con-
straints to ensure real-time performance on devices. Sec-
ond, the necessity for real-time on-device operation imposes
constraints that weaken the model’s capacity to adequately
handle ambiguities in flow estimation, thereby intensifying
the difficulty of preserving flow accuracy.

This paper introduces two synergistic techniques, Self-
Cleaning Iteration (SCI) and Regression Focal Loss (RFL),
designed to enhance the capabilities of optical flow mod-
els, with a focus on addressing optical flow regression am-
biguities. These techniques prove particularly effective in
mitigating error propagation, a prevalent issue in optical
flow models that employ iterative refinement. Notably, these
techniques add negligible to zero overhead in model param-
eters and inference latency, thereby preserving real-time on-
device efficiency.

The effectiveness of our proposed SCI and RFL tech-
niques, collectively referred to as SciFlow for brevity, is
demonstrated across two distinct lightweight optical flow
model architectures in our experiments. Remarkably, Sci-
Flow enables substantial reduction in error metrics (EPE
and Fl-all) over the baseline models by up to 6.3% and
10.5% for in-domain scenarios and by up to 6.2% and
13.5% for cross-domain scenarios on the Sintel and KITTI
2015 datasets, respectively.

1. Introduction
Optical flow is a fundamental task that represents pixel-
level correspondence between two consecutive video
frames. Since optical flow provides pixel-level movement,
it is widely used for a variety of video perception tasks, e.g.,
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Figure 1. A zoomed-in demonstration of ”Self-Cleaning Itera-
tions (SCI)” effect against error propagation, a prevalent issue
in iterative refinement for optical flow models. (a) The base-
line model (RAFT-Small [39] as one choice of model architecture)
suffers from error propagation over iterations, especially near the
arm and legs. (b) When the SCI technique is applied to the base-
line model, it demonstrates a “self cleaning” effect over iterations.
This is achieved at negligible additional overhead in computation
and in model size. (c) When both the SCI and RFL techniques are
applied to the baseline model, the “self cleaning” effect becomes
even more visible, particularly around the arm and feet. On top of
”Base+SCI”, this RFL technique concerns only the loss function
in training so it adds no additional overhead for inference.

action recognition [4, 26], object tracking [22, 50], video
compression [28, 42], video frame interpolation [19, 25].

Thanks to the recent advances in deep learning, optical
flow estimation models have become significantly more ac-
curate by leveraging neural networks [13, 16, 39]. While
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some earlier works lack a principled way to design neu-
ral networks for capturing pixel correspondences, more re-
cently, RAFT [39] have proposed an optimization-inspired
architecture that sets a new baseline for the method and the
model architecture. More specifically, it constructs a global
and re-usable cost volume with pairwise correlations be-
tween extracted image features of the two frames and then
uses a recurrent neural module to iteratively refine the op-
tical flow. This essentially mimics the optimization steps
used conventional computer vision algorithms for solving
correspondences, and has been shown to greatly improve
accuracy and generalizability. As a result, most subsequent
and current state-of-the-art solutions follow a similar model
design strategy.

During the iterative estimation process, the predicted op-
tical flow is prone to errors especially in the earlier stages
or under high ambiguity. While the iterations can rectify
many errors, other errors in some cases could persist and
even be further propagated into later iterations, impacting
final model accuracy. Figure 1 provides an example of this.
In the top row for the first iteration, the initial flow estimates
tend to be not accurate, with apparent errors near the per-
son’s arm and legs as well as in the background. Through
the iterations, the estimation on the background pixels im-
proves, but other errors near the legs persist and the estima-
tion on the arm becomes even less accurate. There is gen-
erally a lack of an effective solution to handle such issue of
error propagation for many optical flow methods.

In this paper, we propose a novel and effective approach,
Self-Cleaning Iterations (SCI), to address the issue of er-
ror propagation that is often observed during the iterative
refinement process of optical flow models. We enable the
network to “self-assess” the likely correctness of flow es-
timates during the iterative refinement. More specifically,
in each iteration, we compare the feature maps of the two
frames using the current estimated optical flow and warp-
ing. The pixel-wise differences provide an indication for
consistency of the optical flow, which are converted into a
quality range between 0 and 1. The resulting dense quality
measure is consumed by the model as an additional feature
channel to guide the network to “self-correct” inconsisten-
cies in next iterations.

In addition, during training, we introduce a new loss,
namely, Regression Focal Loss (RFL), to better leverage the
available ground truth to improve the network’s awareness
for regions of potentially incorrect estimates. Existing op-
tical flow training schemes predominantly weight the pixel-
wise loss equally, without taking into account the different
prediction accuracy on each pixel at a given iteration. In
contrast, our RFL gives heavier weights to regions of high
residual regression errors, encouraging the network to focus
its learning more on regions where it faces higher ambigui-
ties to find feature correspondences.

Our proposed techniques add negligible or zero compu-
tation overhead at inference time, which is particularly crit-
ical for lightweight optical flow models intended for real-
time on-device targets, such as mobile phones and AR/VR
devices. Specifically, SCI only requires the network to pro-
cess an additional channel of the quality map and RFL only
affects loss computation during training. In contrast, many
of the latest state-of-the-art methods require more complex
computations for accuracy improvement, including heavier
models or transformer architecture. Despite being parsi-
monious on computation usage, our proposed approach ef-
fectively improves multiple baseline architectures, achiev-
ing the best accuracy when comparing to other existing
lightweight optical flow models.

Our main contributions are summarized as follows:
• We propose a novel technique, Self-Cleaning Iteration

(SCI), which enables the model to “self-assess” flow qual-
ity in current iteration, and to “self-clean” flow estimates
in subsequent iterations for optical flow models. This
helps resolve ambiguities in the estimation and mitigates
error propagation during the iterative refinement. It is
noteworthy that SCI incurs minimal computational over-
head during model inference.

• In addition, we propose a Regression Focal Loss (RFL),
which guides the model to focus more on regions of high
residual regression errors, thus encouraging the model to
learn better to improve for those challenging scenarios
where feature correspondences are harder.

• We further combine both techniques, SCI and RFL and
verify our proposal on two distinct optical flow base-
line architectures. Our experiments demonstrate that our
SCI and RFL jointly serve as an effective unified solu-
tion to handle ambiguities in both in-domain and cross-
domain scenarios. Remarkably, our solution also leads to
state-of-the-art accuracy results compared with existing
lightweight optical flow models.

2. Related Work

2.1. Optical Flow Models with Iterative Refinement

RAFT [39] introduced a new optical flow model design and
has since become the baseline architecture for many later
advancements. It builds a cross-level global correlation vol-
umes and iteratively refines the prediction using convolu-
tional gated recurrent units (ConvGRU) [6]. GMA [20],
Flowformer [13], and FlowFormer++ [35] among others
keep improving model accuracy while keeping this Con-
vGRU baseline design.

Despite the success of ConvGRU being an effective neu-
ral ODE optimizer [5, 8, 39], the error propagation behavior
due in part to irresolvable ambiguities in estimates has not
been explicitly discussed. In this paper, we aim at mitigat-
ing this issue prevalent in ConvGRU-based models.
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Figure 2. Overview of our proposed approach. Self-Cleaning Iterations (SCI) enables the network to “self-assess” the flow prediction
quality and then to “self-clean” the flow prediction itself over the standard practice of iterative refinement process in many optical flow
models. Regression Focal Loss (RFL) derives a confidence map and guide the network to focus more on regions of high residual regression
errors during the iterations. C⃝ stands for the concatenation operator.

2.2. Uncertainty-Aware Optical Flow Estimation

Several prior works have explored incorporating confidence
or uncertainty estimates into their models [11, 18, 40, 46]
among others. For instance, [11] modify the network’s out-
put layer to predict variance at intermediate layers and use
assumed density filtering to propagate uncertainty across
the network. [40] (PDC-Net) take a probabilistic approach,
employing a mixture distribution for prediction and a sep-
arate uncertainty decoder within their multi-stage architec-
ture to decouple flow estimation from uncertainty estima-
tion. While PDC-Net is the closest work to ours, we dif-
fer in two key aspects. First, we do not explicitly use a
dedicated uncertainty decoder. Second, we leverage geo-
metric consistency for confidence estimation and utilize a
self-cleaning mechanism for our iterative refinement.

2.3. Standard Loss Function for Optical Flow

FlowNet [9] uses end-point error loss, mathematically the
Euclidean distance, between the ground truth and predicted
flow. PWC-Net [38] uses L1 and L2 losses. L2 loss is
first applied in the initial stage of training, while L1 loss
is applied in subsequent finetuning. Several recent optical
flow models [13, 39] apply iterative refinement by summing
weighted L1 losses over multiple iterations.

li = ∣∣fgt − fi∣∣1 (1)

where fgt and fi are the optical flow ground truth and pre-
diction, respectively, in iteration i. A scheme below for
weighted combination is then used over multiple iterations.

Ltotal =
N

∑
i=1

γN−i ⋅ li (2)

where N stands for the iteration index and 0 < γ < 1 is a de-
cay factor over iterations. The whole predicted flow map of
each iteration is weighted accordingly before accumulation.

Several other works adopt complementary insights or
regularization objectives based on semantic segmentation,
object depths, multi-frame aggregation, temporal consis-
tency, occlusion consistency, or transformation consistency
[1, 3, 7, 17, 44, 45] to further enhance their model accuracy
on top of the standard optical flow loss function.

2.4. Focal Loss Function for Dense Classification

Focal Loss [27] has been proven an effective technique to
address the class imbalance issue in dense classification
tasks, such as segmentation. It places higher emphasis on
feature samples of less (or under) represented classes.

CE(pt) = −log(pt) (3)

FL(pt) = −(1 − pt)γ log(pt) (4)

where CE and FL represent the cross entropy and focal loss,
respectively. And, pt is the probability for a class. Focal
loss is originally proposed for dense classification tasks and
is designed to work with the cross entropy loss. The orig-
inal form of focal loss is not directly applicable to optical
flow estimation, a regression task without the definition of
classes. Moreover, cross entropy is not used in the standard
loss for optical flow estimation.

2.5. Lightweight Optical Flow Models

[10, 24, 48] among others are recent works on lightweight
design with attention or cost volume construction in a
coarse-to-fine paradigm. [10] is a lightweight version of
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Figure 3. Concept for SCI map creation. (a) A pair of image fea-
tures are taken as input. (b) The ground truth flows point to their
matches on the left sub-figure, while the estimated flows point in-
correctly for some features on the right sub-figure. (c) F2’ is de-
rived by warping F2 by the estimated flows. (d) F1 and F2’ are
taken by their tensor-wise differences for Gaussian Kernel (Eq. 6)
evaluation for their affinity. (e) A dense SCI map output is derived.

[39], which adopts single level cost volume per iteration
and adopts coarse-to-fine cost volumes with finest resolu-
tion being 1/16 and demonstrates real time performance
on Snapdragon� 8 Gen 1 HTP. [48] first performs global
matching at 1/16 resolution and then refines flow at 1/8 us-
ing lightweight CNN layers and demonstrates real time per-
formance on Jetson Orion Nano. [24] also adopts coarse-to-
fine and in addition uses dilated correlation layer for lighter
cost volume. In addition there were additional previous
works addressing light weight optical flow estimation like
[14, 32].

3. Method
In this section, we discuss details of these two interrelated
methods, Self-Cleaning Iteration (SCI) and Regression Fo-
cal Loss (RFL). The first technique, SCI, is applied for both
training and inference by actively computing the similarity
between the reference frame and the warped frame based
on the flow estimate. RFL, the second technique as a loss
function in a similar arithmetic formulation to that of SCI,
is proposed to guide model learning by focusing more on
regions of high residual regression errors. Figure 2 gives an
overview for the system setup, including an optical flow es-
timation network and our proposed SCI and RFL methods.

3.1. Self-Cleaning Iterations

In this section, we present the concept of Self-Cleaning
Interactions (SCI) in the first half, and then the details of

Figure 4. Regression Focal Loss. While equal-weight loss across
all pixels is used for conventional optical flow model training
(Eq. 1), Regression Focal Loss generates the confidence map using
optical flow prediction and ground truth (Eq. 8) and leverages it to
the optical flow loss (Eq. 9) so that model can focus on difficult
areas in the dataset.

the method in the second half. Based on our observations
in many iterative refinement-based models, we notice that
errors made in early iterations of estimation could persist
through subsequent iterations, affecting the quality of the
dense flow estimates. To address this issue, SCI is designed
to assess the quality of these estimates.

The core intuition behind SCI is the concept of ‘warping
consistency’ of feature maps. More specifically, SCI mea-
sures the feature similarity between the warped target frame
and the reference frame without any ground truth. This ap-
proach allows the model to self-assess the quality of flow
estimates in an iteration, and then also allows the model to
self-correct the errors in flow estimates over iterations.

Figure 3 illustrates the concept of SCI, beginning with
the input of an image pair and culminating in the output of
the SCI map, which represents the ‘self-assessed quality’ of
flow estimates.

Next, in the second half of this section, we elaborate on
how this SCI map is derived and applied.

Given input images I1 and I2, we first encode these im-
ages into feature maps F1,0 and F2,0. We then adopt an
iterative process to estimate the dense flow field f1,2,i in an
iteration i for the dense pixelwise displacements between
F1,i and F2,i.

F ′2,i =W (F2,i, f1,2,i) (5)

where, W() is the standard warping operation that takes a
dense input feature map F2,i along with the estimated dense
optical flow field f1,2,i to produce a dense output feature
map F ′2,i by reverting the pixel-wise displacements of F2,i

according to flow filed f1,2,i for each desired output coor-
dinate point px,y of F1,i and by interpolating closest neigh-
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Table 1. Cross-domain and in-domain optical flow estimation results on Sintel (train) and KITTI (train) datasets. All models of
cross-domain in this table are trained on FlyingChairs (C) and FlyingThings (T), following train protocol in [39]. All models of in-domain
in this table are finetuned on Sintel (S) and KITTI (K) using pre-trained model (C+T), following [39] training protocol.

Training Method # Params Sintel (train) KITTI (train) Sintel (test) KITTI (test)
Datasets Clean Final EPE Fl-all Clean Final Fl-all

C
ro

ss
-D

om
ai

n

C+T

PWC-Net [37] 8.8 M 2.55 3.93 10.35 33.70 - - -
LiteFlowNet2 [15] 6.4 M 2.24 3.78 8.97 25.90 - - -
LiteFlowNet3 [14] 5.2 M 2.59 3.91 10.40 - - - -
FDFlowNet [23] 5.8 M 2.60 4.12 10.75 29.59 - - -
FastFlowNet [24] 1.4 M 2.89 4.14 12.24 33.10 - - -
MaskFlowNet-small [49] - 2.33 3.72 - 23.58 - - -
DICL [41] - 1.94 3.77 8.70 23.60 - - -
DIFT [10] - 3.11 4.19 12.87 43.83 - - -
MobileFlow1 1.5 M 1.79 (-0.0%) 3.47 (-0.0%) 8.33 (-0.0%) 22.06 (-0.0%) - - -
MobileFlow1+SCI+RFL (Ours) 1.5 M 1.68 (-6.2%) 3.34 (-3.8%) 7.21 (-13.5%) 20.75 (-5.9%) - - -

In
-D

om
ai

n

C + T + S/K

PWC-Net [37] 8.8 M 2.02 2.08 2.16 9.80 4.39 5.04 9.60
LiteFlowNet2 [14] 6.4 M 1.41 1.83 1.33 4.32 3.48 4.69 7.62
LiteFlowNet3 [14] 5.2 M 1.43 1.90 1.39 4.35 2.99 4.45 7.34
FDFlowNet [23] 5.8 M 1.80 1.93 1.56 6.36 3.71 5.11 9.38
FastFlowNet [24] 1.4 M 2.08 2.71 2.13 8.21 4.89 6.08 11.22
DDCNet (B1) [33] 3.0 M 1.96 2.25 2.57 15.56 6.19 6.91 38.23
MobileFlow1 1.5 M 1.09 (-0.0%) 1.76 (-0.0%) 0.96 (-0.0%) 3.14 (-0.0%) - - -
MobileFlow1+SCI+RFL (Ours) 1.5 M 1.03 (-5.5%) 1.65 (-6.3%) 0.92 (-4.2%) 2.81 (-10.5%) 2.62 3.80 5.82

boring points for the queried coordinates in the source fea-
ture map F2,i. Taking the pointwise differences between
the original F1 and the warped F ′2, we then apply the sum
of squared differences to a Gaussian kernel function with
suitable normalization as follows.

Gsci(F1, F
′
2)∣(x,y) = e

−1
2
√

d
⋅∑c(F1,(x,y)−F ′2,(x,y))

2

(6)

where, C stands for the set of elements in the channel di-
mension over the corresponding coordinates (x, y) of F1

F ′2. The Gaussian kernel function comes with the follow-
ing property for its value range.

0 ≤ Gsci(F1, F
′
2)∣(x,y) ≤ 1, (7)

where, the maximum holds for ∣∣F1,(x,y)−F ′2,(x,y)∣∣22 = 0 and
minimum holds for ∣∣F1,(x,y) − F ′2,(x,y)∣∣22 = +∞. For con-
ciseness, we refer to this derived dense map Gsci(F1, F

′
2)

as the SCI map. We then concatenate the SCI map with
the estimated dense flow map along the channel dimension
and feed them as the input to ConvGRU module for itera-
tive refinement to derive the flow adjustment on top of the
estimated flow.

3.2. Regression Focal Loss
In this subsection, we introduce Regression Focal Loss
(RFL). Given the observation that the difficulty in predict-
ing the pixel-wise flow can differ from one pixel to an-
other depending on the contents at and around the pixels,
we aim at helping the network focus its learning on regions
that needs more improvement. Comparing with the focal
loss [27] used in segmentation for handling class imbalance,
our proposed RFL is intended for dense regression instead
and may be considered as for ”difficulty imbalance”. To
this end, we first derive a confidence map to facilitate the

pixel-wise weighting. We adopt the confidence map in Lite-
FlowNetv3 [14] as follows.

Mconf(x) = e−∣∣fgt(x)−fpred(x)∣∣2 (8)

Having the confidence map ready, we apply the map to
li and replace Eq. 1 with the following.

li = ∣∣(1 + α ⋅ (1 −M)β) ⋅ (fgt − fi)∣∣1 (9)

where α and β are hyper parameters. The intuition of Eq.
9 is that we apply higher weighting to regions of low confi-
dence and standard weighting to high confidence regions.

This RFL-based confidence weighting is derived by the
final iteration of prediction and applied li of all iterations.
We find this to be more effective as confidence derived in
earlier iterations tends to be noisier, as we shall discuss
more in our ablation study. Figure 4 compares between the
baseline and the RFL approaches.

3.3. SciFlow: The Combination of SCI and RFL
Having individual definitions for SCI and RFL, we further
discuss their relationship and our final proposal for com-
bining them. Despite that SCI in Eq. 6 and RFL in Eq. 8
share similar arithmetic structures, their sources of the fea-
ture maps for the contrastive measures are quite different.
During training, while the RFL relies on the ground truth
in back propagation to focus on regions of larger residual
regression errors, the SCI relies completely on the input im-
ages in the forward pass to derive the SCI map. During in-
ference, the model continues its active computation for the
SCI map to self-assess the flow estimates and to self-clean
the flow ambiguities. SCI and RFL seem to be synergistic
in learning to handle feature ambiguities, while they also
complement each other in how their contrastive measures
are used. In Section 4, we discuss more on empirical results
for the combination of SCI and RFL.
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Table 2. Ablation study for Self-Cleaning Iteration (SCI) and Regression Focal Loss (RFL). Following same protocol as described in RAFT
[39], we train all model variants on top of two baseline architectures by two combinations of datasets specified in the table and evaluate
them on Sintel (S) and KITTI (K) training datasets.

Training Architecture SCI RFL Sintel KITTI 15
Datasets clean (epe) final (epe) Fl-epe Fl-all

C
ro

ss
-D

om
ai

n

C+T

RAFT-small [39]

2.21 (-0.0%) 3.35 (-0.0%) 7.51 (-0.0%) 26.90 (-0.0%)
✓ 2.29 (+3.6%) 3.52 (+5.1%) 7.44 (-0.9%) 24.88 (-7.5%)

✓ 2.17 (-1.8%) 3.33 (-0.6%) 7.58 (-0.9%) 25.45 (-5.4%)
✓ ✓ 2.11 (-4.5%) 3.34 (-0.3%) 7.22 (-3.9%) 24.62 (-9.5%)

MobileFlow1
1.79 (-0.0%) 3.47 (-0.0%) 8.33 (-0.0%) 22.06 (-0.0%)

✓ 1.65 (-7.8%) 3.30 (-4.9%) 7.22 (-13.3%) 20.73 (-6.0%)
✓ ✓ 1.68 (-6.1%) 3.34 (-3.7%) 7.21 (-13.4%) 20.75 (-5.9%)

In
-D

om
ai

n

C+T + S/K

RAFT-small [39]
1.42 (-0.0%) 2.09 (-0.0%) 1.21 (-0.0%) 4.68 (-0.0%)

✓ 1.46 (+2.8%) 2.06 (-1.4%) 1.20 (-0.8%) 4.74 (-1.3%)
✓ ✓ 1.46 (+2.8%) 2.04 (-2.4%) 1.20 (-0.8%) 4.50 (-3.8%)

MobileFlow1
1.09 (-0.0%) 1.76 (-0.0%) 0.96 (-0.0%) 3.14 (-0.0%)

✓ 1.09 (-0.0%) 1.74 (-1.1%) 0.94 (-2.1%) 2.97 (-5.4%)
✓ ✓ 1.03 (-5.5%) 1.65 (-6.3%) 0.92 (-4.2%) 2.81 (-10.5%)

Table 3. Ablation study of Regression Focal Loss (Eq. 9). We train RAFT-small+SCI models on FlyingChairs (C) and FlyingThings (T)
and evaluate on Sintel (S) and KITTI (K) training datasets.

li loss Sintel KITTI 15
clean (epe) final(epe) Fl-epe Fl-all

a. ∣∣(fgt − fi)∣∣1 (Eq. 1) 2.17 (-0.0%) 3.33 (-0.0%) 7.58 (-0.0%) 25.45 (-0.0%)
b. ∣∣(α ⋅ (1 −M)β) ⋅ (fgt − fi)∣∣1 2.32 (+6.9%) 3.56 (+6.9%) 7.09 (-6.5%) 25.27 (-0.7%)
c. ∣∣(1 + α ⋅ (M)β) ⋅ (fgt − fi)∣∣1 4.52 (+108.3%) 5.92 (+77.8%) 10.07 (+32.8%) 50.53 (+95.5%)
d. ∣∣(1 + α ⋅ (1 −M)β) ⋅ (fgt − fi)∣∣1 (Eq. 9) 2.11 (-2.8%) 3.34 (+0.3%) 7.22 (-4.7%) 24.62 (-3.3%)

4. Experiments
4.1. Experimental Setup
Datasets: We follow commonly adopted training and eval-
uation protocols in the literature [13, 20, 39, 47]. We train
our model on FlyingChairs (C) [9] and FlyingThings3D
(T) [29] and evaluate on training dataset of Sintel (S) [2]
and KITTI (K) [12, 30, 31]. Using C+T pre-trained model,
we finetune Sintel and KITTI datasets and evaluate on Sin-
tel and KITTI datasets.

Network Architectures and Training: We use two
lightweight models with different architectures, RAFT-
small [39] and MobileFlow1, as our baselines in the ex-
periments. In particular, MobileFlow is our model creation
for a lightweight baseline architecture. In order to build
a feasible architecture that fits within the limited memory
and compute capacity of a smartphone, we utilize memory-
efficient cost volume techniques from [21, 43, 47]. We also
adopt a MobileNetV2 [34] based backbone for feature ex-
traction and a ConvGRU module for iterative refinement
that is similar to [39]. For fair comparisons, we train both
RAFT-small and MobileFlow baselines along with all their
variants for SCI and RFL on top of the baselines using same
train framework2 and dataset protocol as described in RAFT
[39] to report our experiment results. We follow the training
parameters all the same as for RAFT, including number of
iterations and the learning rate. For additional parameters

1MobileFlow is our created lightweight baseline architecture. Please
see section 4.1 ”Network Architectures and Training” for more details.

2RAFT: https://github.com/princeton-vl/RAFT

of regression focal loss, we set both α and β in Eq. 9 to 1.
Evaluation Metrics: We evaluate our models by the

End-Point Error (EPE) metric, which is the Euclidean dis-
tance between the predicted flow and the ground truth flow.
We also use F1-all as defined for the KITTI dataset [31]. In
both cases of error metrics, the lower is the better.

4.2. Experimental Results
4.2.1 Cross-Domain Evaluation

The top half of Table 1 shows our cross-domain evaluation
results, for which the models are trained on FlyingChairs
and FlyingThings, and then are evaluated on Sintel and
KITTI training datasets, respectively. Our solution, Mobile-
Flow+SciFlow (namely, with both SCI and RFL), achieves
significantly higher accuracy not only over the baseline Mo-
bileFlow but also over other compared lightweight optical
flow methods.

4.2.2 In-Domain Evaluation

The bottom half of Table 1 shows our in-domain evalua-
tion results, where models are trained on FlyingChairs, Fly-
ingThings3D, and Sintel (or KITTI) and are evaluated on
Sintel (or KITTI) following the protocol as in RAFT [39].
Our proposed solution demonstrates significantly improved
accuracy over the baseline and even over other state-of-the-
art lightweight optical flow models. Please note that, unlike
LiteFlowNet model series, in our experiments MobileFlow
and its variant are trained only on KITTI 2015 dataset but
not also on KITTI 2012 dataset.
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Figure 5. Qualitative results on Sintel (train) dataset using RAFT-small architecture (trained with C+T). First and second rows are
input images. Third row is the ground truth. Fourth row is the output of RAFT-small. Fifth and sixth rows are the output of RAFT-small +
SCI and RAFT-small + SCI + RFL, respectively.

4.2.3 Ablation Study

SCI vs. RFL: Table 2 summarizes our ablation study over
choices and/or combinations of SCI and RFL. We applied
SCI and RFL into three variants based on either the archi-
tecture of RAFT-small or the MobileFlow. Despite the fact
that not all variants demonstrate improved accuracy in these
experiments, the particular variants base+SCI+RFL in gen-
eral demonstrate competitive accuracy over their respective
baselines among minor run-to-run variations.

Regression Focal Loss: Table 3 summarizes our abla-
tion study on RFL (Eq 9). Option ”a” is the standard L1
loss without applying RFL. Option ”b” produces inconsis-
tent results over Sintel and KITTI, suggesting the impact

of removing the portion of the standard L1 loss. Option
”c” uses the opposite focus on the regions of high confi-
dence, which interestingly produces drastic degradation in
accuracy, suggesting the wrong focus for the learning. Our
proposed form in option ”d” produces competitive results
by combing both the L1 loss and the confidence-weighted
focus on regions of higher residual errors.

Final-Iteration Confidence Map vs. Per-Iteration
Confidence Map: Our proposed approach is to apply the
single final confidence map to all iterations. When we apply
instead per-iteration confidence map for each individual it-
eration, we see smaller gains than in the proposed approach.
Table 4 lists the numbers.
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Figure 6. Subtleties in RFL-based confidence maps and error maps. Top Row: We report confidence maps derived with our RFL
technique for the baseline and its variants. Moreover, SCI and RFL demonstrate their abilities to help resolve ambiguities in certain
regions, as indicated by their higher confidence measures in these maps. Bottom Row: We report error maps for the predicted flow
estimates against the ground truth for the baseline and its variants. Moreover, SCI and RFL demonstrate their ability to help resolve
ambiguities in certain regions, as evidenced by their lower errors in these maps. In these examples, we use samples from the Sintel (train)
dataset with RAFT-small architecture. The original input images can be found in the right column of Fig 5.

Table 4. Ablation study to compare between final-iteration confi-
dence map and per-iteration confidence map. Here we train RAFT-
large models on FlyingChairs (C) and FlyingThings (T) and eval-
uate on Sintel (S) and KITTI (K) training datasets.

Source of Mconf (Eq. 8) Sintel KITTI 15
clean (epe) final (epe) Fl-epe Fl-all

No confidence map 1.43 (-0.0%) 2.71 (-0.0%) 5.04 (-0.0%) 17.4 (-0.0%)
Per-iter confidence map 1.41 (-1.4%) 2.75 (+1.5%) 4.63 (-8.1%) 16.6 (-4.6%)
Final-iter confidence map 1.38 (-3.5%) 2.77 (+2.2%) 4.58 (-9.1%) 16.2 (-6.9%)

4.2.4 Qualitative Results
Fig. 5 gives qualitative samples on Sintel dataset. The
base+SCI variant demonstrates improved robustness over
the baseline in occlusion areas. Base+SCI+FRL further
shows slight improvements in several subtle visual details.

4.2.5 RFL as A Confidence Measure
Figure 6 demonstrates an additional use of RFL as a confi-
dence measure in inference.

4.2.6 On-Device Evaluation
We report on-device evaluation of our models on Samsung
S24 with a Snapdragon 8 Gen 3 processor and Qualcomm�

HexagonTM Tensor Processor (HTP), which is an AI ac-
celerator specialized for neural network workloads. We
adopt the INT8 (W8A8) quantization based on AIMET3

[36] toolkit and use the QNN-SDK4 from Qualcomm� AI
Stack.5 Table 5 summarizes our evaluation on this target
S24 device. Other than the RAFT-S and its variant that
run out of memory, an expected behavior due to the all-
pair cost volume space consumption for RAFT [39] archi-
tecture against limited on-target memory, the result shows

3AIMET is a product of Qualcomm Innovation Center, Inc.
4https : / / developer . qualcomm . com / software /

qualcomm-ai-stack
5Snapdragon and Qualcomm branded products are products of Qual-

comm Technologies, Inc. and/or its subsidiaries.

Table 5. On-device evaluation for SciFlow variants over base-
lines. We report on-device performance of the baselines, RAFT-S
and MobileFlow, and their variants. For fair comparisons, we en-
sure same on-device execution power mode and apply same num-
ber (6) of iterations to meet the real-time requirement for model
variants below. ”NA/OOM” indicates an out-of-memory error for
the model (along with its needed memory for cost volume and ac-
tivations) during inference. Subsection 4.2.6 has more details.

Model Architecture #Params Latency (ms) Power (mW)
RAFT-S 1.0M NA/OOM NA/OOM
RAFT-S+SCI+RFL 1.0M NA/OOM NA/OOM
MobileFlow1 1.5M 29.02 (+0.00%) 392 (+0.00%)
MobileFlow1+SCI+RFL 1.5M 28.88 (-0.48%) 393 (+0.26%)

that our proposed SciFlow method incurs minimal addi-
tional overhead in latency and power. We observe slightly
reduced latency MobileFlow+SCI+RFL compared to base-
line. Though it might seem counter-intuitive, the compiler
optimization may be the reason for such observation, an in-
dication for minimal SciFlow latency overhead.

5. Conclusion
In this paper, we introduce two effective techniques for opti-
cal flow estimation. Specifically, we propose Self-Cleaning
Iterations (SCI) to help resolve estimation ambiguities, mit-
igating the issue of error propagation during iterative re-
finement. Additionally, We propose Regression Focal Loss
(RFL) to guide the model to focus on regions of high resid-
ual regression errors during training. Our experiments show
that SciFlow, the combination of SCI and RFL, significantly
improves accuracy of lightweight baseline models at neg-
ligible additional overhead for real-time on-device optical
flow estimation. We believe our methods may benefit a
wider range of model architectures and may be potentially
extended to more vision use cases and tasks.

2169



References
[1] Shubhankar Borse, Debasmit Das, Hyojin Park, Hong Cai,

Risheek Garrepalli, and Fatih Porikli. Dejavu: Conditional
regenerative learning to enhance dense prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 19466–19477, 2023.
3

[2] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for optical
flow evaluation. In Proceedings of the European Conference
on Computer Vision, pages 611–625. Springer, 2012. 6

[3] Hong Cai, Janarbek Matai, Shubhankar Borse, Yizhe Zhang,
Amin Ansari, and Fatih Porikli. X-distill: Improving self-
supervised monocular depth via cross-task distillation. In
British Machine Vision Conference, 2021. 3

[4] Zixi Cai, Helmut Neher, Kanav Vats, David A Clausi, and
John Zelek. Temporal hockey action recognition via pose
and optical flows. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 0–0, 2019. 1

[5] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David
Duvenaud. Neural ordinary differential equations. In
NeurIPS, pages 6572–6583, 2018. 2

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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