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Abstract

Traditional crop disease diagnosis, reliant on expert vi-
sual observation, is expensive, time-consuming, and prone
to error. While Convolutional Neural Networks (CNNs)
offer promising alternatives, their high resource demands
limit their accessibility to farmers, particularly those in
resource-constrained settings. Lightweight models that op-
erate on resource-limited devices without network access
are crucial to address this gap. This paper proposes a
Similarity-Preserving Quantization (SPQ) method to con-
vert high-precision CNNs into lower-precision models while
maintaining similar feature representations. While quanti-
zation offers a promising approach for building lightweight
CNNs for crop disease detection, the quality of quantized
models often suffers. SPQ addresses this challenge by en-
suring equivalent activation patterns for similar crop im-
ages in both the original and quantized models. Experimen-
tal evaluation using MobileNetV2 and ResNet-50 demon-
strates that SPQ improves throughput, inference, and mem-
ory footprint more than 3 times while preserving the detec-
tion performance.

1. Introduction

Crop diseases pose a formidable challenge to global food
security, causing substantial production and economic
losses, estimated at $220 billion annually by the United Na-
tions Food and Agriculture Organization (FAO) [5]. These
diseases contribute to insufficient human food supply and
disrupt farmer’s income-generating activities. Maize, one of
the dominant food crops, is particularly susceptible to vari-
ous diseases despite its global yield of $1.2 billion in 2020,
with a productivity of 6.0 t/ha [6]. Conventional crop dis-
ease diagnosis methods rely on visual inspection by experts,
utilizing their in-depth knowledge of crop diseases and their
symptoms. This process is time-consuming, expensive, and
prone to human error due to subjective perception. The

advent of Convolutional Neural Networks (CNNs), partic-
ularly in image processing techniques, has revolutionized
precision agriculture, labor costs, and high accuracy [22].
Previous studies, such as that by Zhang et al. [35], have
proposed improved deep CNNs for crop disease detection.
Besides, these models are computationally expensive and
require significant memory due to over-parameterization, a
common characteristic of deep neural networks [3]. This
imposes high computational and memory demands for in-
ference, making these solutions less accessible to farmers.
Moreover, to address the network connectivity issues in re-
mote cultivation areas, deploying these models on resource-
constrained devices is essential for broader adoption. To
address these challenges, we develop a lightweight object
detection model designed explicitly to detect crop diseases.

This paper applies Post-Training Quantization (PTQ) [9]
to reduce a neural network model’s memory and compu-
tational requirements. PTQ is widely regarded as one of
the most efficient compression methods in practice, bene-
fitting from its data privacy and low computational costs.
Emerging as a promising solution to resource limitations,
it enables deploying resource-efficient CNNs for crop dis-
ease detection. Unlike conventional quantization requiring
extensive calibration data and retraining, PTQ minimizes
computational overhead by bypassing iterative fine-tuning.
This efficiency gain, however, may lead to a minor trade-off
in accuracy compared to full-precision models.

Recent research efforts have addressed this trade-off be-
tween accuracy and efficiency in PTQ. For instance, Nagel
et al. [18] introduced soft quantization with learnable pa-
rameters by constructing new optimization functions based
on second-order Taylor expansions of the loss functions be-
fore and after quantization. This approach effectively bal-
ances model accuracy and efficiency. Li et al. [13] pro-
posed a block-by-block reconstruction method instead of
the traditional layer-by-layer approach and utilized diago-
nal Fisher matrices to approximate the Hessian matrix, con-
serving more information during quantization. This strategy
further improved quantization accuracy without compro-
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mising efficiency. Wei et al. [33] discovered that randomly
disabling a subset of quantized activation feature map can
smooth the loss surface of the quantization weights, lead-
ing to improved accuracy. Though PTQ has been studied
and improved, these methods have yet to consider pair-
wise activation similarities between the full-precision and
quantized models. Considering this, this paper proposes a
quantization reconstruction method called SPQ (Similarity-
Preserving Quantization) that preserves pairwise activation
similarities between input pairs in the quantized model
rather than directly mimicking internal representation space
of the full-precision model. In summary, our main contri-
butions are three-fold:

1. SPQ: We propose a PTQ method focusing on preserving
pairwise activation similarities between input pairs in the
quantized and full-precision models.

2. Loss Function: We apply a reconstruction error for
preserving layer/block similarity between quantized and
full-precision models to object detection neural network
architectures.

3. Validation: We validate that SPQ enhances quantized
network calibration outcomes and offers a valuable ad-
junct to established PTQ techniques.

2. Related Works

This section analyzes combinations of quantization tech-
niques for enhancing resource-constrained disease detec-
tion applications.

2.1. Crop Disease Detection

Current techniques in precision agriculture are commonly
preceded by analyzing the images captured by devices and
sensors. These images are then used to detect crop diseases.
The problem of crop disease detection has been addressed
in numerous studies. However, most of them focused only
on the problem of classifying foliar diseases, such as the
method by k-means clustering and deep learning to detect
orange diseases and predict their names from image [10].
Their architecture is designed based on GoogLeNet’s [26]
inception networks and AlexNet [12] for identifying and
recognizing apple leaf diseases as proposed by Liu et
al. [15]. A related work proposed a method based on an
improved VGG-16 [25] network to identify apple leaf dis-
eases [34]. Unlike these works, we apply object detection
networks to detect crop diseases on plant leaves.

2.2. General Framework of Quantization

Quantization of neural networks has been studied for a
while, and there are numerous methods [9, 13, 17, 33]. All

of them are based on the following equations:

wq = quant(w), (1)

quant(w) = clamp
(⌊w

S

⌉
+ Z; 0, 2n − 1

)
, (2)

S =
wmax − wmin

2n − 1
, (3)

where S denotes the scaling factor to convert the range of
w to n bit-width, and ⌊.⌉ is the round-to-nearest operation.
The clamp function in Eq. 2 restricts a given value between
an upper and lower bound.wq is the quantized weight, and
Z is used to decide which quantized value 0 is mapped to.

In contrast, the dequantization integer value represents
w ′ ∈ R obtained by:

w ′ = wq(S − Z ). (4)

The quantization procedure of the activation feature map is
analogous to the weight value quantization, except that the
minimum and maximum values are determined by analyz-
ing activations from a limited calibration dataset and em-
ploying a moving average.

2.3. Post-Training Quantization

Quantization is a powerful technique for compressing
neural networks, enabling their deployment on resource-
constrained devices by applying Eq. 2. Two primary quan-
tization methodologies exist: Quantization-Aware Training
(QAT) and Post-Training Quantization (PTQ). QAT [4, 9,
24] incorporates quantization into the training phase, while
PTQ [19] applies quantization after training completion.

PTQ offers significant computational advantages, mak-
ing it the preferred choice for network deployment. The pri-
mary objective of PTQ is to determine the quantization pa-
rameters for weights and activations in each layer. Despite
incorporating fine-tuning during quantization, these PTQ
methods remain distinct from QAT. QAT employs the entire
labeled training dataset to adjust the model’s weights, while
PTQ solely optimizes the quantization parameters using a
subset of unlabeled data, making it efficient. Meanwhile,
PTQ has emerged as a promising solution to address these
challenges of lack of labeled data, enabling the deployment
of CNN with significantly reduced memory footprint and
computational complexity. Traditional quantization meth-
ods, such as full-precision training followed by quantiza-
tion, often require large amounts of calibration data to fine-
tune the quantized model, resulting in substantial computa-
tional overhead. In contrast, PTQ eliminates the need for
iterative quantization training, significantly reducing com-
putational costs and enabling efficient model deployment.
However, this efficiency often comes at the partial sacrifice
of accuracy due to the reduction in precision, which can
lead to information loss and a diminished ability to repre-
sent fine-grained details in the model.
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Figure 1. Overview of the proposed SPQ: A pipeline of the proposed method to find best activation scaling factors (Sa) to quantize
the activation. Green and red rectangles represent the quantized and full-precision layer/block, respectively. LSP is similarity-preserving
quantization reconstruction loss that can be combined with different loss functions.

2.4. Quantization Reconstruction Error

This sacrifice of accuracy is associated with the error that
occurs when a neural network model is quantized, typically
to lower-precision numerical representations. This quanti-
zation error can be controlled by quantization reconstruc-
tion error, which acts as a regularizer that reduces general-
ization error by aligning corresponding components of the
quantized and full-precision models. AdaRound [18] ana-
lyzes that it is not advisable to round full precision weight
to its nearest fixed-point value and proposes a novel round-
ing mechanism that assigns a continuous variable to each
weight value, determining whether it should be rounded
up or down rather than employing the traditional nearest
rounding method. BRECQ (Block REConstruction Quanti-
zation) [13] establishes block-wise reconstruction between
the full-precision and quantized network outputs, balanc-
ing cross-layer dependency and generalization errors. Ad-
ditionally, it incorporates trainable clipping for activations.
Similar methods have been explored in earlier works [1, 8].
AQuant [29] enhances activation quantization strategy and
overall quantization performance, although at the cost of
increased inference overhead. PD-Quant [16] addresses the
discrepancy between the distribution of calibration activa-
tions and their corresponding real activations by propos-
ing a technique for adjusting the calibration activations ac-
cordingly. Previous research has investigated the influence
of the calibration dataset on the performance of quantized
models [8]. Besides, Bannee et al. [2] have explored the
reconstruction of features by calculating the feature output
distance between quantized and full-precision models, mak-
ing the quantized model mimic the full-precision model.
In contrast to the previous methods, in SPQ, the quantized
model is not required to mimic the full-precision model in

representation space but rather to preserve the pairwise sim-
ilarities in its own representation space.

3. Methodology
The core concept of the proposed method is exploring
important information in the activation map of the full-
precision model and transferring this vital information into
the quantized model. Moreover, we set Z = 0 to eliminate
the zero-point offset in Eqs. 2 and 4; this method simpli-
fies the accumulation operation and reduces computational
overhead. However, this simplification comes at the cost
of a restricted mapping between the integer and floating-
point domains, while suitable for one-tailed distributions
like Rectified Linear Unit (ReLU) activations, as claimed
by Nagel et al. [19].

The proposed method uses a different method to re-
construct each quantized model by layer or block named
Block Similarity-Preserving for Post-Training Quantization
(SPQ). This method is inspired from [13, 27]. Tung et
al. [27] applies similarity preservation at the batch level, fo-
cusing primarily on the similarity of the last convolution
layers, while SPQ focuses on intermediate blocks. On the
other hand, Li et al. [13] focused on applying Fisher infor-
mation, SPQ focuses on similarity-preservation instead.

3.1. Overview of SPQ

Figure 1 shows the overall procedure of the proposed
method. SPQ is a technique for reconstructing a quan-
tized neural network model using knowledge from a full-
precision model. Unlike BRECQ [13] and QDrop [31],
reconstruction methods match output values or class prob-
abilities, eliminating the difference in the activation output.
SPQ aims to preserve the similarity in the relationships be-
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tween activations in the quantized and full-precision mod-
els, such that input pairs’ samples and their correspond-
ing relations across the feature spaces that produce simi-
lar or dissimilar activations in the quantized and the full-
precision models are maintained. In the context of quanti-
zation reconstruction error, we hypothesize that aligning the
activation patterns produced by the quantized model with
those generated by the full-precision model for highly sim-
ilar input pairs, as measured by a chosen similarity met-
ric, can yield benefits for quantization reconstruction er-
ror. Moreover, we focus on integrating similar information
into constructing a new data representation in a quantized
model, significantly improving quantization reconstruction
error tasks. Unlike prior approach such as BRECQ that pri-
marily focuses on quantizing only the backbone network
and QDrop that only considers the Feature Pyramid Net-
works (FPN) [14], the proposed method extends quanti-
zation to more additional components within the detection
model; Region Proposal Network (RPN) [21], Region of In-
terest (RoI) [21], and FPN. This results in a fully quantized
detector, avoiding potential hardware incompatibility that
could arise due to mixed precision. More importantly, the
proposed idea can be readily applied to other post-training
quantization methods such as BRECQ and PD-Quant [16].
Furthermore, we aim to preserve the original data learning
similarity information from the full-precision model. To
this end, we use the widely used spatial and channel sim-
ilarity activation map.

The following gives the formal explanation of SPQ. For
a given mini-batch of input pair samples, let the activa-
tion map generated by the full-precision model F (resp.
the quantized model Q) at a specific layer or block l be
E

(l)
F , E

(l)
Q ∈ R(b×c×h×w), where b represents the batch

size, c signifies the number of output channels, and h and
w denote the spatial dimensions. We define the quantiza-
tion reconstruction loss that penalizes differences in the L2-
normalized inner products of E(l)

F and E
(l)
Q . Suppose X is

either F or Q, the similarity matrix Z
(l)
X is calculated as:

Z
(l)
X =

r
(
E

(l)
X

)
· r

(
E

(l)
X

)⊤

Γ
, (5)

where r(·) is a reshape function of E(l)
X (details will be ex-

plained in subsequent sections), and Γ is the normalization
factor. Intuitively, entry (i, j) in Z

(l)
X encodes the similarity

of the activations at l elicited by the i-th and j-th images in
the mini-batch. We define the similarity-preserving quanti-
zation reconstruction loss as:

LSP(F,Q) =
1

b2

∑
(l,l′)∈K

∥∥∥Z(l)
F − Z

(l′)⊤
Q

∥∥∥2
f
, (6)

where K collects the corresponding layer pairs (e.g., layer

pair at the end of the same block) and ∥·∥f is the Frobe-
nius norm. Eq. 6 represents a summation across all paired
layers (l, l′) ∈ K, of the mean squared element-wise dif-
ference between the Gramian matrices Z(l)

F and Z
(l′)
Q of the

full-precision and quantized models, respectively. Finally,
the total loss for searching the optimal activation and weight
scaling factors for model quantization is defined as:

L = LKD(x, γ(y)) + βLSP(F,Q), (7)

where β represents the regularization loss imposed on quan-
tization reconstruction loss, and LKD is any Knowledge Dis-
tillation loss to regularize the output probabilities of the
quantized model.

3.2. Similarity-Preservation Strategy

SPQ reconstructs quantized features through pairwise sim-
ilarity across spatial, channel, and batch dimensions. This
multi-level similarity leverages fine-grained information for
effective reconstruction. Further details on this method are
discussed in this section.
Batch Similarity-Preservation: Semantically similar im-
ages exhibit high pairwise similarity of activation maps,
while dissimilar images exhibit low pairwise similarity.
This property can be exploited during calibration by mea-
suring pairwise similarities within the activation map of a
batch of images obtained from the full-precision model.
These relationship similarities among image batches can
then be used to guide the calibration of the quantized model.
Batch similarity-preservition is computed by a re-shaped
function rbatch : R(b×c×h×w) → R(b×(c×h×w)). There-
fore, Z(l)

F , Z
(l)
Q ∈ R(b×b).

Spatial Similarity-Preservation: Unlike batch similarity,
spatial pairwise similarity measures the proximity between
individual pixels within an image based on pixel-wise cor-
relation. It computes at the image-level by rspatial :

R(b×(c×h×w)) → R(b×(h×w)×c). Therefore, Z
(l)
F , Z

(l)
Q

∈ R(b×(h×w)×(h×w)).
Channel Similarity-Preservation: It reshapes features and
calculates similarity across channels, resulting in a different
output size. A 1×1 convolution ensures compatible channel
dimensions before reshaping by rchannel : R(b×(c×h×w)) →
R(b×c×(h×w)). Therefore, Z(l)

F , Z
(l)
Q ∈ R(b×c×c).

Spatial and Channel Similarity-Preservation: It is
achieved by fusing spatial and channel pairwise similari-
ties. We compute the quantization reconstruction loss (LSP)
by Eq. 7 using transformed activation maps from both types
of similarities and linearly combine their individual losses.

3.3. Computational Efficiency

We use post-quantization Bit OPerations (BOPs) to evalu-
ate accuracy-power trade-offs at different bit-width. Unlike
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prior works [28], BOPs do not guide our quantization, but
we measure its efficiency by Eq. 9, following [30].

MAC = ci · b · ho · wo · kh · kw · co, (8)
BOPs = wb · ab ·MAC, (9)

where wb and ab are the bit-width of weights and activa-
tions. For the MAC (Multiply and ACcumulate) operation
in Eq. 8, ci and co are the input and output channel size,
ho and wo are the output height and width, kh and kw are
the kernel height and width, and b is the batch size, respec-
tively.

4. Experimental Evaluation
This section presents a comprehensive evaluation of the per-
formance of the proposed algorithm. We begin by out-
lining the experimental setup and implementation details.
Subsequently, we compare our quantization method, eval-
uated across various low-bit-width configurations, against
the state-of-the-art QDrop [31] and BRECQ [13] in our pro-
posed dataset of crop diseases. Finally, we conduct sys-
tematic ablation studies to gain deeper insights into the key
properties and contributions of our method.

4.1. Implementation Setup

Here, we analyze the inference time for an image with a di-
mension of 3 × 4, 032 × 3, 024 on NVIDIA RTX A6000
GPU and Intel Core i9 CPU (2.3GHz 8-Core) to demon-
strate that models quantized by the proposed method can
reduce the model memory and accelerate inference with
negligible accuracy drop. We tested this method on the
Faster R-CNN [21] detector under MobileNetV2 [23] and
ResNet-50 [7] backbones. The experiments were imple-
mented using the PyTorch [20] framework. After quantiz-
ing the model, it was reconstructed block by block to re-
cover the accuracy. The reconstruction was based on finding
the optimal scalar factor for the weight and activation fea-
ture map. We did not train the quantized weight following
the PTQ concepts. The weight rounding scheme adopted
in our work adhered to Nagel et al.’s method [18]. For
other hyperparameters related to the reconstruction process,
such as the number of iterations and loss ratios, we main-
tained consistency with those reported in QDrop [31] and
BRECQ [13]. Notably, we deviated by employing an 8-bit
representation for the output of the first layers and detector
head in all experiments, which positively impacted accu-
racy. Batch sizes 16, Adam optimizer [11], and the initial
learning rate 0.003 were used.

4.2. Settings

Dataset: We selected maize leaves from three disease
classes; namely, Northern corn Leaf Blight (NLB), Fall
ArmyWorm (FAW) and Maize Streak Virus (MSV). The

(a) MobileNetV2 [W8A8] (b) ResNet-50 [W8A8]

Figure 2. Sensitivity of hyper-parameter β on Faster-RCNN [21]
with MobileNetV2 [23] and ResNet-50 [7] backbones, by quan-
tizing weight and activation in 8-bit (W8A8)

dataset comprises four different datasets; more than 18,222
images annotated with 105,735 NLB lesions were collected
in the USA [32], and images collected across three Sub-
Saharan African countries (Ghana, Uganda, and Namibia)
in the field with two different classes: FAW and MSV. The
dataset was split into three sets: train, calibration, and val-
idation in the proportion of 70 : 20 : 10. The train and
validation sets were used to train and validate the full preci-
sion model. The calibration and validate sets were applied
to recalibrate and validate the quantized model.
Metrics: We measured the network efficiency in four di-
mensions; Inference, Memory, Bit OPerations (BOPs), and
Accuracy. Inference is the time needed to make a predic-
tion, and a smaller value indicates that the model runs faster.
Memory measures the memory footprint required to run the
model, and a smaller value indicates smaller memory size
consumption. We measured BOPs for a single forward pass
of the model using Eq. 9 to quantify the computational ef-
ficiency. Regarding Accuracy, F1-Score and mean Average
Precision (mAP) were used. F1-Score is the harmonic mean
of Precision and Recall for the optimized confidence score
threshold. On the other hand, mAP provides a comprehen-
sive view of the trade-off between Precision and Recall.
We specifically applied mAP@50, considering the nature
of some crop diseases. These diseases, with their distinct
and well-defined symptoms, are relatively more straightfor-
ward to detect. However, certain diseases pose a challenge.
Their symptoms are more diffused and vary in appearance,
making their detection complex.

4.3. Effects of Hyper-Parameters

Note that β is a weight parameter for balancing the regu-
larization loss imposed on quantization reconstruction loss
on similarity-preserving loss in Eq. 7. The overall results
are shown in Fig. 2. It shows that the increase of β can im-
prove the disease detection results, reflecting the quantized
model’s good generalization ability. We can also see the
quantized model achieves the best performance when β =
1,000. In other words, the larger β is, the more the quan-
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Table 1. Comparison of Faster-RCNN [21] between Full-Precision (FP-32) and quantized models across various bit-width from W8A8 to
W2A2, based on MobileNetV2 [23] and ResNet-50 [7] backbones on the calibration dataset. Note that the Inference and Throughput were
measured using an image with shape [3× 4, 032× 3, 024] on the CPU.

MobileNetV2 ResNet-50

Full-Precision Quantized model Full-Precision Quantized model

FP-32 W8A8 W6A6 W4A4 W2A2 FP-32 W8A8 W6A6 W4A4 W2A2

Inference [ms] 1,373.52 1,029.34 1,023.23 1,017.03 1,011.02 2,219.13 1,962.21 1,609.00 1,322.01 1,019.10
Throughput [#images/sec] 0.73 0.97 0.98 0.98 0.99 0.45 0.51 0.62 0.76 0.98
Model Memory [MiB] 346.94 111.26 91.63 72.04 52.39 164.18 45.67 35.80 25.92 16.05
Bit OPerations (BOPs) [T] 26.80 1.67 0.94 0.42 0.10 90.71 5.67 3.19 1.42 0.35
Top-1 mAP@50 [%] 37.10 37.11 35.08 6.67 0.04 46.72 45.15 45.00 43.27 12.01
Top-1 F1-Score [%] 97.46 97.47 95.43 41.50 16.34 97.69 96.68 97.13 96.53 25.01

tized model would learn from the similar activation in the
full-precision model. That is to say, the greater β is, the
greater the effect of similarity preservation loss is. We set
β to 0, 10, 100, and 1,000. From Fig. 2a, we found that
the similarity-preservation improved 0.93% on Top-1 (F1-
Score). When β = 1,000, the quantized model did not im-
prove on Top-1 (mAP@50). When β gradually decreased
from 10 to 0 (β = 0, without similarity-preservation), the
improvement of mAP@50 and F1-Score became smaller
and smaller, from 29.04% to 33.04% and 41.07% to 93.01%
respectively for Top-1 (mAP@50) and Top-1 (F1-Score).
Figure 2b further supports this observation. The similarity-
preservation in the quantized model improved by 2.01%
Top-1 (mAP@50) and 1.29% Top-1 (F1-Score) when β
increased from 100 to 1,000. As β decreased from 100
to 10 and 0 (without similarity-preserving), the improve-
ments gradually decreased to 43.14%, 41.89%, and 40.05%
for mAP@50 and 95.39%, 94.33%, and 94.08% for F1-
Score, respectively. This proves that introducing similarity-
preservation can learn the valuable feature information be-
tween full-precision and quantized models to improve the
quantization reconstruction error results.

4.4. Evaluation Results

Table 1 shows the results of the detection model with differ-
ent backbones and quantizer bit-width. Before being quan-
tized, the model achieved 37.10% for Top-1 (mAP@50) and
97.46% for Top-1 (F1-Score) on MobileNetV2 [23], and
37.10% for Top-1 (mAP@50) and 97.46% for Top-1 (F1-
Score) on ResNet-50 [7] backbones. The results show that
full precision (FP-32) requires both models’ significant in-
ference time and memory footprint.
MobileNetV2: When the quantizer bit-width was set to
W8A8 (Weight bit = 8 and Activation bit = 8), the quan-
tized MobileNetV2 improved the full-precision by 0.01%
for both Top-1 (mAP@50) and Top-1 (F1-Score). More-
over, we continued to see significant improvement in model
efficiency, with a good balance between the F1-Score and
the detector. We reduced the inference and throughput

by 1.33× faster and BOPs to 1.67. The quantized Mo-
bileNetV2 memory footprint improved by 3.78× smaller,
and the BOP improved by more than 16.05× compared to
FP-32, which is an outstanding achievement even though
increasing the accuracy in the MobileNetV2. The re-
sults show that the models effectively balanced accuracy,
speed, and memory footprint in W8A8 bit-width quantizer.
When the quantizer bit-width reached W6A6, the quan-
tized MobileNetV2 efficiency significantly increased and
was lightweight, which can be confirmed by the BOP reach-
ing a lower value of 0.94, making the model 28.51× effi-
cient. However, the accuracy significantly dropped, achiev-
ing 35.08% Top-1 (mAP@50) and 95.43% for Top-1 (F1-
Score). Nevertheless, the results show that the models
achieved an effective improvement of speed and memory
footprint, leading the model on both quantizer bit-width
suitable for disease detection despite a decrease of accu-
racy by 2.02%, Top-1 (mAP@50) and 2.03% Top-1 (F1-
Score). When the bit-width reached W4A4, the model’s
efficiency was greatly optimized and lightweight. However,
the accuracy significantly dropped, achieving 6.67%, Top-1
(mAP@50) and 41.50% Top1 (F1-Score) making the model
lose balance between accuracy and efficiency. Similarly,
when the bit-width W2A2 was applied, the model was al-
most wholly damaged, reaching 0.04%, Top-1 (mAP@50)
and 16.34% Top1 (F1-Score), leading the model on both
bit-width unsuitable for disease detection despite significant
efficiency improvement.

ResNet-50: The quantized ResNet-50 [7] supports this ob-
servation. At a bit-width of W8A8, the quantized model
achieved a slight reduction accuracy by 1.57% in Top-
1 (mAP@50) and 1.01% Top-1 (F1-Score) compared to
the full-precision. Notably, it offered significant efficiency
gains, with a 1.13× faster inference speed, 16.00× reduc-
tion in BOP, and a 3.59× smaller memory footprint. These
improvements successfully balance accuracy, speed, and
memory footprint, even at relatively low bit-widths. How-
ever, further reducing the bit-width to W6A6 significantly
improved efficiency 28.44× reduction in BOPs, making

2116



Table 2. Benchmark of Faster-RCNN [21] from bit-width W8A8 to W2A2, based on MobileNetV2 [23] and ResNet-50 [7] backbone on
the calibration dataset. The best score in each column is bold-faced.

(a) Top-1 (mAP@50)

MobileNetV2 ResNet-50

FP-32 W8A8 W6A6 W4A4 W2A2 FP-32 W8A8 W6A6 W4A4 W2A2

QDrop [31] 37.10 37.10 34.79 5.39 0.02 46.72 45.10 44.56 42.17 11.57
BRECQ [13] 37.10 36.08 33.11 4.11 0.00 46.72 44.03 42.54 41.47 10.49
SPQ (Proposed) 37.10 37.11 35.08 6.67 0.04 46.72 45.15 45.00 43.27 12.01

(b) Top-1 (F1-Score)

MobileNetV2 ResNet-50

FP-32 W8A8 W6A6 W4A4 W2A2 FP-32 W8A8 W6A6 W4A4 W2A2

QDrop [31] 97.46 97.47 95.29 41.52 16.00 97.69 96.67 97.13 95.41 23.26
BRECQ [13] 97.46 96.44 94.11 39.98 15.31 97.69 94.67 95.11 94.81 22.22
SPQ (Proposed) 97.46 97.47 95.43 41.50 16.34 97.69 96.66 97.13 96.53 25.01

the model lighter and faster. This resulted in reduced
accuracy to 45.00% Top-1 (mAP@50) and 97.13% Top-
1 (F1-score), indicating a trade-off between accuracy and
efficiency. Nonetheless, the substantial improvements in
speed and memory footprint make the quantized model with
W6A6 bit-width a viable option for disease detection ap-
plications for this backbone, despite a slight decrease in
accuracy of 1.72% Top-1 (mAP@50) and 0.56% Top-1
(F1-score). At W4A4, while efficiency significantly im-
proved, accuracy decreased to 43.27%,Top-1 (mAP@50)
and 96.61% Top1 (F1-Score), compromising the accuracy-
efficiency balance. The W2A2 further decreased accuracy
of 8.54%, Top-1 (mAP@50) and 26.74% Top1 (F1-Score),
rendering it unsuitable for disease detection despite sub-
stantial efficiency gains.

4.5. Performance Analysis

We extensively compared SPQ with various PTQ algo-
rithms across various bit-width configurations without mis-
leading QAT comparisons due to their inherent training dif-
ferences. Notably, SPQ consistently outperformed other
methods, particularly at low bit-widths. Encouraging only
the quantization to mimic different aspects of the full pre-
cision representation space to optimize activation scaling
factors proved insufficient for low bit-widths scenarios.
Therefore, SPQ focuses on integrating similar informa-
tion into constructing a new data representation in a quan-
tized model, significantly improving the optimization of
rounding values and activation scaling factors. We bench-
mark against QDrop [31] and BRECQ [13], the strongest-
performing PTQ methods across various bit-width from
W8A8 to W2A2. To ensure consistency, we applied Spatial
and Channel Similarity-Preservation as described in Section

3. All the methods used MobileNetV2 [23] and ResNet-
50 [7] backbones. Tabs. 2a and 2b summarize the results
respectively for Top-1 (mAP@50) and Top-1 (F1-Score).
The results demonstrate substantial improvements achieved
by SPQ compared to strong PTQ baselines. The proposed
SPQ algorithm has demonstrated substantial improvements
compared to strong PTQ baselines across various perfor-
mance metrics such as Top-1 (mAP@50) and Top-1 (F1-
Score). This comprehensive study, conducted with meticu-
lous attention to bit-width detail, provides a confident as-
sessment of the proposed algorithm’s performance under
different model architectures.

MobileNetV2: The gains were modest when the bit-widths
were set to W8A8 under MobileNetV2 [23]. However, they
became more pronounced at lower bit-widths. For instance,
SPQ outperformed QDrop and BRECQ at W8A8 settings
quantization, by improving MobileNetV2 [23] by 0.01%
and 1.03% for Top-1(mAP@50), respectively. Further-
more, when we set the bit-widths to W6A6, we observed
significant improvements of Top-1 (mAP@50) (0.29%,
1.97%) and Top-1 (F1-Score) (0.14%, 1.32%) compared
to QDrop and BRECQ, respectively. This trend contin-
ues at even lower bit-widths W4A4 where SPQ achieved
gains and negligible decrease of Top-1(mAP@50) (1.28%,
2.56%) and Top-1 (mAP@50) (−0.02%, 1.52%) for QDrop
and BRECQ, respectively. On the other hand, we noticed
that MobileNetV2 is sensitive to lower bit-widths. Despite
this inherent limitation, SPQ still demonstrate consistent
superiority in W2A2 bit-widths over QDrop and BRECQ
by Top-1(mAP@50) (0.02%; 2.56%) and Top-1(F1-Score)
(−0.02%, 1.52%), respectively.

ResNet-50: Similar to MobileNetV2, ResNet-50 [7] ex-
hibits modest accuracy improvements with SPQ at higher
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bit widths W8A8. Specifically, we observed gains of Top-
1(mAP@50) (0.05%, 0.06%) but a negligible decrease of
Top-1(F1-Score) (−0.01%, 0.10%) compared to QDrop and
BRECQ, respectively. This suggests that existing quantiza-
tion techniques can effectively capture a significant portion
of the quantifiable benefits at higher precisions. However,
the advantage of SPQ becomes more pronounced as bit-
widths are reduced. Furthermore, when we set bit-widths to
W6A6, we achieved statistically significant improvements
of Top-1 (mAP@50) (0.04%, 0.6%) compared to QDrop
and BRECQ, respectively, while for Top-1 (F1-Score) only
improved 1.03% compared to BRECQ. This trend contin-
ues at even lower precisions at W4A4, where SPQ sur-
passes QDrop and BRECQ by a wider margin for Top-1
(mAP@50) (1.1%, 1.8%) and Top-1 (F1-Score) (1.12%,
1.72%), respectively. Unlike MobileNetV2, ResNet-50
demonstrates some resilience to aggressive quantization at
W2A2 bit-widths. SPQ still achieves consistent improve-
ments over QDrop and BRECQ at this shallow precision
setting, with gains of Top-1 (mAP@50) (0.44%, 1.52%)
and Top-1 (F1-Score) (1.75%, 2.79%), respectively.
The experiment underlines the significance of SPQ’s opti-
mization strategy. Moreover, SPQ requires no additional
computation for inference after optimization, ensuring effi-
ciency. Additionally, SPQ prioritizes hardware compatibil-
ity through uniform bit-width quantization, this approach
may only consistently achieve optimal accuracy or effi-
ciency for some tasks. To address this, we leverage hyper-
parameterization for bit-width selection. Furthermore, SPQ
focuses more on sensitive and complex tasks such as ob-
ject detection, where the proposed method was intensively
experimented. To the best of our knowledge, this work is
the first to achieve PTQ of an entire object detection model
at low bit-widths W6A6 and W4A4 to a usable level, as
demonstrated in Tab. 2b. Unlike BRECQ and QDrop, SPQ
extends quantization to more additional components within
the detection model: Region Proposal Network (RPN) [21],
Region of Interest (RoI) [21] and Feature Pyramid Net-
works (FPN) [14]. Which results in a fully quantized de-
tector, eliminating potential hardware compatibility issues
that could arise from mixed precision (quantized and un-
quantized weights) within each component of the model.
Consequently, the entire quantized model becomes more
hardware-agnostic and easier to deploy on various plat-
forms.

4.6. Effect of Loss Functions

We conducted experiments of quantization reconstruction
error based only on similarity-preserving loss in Eq. (7) us-
ing ResNet-50 [7]. We conducted extensive experiments
in different bit-widths, from W8A8 to W6A6 bits quanti-
zation, for all layers/blocks except for the first layers and
detector head. Furthermore, we performed an extensive

Table 3. Ablation study of loss functions in quantized models
across various bit-width from W8A8 to W6A6, based on ResNet-
50 [7] backbone on the calibration dataset. The best score in each
column is bold-faced.

ResNet-50

Top-1 mAP@50 in [%] Top-1 F1-Score in [%]

FP-32 W8A8 W6A6 FP-32 W8A8 W6A6

LKD 46.72 40.05 38.89 97.69 94.08 94.13
LSP 46.72 42.10 42.09 97.69 95.67 95.31
LKD + LSP 46.72 45.15 45.00 97.69 96.66 97.13

analysis based on two primary metrics, Top-1 (mAP@50)
and Top-1 (F1-Score). From Tab. 3, we can observe that
Similarity-Preserving loss (LSP) has stable accuracy im-
provement at all bits, which implies that the generalization
of quantization error in LSP consistently outperformed the
LKD in all settings.

5. Conclusion
This paper revealed that encouraging only the quantized
model to mimic different aspects of the full-precision model
to optimize activation scaling factors is insufficient for low-
bit scenarios and complex datasets. Meanwhile, we ob-
served that capturing global structure in activation map
information and preserving the original pairwise similari-
ties between the activation map points in the full-precision
model and the quantized model in the embedding space is
promising. The proposed method is particularly suitable
for problems sensitive to sample similarity, such as classifi-
cation, detection, and drug similarity in recommender sys-
tems, and disease detection in healthcare informatics. The
proposed method can improve the performance quantiza-
tion significantly. This is because it is based on similarity,
while other methods are based on Euclidean distance, which
is unsuitable for complex tasks such as detection. Further-
more, our hardware-friendly method allows bit homogene-
ity through bit-width hyper-parameters.

Future work could explore how to improve our method,
such as combining with binary quantization. We will also
consider how to apply our method to model pruning.
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