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The existing research effort to bring CL on-device is

either confined to smartphone-level devices [28], which

feature > 10× power consumption than our target de-

vice, or omits the cost implications of learning within

resource-constrained devices [36]. Few recent works have

started investigating the memory and latency cost of CL on

MCUs [24, 29] by leveraging multi-core MCUs that we also

adopt in this work. Orthogonally, a set of works [14, 20]

proposed to reduce the memory and compute costs of the

learning algorithm by updating only a subset of the train-

able parameters of every layer, a technique referred to as

sparse update. Only SparCL [38] applied this sparse logic

to a CL setting, by updating a fraction of the weights with

the highest relevance for the new task. Due to the irregu-

lar update scheme, i.e. not-structured, this approach is not

suited for ultra-low-power MCUs.

In this paper, we set out to propose a CL strategy to

learn a task stream directly on a ultra-low power MCU de-

vice [31]. To this aim, we explore how a state-of-the-art

rehearsal-based CL strategy, Latent Replay (LR) [28], per-

forms when coupled with structured sparse update logic.

LR is a rehearsal-based CL technique tackling the problem

of forgetting by mixing, at training time, the new samples

with latent representations - i.e., intermediate activations -

of a set of past data. For the sparse update, we consider

a structured scheme by updating the parameters belonging

to a set of input and output channels. The sparse update

scheme remains fixed for the entire CL stream, to favor the

implementation on-device.

Our contribution can be summarised as follows:

• We propose a structured sparse back-propagation algo-

rithm targeting On-Device CL on resource-constrained

MCU platforms;

• We analyze in depth the memory and computational gain

deriving from our approach and the methodology to im-

plement an efficient CL pipeline on-device;

• We explore the accuracy-latency-memory tradeoff of our

technique on tiny CNNs for image classification while

performing a class-incremental CL task.

The code to reproduce the results is available as open-

source1.

2. Related Work

In this section, we discuss relevant works from recent CL

literature. We categorize the discussion into two sections:

efficient CL strategies and techniques for ODL.

2.1. Efficient Continual Learning

Among the various CL techniques [11, 37, 40], rehearsal-

based methods [2, 6, 12] have been extensively explored to

mitigate catastrophic forgetting with limited computational

1https://github.com/fpaissan/odcl_sparsity

resources. In general, rehearsal-based methods aim at mit-

igating forgetting by continuously training a DNN model

on a mixed set of data coming from its past experience and

newly acquired samples. A popular rehearsal-based method

is Experience Replay (ER) [10]. In ER, while adapting the

classifier to a new data distribution, we keep in memory a

set of elements from the original data distribution, which

is called replay. Therefore, the updates are applied to both

the new data to learn the new distribution and the old data

to preserve performance on the original data. A more effi-

cient alternative, called Latent Replay [28] (LR), has been

proposed. In LR, the replay memory is composed of la-

tent representations of the input data, acquired as the output

of one of the hidden layers. As hidden representations are

generally smaller than the input images, this allows to save

storage in terms of replay size, while also keeping the com-

putation lower, as explained in Sec. 4.2. Tremonti et al. [36]

study the performance of efficient neural architectures us-

ing LR, but do not consider the cost of the update inside the

modelling of the constraints. SparCL [38], instead, experi-

ments with many rehearsal-based methods, while focusing

on what is the best strategy to perform sparse updates of

the network. They suggest using a dynamic sparse-update

scheme in which the sparsity mask is computed based on

the relevance of each weight to the CL task. This solution

comes with a computational overhead needed to perform

the relevance estimation, which can be costly on-device.

2.2. OnDevice Learning

In recent years, many papers in the literature have proposed

strategies to perform learning on resource-constrained de-

vices. These approaches typically fall into two categories.

The first focuses on optimizing the backpropagation algo-

rithm to lower its computational requirements. In contrast,

the second one proposes new parameter-efficient strategies

for adapting models, similar to current trends in large-scale

models [9]. We introduce these two categories and we pro-

vide an overview of software libraries for ODL.

Optimizing backpropagation. De Vita et al. [8] extend

the functionalities of STMicroelectronics X-CUBE-AI2 to

introduce support for on-device training of Echo State Net-

works for time series analytics. The method was tested on

an STM32 MCU featuring less than 100 kB of memory oc-

cupation. PocketNN [34] presented a training methodology

to exploit integer-only computation based on Direct Feed-

back Alignment [25]. Tiny Training Engine [18] combined

gradient tensors pruning via offline calibration and a novel

Quantization-Aware strategy for scaling the gradient mag-

nitude and fitting the limited integer range.

Parameter-efficient ODL. TinyOL [30] proposes to insert

a single trainable layer on top of a frozen and quantized

2https://www.st.com/en/embedded- software/x-

cube-ai.html
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model, trained in a few milliseconds using ARM-Cortex-

equipped Arduino boards. TinyTL [4] proposes to limit the

backpropagation to biases only, reducing the memory re-

quirements by up to one order of magnitude. Train++ [35]

implemented ODL for low-footprint devices but targeted

shallow single-layer networks for binary classification prob-

lems.

Software libraries. To enable model training on ultra-

low-power platforms, TyBox [27] proposes a C++ li-

brary for ODL with a particular focus on code genera-

tion. AIfES [39], instead, proposes a general-purpose li-

brary, targeting both inference and training, exploiting the

ARM CMSIS libraries. On the other hand, with the aim

of minimizing the latency of on-device training, Nadalini

et al. [23, 24] propose a hardware-aware-optimized train-

ing library for PULP-based platforms, whose details are de-

scribed in Sec. 5.2.

3. Background

3.1. The Backpropagation Algorithm

The current state-of-the-art Deep Neural Network (DNN)

training methods are dominated by the backpropagation al-

gorithm. Initially, a batch of training samples is used to

estimate a loss score by comparing the ground-truth labels

with the model predictions. Every prediction is obtained by

propagating the input data through the DNN layers, known

as the forward step. During this operation, the outputs of

the intermediate layers, i.e., the activations, are retained

in memory for the following step. Given the loss, the

backpropagation algorithm computes the incremental up-

date steps to optimize the DNN parameters. The gradient of

the loss with respect to the last DNN layer is the error signal

that is backpropagated through the model. Starting from the

last layer, this backward pass includes two operations. First,

the weight gradient (Weight Grad) step computes the gradi-

ent of the loss function with respect to the parameters by

using the output gradient and the stored activations. Then,

the input gradient step (Input Grad) backpropagates the out-

put gradient towards the input with the weight parameters.

Finally, an optimizer, such as Stochastic Gradient Descent

(SGD), iteratively adjusts the weights of each layer based

on the computed weight gradients.

3.2. Latent Replay

Given a neural network model of L layers, Latent Replay

(LR) [28] is a rehearsal-based CL technique aiming at con-

tinually train the model on new samples (classes or do-

mains), by mixing new data with a set of latent represen-

tation of previous knowledge - i.e., the Latent Replay. In

particular, the LR data is stored as a set of latent activations

collected at the Rth layer. While, at training time, the first

L − R layers from the input are kept frozen, the last layers

Model name MAC Params ImageNet Acc [%]

MobileNetV2 185.4M 1.4M 70.01

PhiNet 68.3M 1.0M 64.95

Table 1. Performance of the ConvNets used on the pretraining

task. All numbers are referred to the ImageNet benchmark.

update their parameters with backpropagation, by mixing

new data with the LRs. Therefore, the mixture of new and

old data mitigates forgetting, while leaving the last section

of the model free to expand its knowledge.

4. Hardware-Aware Continual Learning

We address class-incremental CL under limited memory

and computational resources for the deployment in an MCU

system, exploiting Latent Replay to tackle catastrophic for-

getting. Targeting low-resource hardware, we adopt edge-

oriented neural architectures. As illustrated in Fig. 1, we ex-

plore how to reduce the memory and compute requirements

with minimal impact on the final accuracy by (i) changing

the layer Li at which we compute the replay vectors and (ii)

by applying a sparse update scheme. After describing the

neural network architectures in 4.1, Sec. 4.2 introduces the

analytical cost model for the CL scheme with Latent Replay

(Sec. 4.3) and Sec. 4.4 discusses the cost reduction achieved

with sparse updates.

4.1. Edgeoriented neural networks

Given the limited memory budget of common MCUs (up

to a few MB of on-chip memory), we consider lightweight

DNN architectures with a number of parameters below 1.5

M [29, 36]. Table 1 reports the total number of parameters

and operations, expressed in terms of Millions of Multiply-

and-Accumulate (MMAC), for the PhiNet [26] and Mo-

bileNetV2 [33] networks, which are also used in [36].

The memory and computation requirements of these DNN

architectures can be tuned by acting on several hyper-

parameters. For MobileNetV2, we set the width multi-

plier parameter (α) to 0.75. PhiNet, instead, features a

more advanced scaling mechanism based on three hyper-

parameters, namely α (here 1.1), which scales the MMACs,

β (0.75), scaling the number of parameters, and t0 (5), scal-

ing the working memory usage. We invite readers to refer to

the original manuscripts for more details. We pre-train the

two DNN models on Imagenet [32], achieving an accuracy

of 64.95% and 70.01% for PhiNet and MobileNet, respec-

tively. On these edge-oriented architectures, we emphasize

the high memory cost of the last linear layer, i.e. the clas-

sifier, with respect to the total amount of parameters. In the

case of MobileNetV2, the final layer carries up to 20% of

the overall network parameters, which is reduced to 8% for

Phinet thanks to the more advanced scaling knobs.
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epochs. The computation is operated layer-by-layer during

either the forward or backward steps. We account for the to-

tal latency, measured as the number of elapsed clock cycles

(clk), by benchmarking the training operators (with a total

number of operations in Eq. 9) on the target platform. For

this purpose, we use the cycle-accurate open-source soft-

ware simulator GVSoC [3].

The layer-wise software routines initially copy the input

data from the external memories to the on-chip memory,

with the peripheral DMA, and then into the cluster mem-

ory with the DMA. The training functions, i.e., forward and

backward functions of every layer, take data from the low-

level memory and use parallelization and SIMD instruction

to speed up the computation. Note that processing effi-

ciency, expressed as the ratio between the MAC operations

and the clock cycles to execute (MAC/clk), varies between

different types of layers and steps. For a PointWise layer,

we measure peaks of 3.07, 3.29, and 2.78 MAC/clk during

the forward, weight grad, and input grad steps, respectively.

On the contrary, the efficiency reduces up to 0.86 MAC/clk

for the DepthWise layers, whose core computations are less

efficient to be optimized with linear algebra kernels.

5.3. OnDevice Sparse Update

The sparse update execution differentiates from the base-

line training functions as follows. The forward step is not

affected by the partiality coefficients for what concerns the

number of operations (Eq. 1). On the other hand, only

pi · Cin,i channels of each layer’s activations are retained

in the RAM memory, instead of the whole tensor.

During the backward phase, using a sparse update logic

reduces instead the number of operations w.r.t. the full-

update baseline. Starting from the last layer of the model,

the input gradient is backpropagated by computing, for ev-

ery layer, only a part of the gradient channels. More in

detail, the operator takes pi · Cout,i channels of the output

gradient and the full weight parameters. This reduces the

RAM memory requirements (Eq. 7) and the computational

requirements (Eq. 9) proportionally.

Similarly, the sparse update brings computational bene-

fit for the weight gradient computation. This backward step

is fed by pi · Cout,i channels of the output gradient and the

partial input activations stored during the forward step. Fi-

nally, only (pi ·Cin)(po ·Cout) channels of the weights are

updated for each layer.

6. Experimental Setup

Datasets. We use Split CIFAR-10 [13], referred to as

CIFAR-10 in the remainder of the paper, and CORe50 [21].

For CIFAR10, we use the implementation presented in

Avalanche [22], which consists of a total of five tasks, each

one carrying two new categories. Each task contains around

5000 images. CORe50, instead, includes 50 objects belong-

ing to 10 macro-categories. Following the same principle

used for CIFAR10, we split the ten categories into five tasks

of two categories each. We normalize the images by us-

ing the ImageNet statistics for both datasets before feeding

them through the network.

Hyperparameters. We fix the number of epochs to 4 af-

ter observing a minimal final accuracy improvement (2%)

in the case of 8 epochs. We set a replay buffer of 3000

and 5000 elements, for CIFAR-10 and CORe50, respec-

tively. We use a Stochastic Gradient Descent optimizer with

a learning rate of 1× 10−3 for CIFAR10 and 1× 10−4 for

CORe50, which is found with a grid-search optimization.

7. Results

We analyze the trade-off between accuracy, latency, and

memory required for the on-device learning task with the

optimizations considered, i.e., varying the latent replay

layer and the sparse update coefficient.

Our findings are summarized in Fig. 4, which shows the

average accuracy over all five tasks after training the model

on the entire continual stream. We experimented with nine

layers for PhiNet and five layers for MobileNetv2 for the

generations of the latent replays. We use partiality coeffi-

cients of p = {1, 0.9, 0.8, 0.7, 0.6} for each layer, repre-

sented by different colors in the Figure. For each archi-

tecture and dataset, we report the memory occupation M ,

computed from Eq. 5 with Nbatch = 16, and the latency

required for the backward step. In Fig. 4, we report the

latency in terms of clock cycles estimated using our simu-

lator. Then, we convert the results into latency by scaling

the number of clock cycles for the update with respect to

a clock frequency of 450MHz, which is the maximum fre-

quency measured on a recent silicon prototype of the PULP

platform [31].

7.1. Performancecomplexity tradeoff of PhiNet

On CIFAR10, the PhiNet configurations without sparse up-

dates (blue curve) span from the backpropagation until the

sole classifier, with a memory cost of 2.11MB, a latency of

0.6ms, and an accuracy of 78.64%, to the 5th-to-last layer,

demanding 5.38MB of memory and 8ms for the backward

step, and achieving an accuracy of 84.45%. If also updating

the layers after the 5th-to-last layer layer, the accuracy de-

creases, suggesting a forgetting effect in the low-level fea-

tures.

By introducing the sparse updates, we gain a more fine-

grained control of the computational requirement of the

backward step. In particular, we add five points in the Pareto

curve (circled points in the plots), characterized by interme-

diate accuracy values and requirements. On both CIFAR10

and CORe50 datasets, we observe sharp Pareto curves for

PhiNet. With a partiality factor of p = 0.6, the inference
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CIFAR10 CORe50

Layer ID p M (MB) Sreplay (MB)
Latency

FW (s)

Latency

Update (s)
Acc [%] M (MB) Sreplay (MB)

Latency

FW (s)

Latency

Update (s)
Acc [%]

PhiNet

2 1 4.95 5.76 158.53 116.79 80.51 6.41 23.04 514.29 307.29 78.35

2 0.8 4.1 5.76 158.53 88.34 79.59 5.26 23.04 514.29 231.23 76.57

2 0.7 3.39 5.76 158.53 62.59 78.95 4.26 23.04 514.29 163.1 75.57

1 1 2.11 1.25 61.56 0.06 78.64 2.11 2.10 222.22 0.07 71.65

MobileNet

4 1 3.9 4.61 113.88 356.16 86.55 6.3 18.43 464.69 1050.03 85.09

4 0.8 3.25 4.61 113.88 271.36 85.20 5.17 18.43 464.69 785.34 81.54

4 0.7 2.95 4.61 113.88 231.65 84.39 4.63 18.43 464.69 663.72 80.06

1 1 1.46 7.68 57.56 3.33 83.29 1.46 12.8 212.00 12.27 79.78

Table 2. Computational cost of the entire CL stream (Nbatch = 16) for MobileNet and PhiNet on CIFAR10 and CORe50. Total CL time

to learn 2 new classes (task) is the sum of the FW and Update.

For PhiNet, as observed from the previous results, up-

dating only the parameters of the last layer is the fastest

option, leading to an overall latency cost of 61.62 s for CI-

FAR10 and 222.29 s for CORe50. These configurations

reach the lowest accuracy of 78.64% and 71.65% for the

two benchmarks, respectively. Retraining more layers (up

to the 2nd), the cost increases to 275.32 s and 821.58 s for

an accuracy improvement of 2% and 7% on CIFAR10 and

CORe50. MobileNet shows a similar trend where the la-

tency for the entire CL stream goes from 60.89 s for CI-

FAR10 and 224.27 s for CORe50 to 470.04 s and 1514.72 s
when updating the 4th layer from the classifier.

By using a sparse update logic, we observe a smooth

reduction in terms of computational cost for the LR strat-

egy, while the accuracy shows a minimal drop vs. the non-

sparse case. For the storage memory, we do not observe any

changes with respect to the partiality factor, as all elements

of the replay are needed to compute the forward step. When

using a partiality factor p = 0.7, the memory required for

the update scales down by a factor of 1.46x and 1.5x for

PhiNet on CIFAR10 and CORe50, and by a factor of 1.3x

and 1.36x for MobileNet on the two benchmarks. An anal-

ogous trend is observed for the latency requirement on the

CL stream.

Hence, we can learn tasks from two common CL bench-

marks on-device with fewer than 6.3MB and less the

25min for the most demanding configuration, which is Mo-

bileNet of CORe50. Using sparse updates, we can lower

this requirement to 4.63MB and 18min.

7.4. Comparison with the state of the art

Comparing our on-device continual learning strategy with

the state of the art is not trivial, being our work the first tar-

geting deployment on MCUs, as explained in Sec. 2. How-

ever, we try to contextualize the results of our method by

first quantifying the overall cost of the update for the en-

tire CL pipeline. Then, to have a reference, we compare it

with the results reported in SparCL [38] on CIFAR-10. It

should be noted that SparCL and our pipeline present two

very different objectives. Specifically, SparCL shows how

a dynamic sparse update strategy performs when learning

a model on a CL from scratch. Conversely, we start from

a pre-trained model and continually learn from the data

stream, achieving comparable results with SparCL by up-

dating the fully-connected classifier only, as shown in Ta-

ble 3. With a pre-training on ImageNet and a fine-tuning of

the sole classifier, we achieve ∼ 2% accuracy improvement,

with two orders of magnitude less computation. However,

this comes with a larger computational overhead on the pre-

training side.

FLOPS Train ↓ Mem ↓ Acc [%] ↑

SparseCL [38] 2.50× 1015 177MB 74.9

Ours 8.68× 1011 2.11MB 77.3

Table 3. Numerical comparison of our approach with SparCL [38].

8. Conclusion

This paper presented an empirical evaluation of a novel

sparse update strategy applied to a Latent Replay-based CL

pipeline, as a viable lightweight solution for extreme-edge

devices. We validated the proposed approach on two com-

mon benchmarks, observing that the optimization of the

classifier only results in the lowest accuracy for both bench-

marks, while constituting the fastest learning paradigm.

Conversely, introducing sparse updates on deeper layers en-

hances the performances, while reducing the computational

cost of learning, with respect to classic backpropagation.
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