This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Content-aware Input Scaling and Deep Learning Computation Offloading for
Low-Latency Embedded Vision

Omkar Prabhune®
Purdue University

oprabhun@purdue. edu

Abstract

Deploying deep learning (DL) models for visual recogni-
tion on embedded systems is often constrained by their lim-
ited compute power and storage capacity, and has stringent
latency and power requirements. As emerging DL applica-
tions continue to evolve, they place increasing demands on
computational resources that embedded vision systems are
unable to provision. One promising solution to overcome
these limitations is computation offloading. However, for
performance improvements to be realized, it is essential to
carefully partition tasks, taking into account both the quality
of the data and the communication overhead.

In this paper, we introduce a novel framework for content-
aware offloading of DL computations, aimed at maximiz-
ing quality-of-service while adhering to latency constraints.
Our proposed framework involves the embedded vision sys-
tem/edge device intelligently compressing data in a content-
aware manner using a lightweight model and transmitting
it to a more powerful server. The framework consists of two
key components: offline training for efficient content-aware
data scaling and online control that adapts to the network
variations in real-time. To illustrate the effectiveness of our
approach, we apply it to multiple downstream tasks such as
face identification, person keypoint detection, and instance
segmentation, showcasing a significant enhancement in the
overall quality of results for various applications.

1. Introduction

Embedded vision has been rapidly gaining traction across
various domains, spanning from entertainment [2] to edu-
cation [11] and healthcare [18]. Its utilization extends into
increasingly critical applications, as evidenced by its incor-
poration into mission-critical contexts [, 12]. Constraints
on their storage, latency, weight, and power limit the com-
putational capabilities of embedded vision systems. Low

*Equal contribution.
TCurrc:ntly at Google.

Tianen Chen* *
University of Wisconsin—-Madison

tianen.chen@wisc.edu

Younghyun Kim
Purdue University
younghyun@purdue. edu

XR device Edge server

(2)

(b) Input data

High comm. overhead

(c) Encoded activations
= Reduced comm. overhead

(d)

o
~ Context-aware
compression

Figure 1. Computation offloading for face identification. (a) No
offloading. (b) Full offloading of workload. (c) Partial offloading
by partitioning workload. (d) Proposed content-aware offloading.

latency can be a critical requirement in applications such
as extended reality, which worsens the challenge. Embed-
ded vision devices are typically equipped with a low-power
system-on-chip (SoC) which falls short of meeting the de-
mands of compute-intensive DL tasks. The gap between the
computing power available on edge devices and the compute
requirement to run DL models is expected to widen as they
continue to grow in complexity, facilitating more advanced
applications.

Computation offloading stands out as a promising so-
lution for enabling compute-intensive DL applications on
resource-constrained devices [13]. It involves splitting the
workload and leveraging resource-rich edge servers to han-
dle the computationally intensive segments. Consequently,
the quality of service (QoS), such as latency and accuracy,
can be significantly enhanced. However, it is essential to
exercise caution during the workload partitioning process
to ensure that it alleviates the burden on the embedded de-

2218

vice while minimizing communication overhead. Inefficient
computation offloading can lead to limited or even nega-
tive QoS improvements, owing to excessive communication
overhead and potential data quality deterioration.

In Fig. 1, we illustrate the concept of computation of-
floading using DL-based face identification as an example.
Fig. 1(a) is the baseline scenario where an embedded vi-
sion system such as an extended reality (XR) device han-
dles the task entirely, which might not meet performance
requirements. Fig. 1(b) shows complete offloading, where
the entire task is executed on the edge server. Although
the edge server offers more computational power, transmit-
ting the raw input data results in substantial communication
overhead. In partial offloading shown in Fig. 1(c), the DL
model is partitioned into two segments so the transmitted
intermediate data is minimized after the embedded device
executes part of the original model. Here, the DL model
is divided into two segments, minimizing the transmission
of intermediate data after the embedded device completes
the first segment. In this paper, we propose content-aware
computation offloading as illustrated in Fig. 1(d), where the
embedded device intelligently compresses input data using
a lightweight model in a content-aware manner, thereby sig-
nificantly reducing the communication overhead.

More specifically, our framework introduces an intelli-
gent input scaling mechanism on the embedded device using
a lightweight model. The compressed data is then transmit-
ted to and processed by the full DL. model hosted on the edge
server. We refer to this approach as coarse segmentation,
which efficiently identifies regions-of-interest (ROIs) within
the input while reducing the fidelity of non-ROIs to minimize
communication overhead, all while preserving the integrity
of ROIs. The lightweight model executes a simplified ver-
sion of the original model’s task but remains distinct from it.
For instance, in a face identification scenario, the lightweight
model focuses on “face detection,” a less complex task than
“face identification.” This process involves preserving the
resolution of detected faces while down-scaling the back-
ground, generating compressed input data. Subsequently,
the edge server performs the more intricate identification
task using this compressed, but ROI-preserved data.

The paper’s contributions can be summarized as follows:
e We introduce an efficient DL workload offloading ap-

proach centered on content-aware coarse segmentation,
enabling ROI-preserving data scaling for embedded de-
vices. We introduce a novel training objective, coarse
segmentation, to train a lightweight model for the efficient
identification of ROIs.

* We propose an optimization framework capable of dynam-
ically managing system operations to adhere to latency
constraints in varying wireless conditions. This frame-
work comprises offline characterization of DL workloads
and online adaptation of data scaling.

* We implement a comprehensive end-to-end pipeline of
our proposed framework in the context of face identifi-
cation, person keypoint detection, and instance segmen-
tation, showcasing improved accuracy when compared to
baseline computation offloading.

2. Related Work

Computation offloading is a promising strategy for facili-
tating resource-intensive tasks on devices with limited re-
sources. Achieving effective computation offloading hinges
on the efficient reduction of communication overhead be-
tween the client and the server. In the context of video
analysis, leveraging inter-frame similarities can substan-
tially decrease this communication overhead. Since a video
frame closely resembles a previously processed or transmit-
ted frame, there is considerable potential to diminish both
computation and communication requirements, as noted in
[8, 10]. A recent work presents a technique to encode inter-
mediate features to compress the data [17].

Accurate ROI detection plays a pivotal role in optimizing
data scaling and encoding. It is essential that this detection
process remains computationally efficient to ensure that the
advantages of computation offloading are not undermined.
One of the fundamental techniques involves straightforward
frame-to-frame subtraction to identify significant changes
between frames. Advanced ROI detection methods leverage
various strategies, including exploiting historical frame data
[10], lightweight local object detection technique [6, 16],
and the integration of multi-camera networks to reduce over-
lap [4, 15].

3. Content-aware Input Scaling

Our aim is to design a computation offloading method for
embedded systems for efficient DL workloads under latency
constraints. We propose a new technique called content-
aware input scaling to determine key ROI and scale the
fidelity of the input data in order to achieve lower com-
munication costs. For the rest of this paper, we focus on
a face identification task as the application of the system,
but the proposed method can be generally applicable to any
compute-heavy DL workload. Further, we show the general-
izability of our approach to other typical downstream tasks
such as person keypoint detection and instance segmenta-
tion.

3.1. Computation offloading under latency con-
straints

Let us consider a scenario where an embedded device (the
client) performs a face identification task that compares a
face in a captured image to a database of faces to find a
matching identity. First, embedded devices generally do
not have the computing power to efficiently perform such a

2219

Client (online)

-ba‘ » [COAISESEEY Which patches are ROI and which are non-ROI?
-t }' » [Dowmscale] How much should non-ROI be compressed?

Training dataset | | Latency model Wireless condition

i i | | Accuracy model -
3 Workload o

analysis

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Context-aware
scaled input

Figure 2. Computation offloading of face identification from an embedded vision system such as extended reality (XR) device (client) to a

server. Image from IMDb-Face dataset [14].

complex task. In addition, due to the memory and storage
constraints, storing the entire face database in the client will
be inefficient or infeasible due to the large storage require-
ment. Moreover, a face database contains sensitive personal
data, which cannot be in distributed devices due to privacy
concerns. For these reasons, the captured image cannot be
processed on the client but must be sent to an edge server
(the server) for processing.

Under a latency constraint, computation offloading must
be performed with additional overheads taken into account,
including data compression and transmission. In order to
minimize the overhead the compression should have three
crucial properties:

* Compressive: It should reduce the amount of data trans-
mission substantially to reduce communication overhead.

 Efficient: The compression process itself should be
lightweight to minimize compute overhead.

* Adaptive: The compression ratio should be able to adapt to
varying wireless conditions to meet the latency constraint.

In the rest of this section, we describe how we design
content-aware input scaling to meet these requirements.

3.2. Content-aware input scaling pipeline

The proposed content-aware input scaling pipeline is com-

posed of four main components as illustrated in Fig. 2.

» Workload analysis is an offline step that analyzes the la-
tency and accuracy of the target DL workload. The anal-
ysis is discussed in Sec. 3.4. We also generate a coarse
segmentation model in this step, which is used in the next
component.

* Coarse segmentation is an online step performed by the
client. The input is partitioned into ROI patches and non-
ROI patches using the coarse segmentation model. This
step is further discussed in Sec. 3.3.

Ground truth label

Training image

Figure 3. Training coarse segmentation model.

e Parameter optimization derives two control parameters,
scaling factor and resolution factor, used in the coarse
segmentation and downscaling steps, respectively, as dis-
cussed in Sec. 3.5.

* Downscaling is where the non-ROI patches are down-
scaled based on the resolution factor determined in the
parameter optimization step.

The ROI patches and the downscaled non-ROI patches
are then transmitted to the server, where they are merged and
processed by the downstream DL workload (face identifica-
tion in this example). The following subsections describe
each component of the pipeline in detail.

3.3. Coarse segmentation

The coarse segmentation step is to partition an input image
into ROI patches that contain ROIs and non-ROI patches
that do not. In order to meet the goals discussed in Sec. 3.1,
we introduce a new task called coarse segmentation and
propose a lightweight convolutional neural network (CNN)-
based coarse segmentation method.

In coarse segmentation, the objective is to predict if a
patch contains the pixels of ROI or not, where a patch is
one piece of an image equally divided into N X N. For
the downstream task of face identification, we consider face
pixels as our ROI. Each patch is labeled either ‘1 if the patch

2220

Lightweight
CNN backbone

Training image

Projection of
feature map
on input image

Output
feature map

Figure 4. Design flow of client-side coarse segmentation model.

contains any face pixels or ‘0’ otherwise. Thus, the ground
truth label is a 2-D binary mask of dimensions N X N as
shown in Fig. 3.

In order to perform coarse segmentation, we redesign and
adapt a lightweight CNN backbone of the image classifier
to predict the ROI via its feature maps. Different layers in
a CNN classifier learn a hierarchy of features, from sim-
ple and local features such as edges to more complex and
global features such as object parts and, eventually, entire
objects or patterns. The deeper layers capture increasingly
abstract representations, making the network capable of rec-
ognizing and classifying complex patterns in the input data.
Analysis of intermediate feature maps also shows that the
regions that are activated exhibit a strong correlation with
the regions containing semantic objects [14]. This indicates
the possibility of approximating the positions of important
regions within the image by analyzing the feature maps.
Therefore, we redesign the model and training objective for
a lightweight CNN backbone of an image classifier such that
it predicts ROI via its feature maps.

Fig. 4 shows our approach to performing coarse segmen-
tation. We train a lightweight CNN backbone such that the
output feature map shows high activations at the spatial loca-
tions of ROI and low activations otherwise. After applying
the sigmoid activation function, the output is interpreted as
the probability of the block containing ROI pixels. When
this feature map is projected on the original image dimen-
sions, we obtain the ROI and non-ROI patches as shown in
Fig. 4.

For training the model, the original RGB image serves as
the input training image and the coarse segmentation mask
serves as the ground truth. Loss is calculated by comparing
the output feature map and the ground truth mask and the
model weights are updated using backpropagation.

Next, we determine the number of patches that will be
downscaled in resolution using a parameter called scaling
factor 0 < Sy < 1. Itis defined as

Nas
N2’
where Ny is number of downscaled patches. These patches

are selected based on the output feature map of the coarse
segmentation model. The patches are sorted based on their

Sp=1- (1)

Coarse segmentation
» Input: R X R image
» Input: N X N feature map

Low
scaling factor

High

B3

12/64 patches
Scaling factor = 0.19

21/64 patches
Scaling factor = 0.33

24/64 patches
Scaling factor = 0.37

Figure 5. Example of coarse segmentation with three different
scaling factors. N = 8.

probability scores from the feature map. A low probabil-
ity score indicates that the patch is not important for the
downstream task and hence can be downscaled in resolu-
tion. Therefore, we downscale N, patches with the lowest
probability scores. Fig. 5 shows the coarse segmentation of
an image with three different scaling factors. Within Fig. 5,
we see that as the scaling factor increases, the amount of
high-resolution original input image increases. Our system
tunes a balance between high accuracy, high scaling factor,
and low latency, low scaling factor inputs. This parame-
ter will be explicitly defined within our system design and
dynamically adjusted depending on application constraints.

3.4. Workload analysis

The workload analysis is an offline step to understand the
computation and communication requirements of the work-
load in the context of the DL task. This step builds a latency
profile and an accuracy profile for a given training dataset. It
also produces a coarse segmentation model, which has been
described in Sec. 3.3.

First, a latency model is built based on empirical mea-
surement and analytical estimation. The total latency on the
client side to process an image is the sum of the acquisition
latency L. to obtain the source image, the processing la-
tency L, to split the image into ROI and non-ROI patches,
and the transmission latency L,,. We do not consider the
processing latency on the server side, since it is generally
negligible due to its high performance. The total latency
should be less than or equal to the latency constraint L...

Lacq + Lproc +Lix < L¢ (2)
Since the image resolution R is fixed, L4 is constant. The

majority of L, is for coarse segmentation with some for
image partitioning, and this is also constant for a fixed R on

2221

a given client device. Therefore, these two latency factors
can be empirically measured on the target client platform.
On the other hand, L;, is the most dominant and vari-
able latency factor. First, we downscale non-ROI patches
by a resolution factor Ry, which is the percentage of how
much we downscale the individual patch resolution height
and width. Without downscaling, the baseline transmission

latency Lf;”e would be directly proportional to the size of
the image and inversely proportional to the data rate.
R2
b
L = e 3)

where c is a constant that relates the image size to the data
size, and 7 is the data rate. Then, with the proposed scaling,
for a given Sy and Ry, L, is reduced to

R2
Lix=c— (Sr+R/2(1-5/)). 4
t Cy(f 7(f)) 4

Since 0 < Ry < 1, L;y increases as either Sy or Ry in-
creases.

This step also generates an accuracy profile. It character-
izes the accuracy of the downstream task by running it with
different Sy or Ry settings. This step is performed offline
on a validation dataset. As the quality of the image also
increases as Sy or Ry increases, the accuracy also increases.
Considering these latency and accuracy characteristics, the
next step is to find the optimal values of S or R that max-
imize the accuracy while meeting the constraint (Eq. (2)) as
discussed in the next subsection.

3.5. Parameter optimization

In order to determine optimum Sy and R ¢, we use a combi-
nation of latency analysis combined with downstream task
accuracy Ag(Sy, Ry) calculated offline on the validation set.
While the parameters are selected online, the latency and
accuracies are already calculated, ready to conform to con-
straints. We dynamically choose parameters (S ¢, Rr) such
that we scale the input image to match application-defined
latency constraint L. while maintaining the highest level of
accuracy based on validation data accuracy for the down-
stream task.

Let C, represent all possible (S ¢, Ry) configurations cor-
responding to unique latencies, L. We find a subset Cs as
follows:

Cy = {Ai: Lin(Sy,Ry) < L), 5)

where C; is the subset of configurations satisfying the la-
tency constraint within C,, and A; is the accuracy of the
particular configuration. Thus, to obtain the maximum ac-
curacy for a given latency constraint, we select the configu-
ration that maximizes accuracy within Cg:

(Sfm Rfo) = arg max(A,,) (6)

A;eCy

where (Syo,Rfo) is the optimum scaling and resolution
factors that satisfy constraints, and A, is the highest accuracy
within the subset of configurations C;. With this, we can
say that (S¢,, Ry,) is the most latency-constrained, highest-
accuracy configuration for content-aware resolution scaling
for a given data rate.

4. Experiments

In this section, we demonstrate the efficacy of our content-
aware efficient edge offloading scheme for object detection.

4.1. Experimental setup

Within our system model, we use the Raspberry Pi 4
as our embedded device (client) running a redesigned
MobileNetV3-Small backbone as our coarse segmentation
model. We use the Raspberry Pi for flexibility in soft-
ware modification, but the proposed methodology is largely
hardware-agnostic.

Face identification involves detecting faces in an input
image and predicting the individuals by matching them
against a gallery of labeled images of individuals. While
we use face identification for this experiment, coupled sim-
ilar lightweight models and downstream tasks can also be
used in our agnostic design as discussed in Sec. 5.

4.2. Dataset

For training the coarse segmentation model, we use 5000
training images and 2000 test images from the IMDb-Face
dataset [14]. The images in this dataset are official photos,
lifestyle photos, and movie snapshots of celebrities sourced
from the IMDb website. The images display large variations
in terms of scale, pose, lighting, and occlusion of faces,
as well as number of faces per image. Specifically, movie
snapshots provide a diverse dataset for testing the robustness
of our methodology. The ground truth coarse segmentation
mask is created using the bounding box annotations provided
in the dataset. If a bounding box is present in an image
patch (partially or completely), that patch is marked as a
region of interest. Here, we treat the region inside the face
bounding box as the region of interest. Thus, the regions
within a bounding box for a face were labeled as ‘1’ and ‘0’
otherwise.

For the downstream task of face identification, we use a
subset of 100 identities from the IMDb-Face dataset which
comprises annotated faces of celebrities as our test dataset.
We construct an annotated gallery of images of at most
ten images per individual against which the test images are
matched for identification. The test set comprises 1190
images that do not overlap with the gallery. We ensure that
the training data for coarse segmentation does not overlap
with the test data for the face identification downstream task.

2222

Latency (ms) @ y = 10 MBps Latency (ms) @y = 5 MBps

20 40 60 80 100 50 100 150 200
EE EE
1 -]| 1 -
g
Q
&
=
205 05
2
Q
3
o~
0 - 0
0 0.5 1 0 0.5

Scaling factor Scaling factor

-0
1

Latency (ms) @y = 1 MBps Accuracy (%)

200 400 600 800 1000 20 40 60
HEE EE 2
1 ' . 1 '
5 | 0.5
h_
0 | 0
0 0.5 1 0 0.5 1

Scaling factor Scaling factor

(a) Latency profile

(b) Accuracy profile

Figure 6. (a) Latency model L;x (S ¢, Ry) for three data rates, 10, 5, and 1 MBps. (b) Accuracy profile A;x(Sf, R).

0 02 04 06 038 1

(a) Face ROI predictions

e —
0 02 04 06 08 1

(b) Person ROI predictions

Figure 7. Sample outputs from coarse segmentation model for (a)
face ROI detection and (b) person ROI detection.

4.3. Client-side coarse segmentation model

We redesign MobileNetV3-Small [5] classification model to
adapt to the task of coarse segmentation. MobileNetV3 ar-
chitecture design is well-suited for deployment on resource-
constrained environments due to its efficiency and competi-
tive performance as compared to other CNN backbones [5].

In the MobileNetV3-Small model, we remove the last 2

building blocks as well as the convolution and pooling layers
that follow these blocks. We add a point-wise convolution
layer to this trimmed model to produce a feature map with a
channel dimension of 1. The input resolution is 600 x 600
pixels (R = 600), and the output feature map resolution is
15 x 15 (R = 15).

We use the binary cross-entropy loss to train the model
for 500 epochs with Adam optimizer and a learning rate of
0.001. We use cross-validation to select the best weights
with minimum validation loss. On evaluating the model on
test data, we obtain a PR-AUC (area under the precision-
recall curve) score of 0.82. The model is trained in the Ten-
sorFlow framework and converted to TFLite for portability
on Raspberry Pi. Post-training dynamic range quantization
is used to convert the model from TensorFlow to TFLite.
The execution time of the coarse segmentation model and
image partitioning (L roc) is 46 ms per image. This short
execution time is compared to full face identification on
Raspberry Pi, taking more than 2.8 seconds for a small sub-
set of 3 identities. Thus, coarse segmentation is much faster
than full face identification on the Raspberry Pi without any
of the privacy concerns that accompany a face database on
the client. Fig. 7a shows some sample outputs of the trained
model for face ROI detection.

4.4. Latency and accuracy profiling

In our design, since typical Wi-Fi connections greatly de-
pend on varying transmission upload rates, we analytically
find latency according to the methods described in Sec. 3.4.
We can visualize the latency surface when plotting the sur-
face of Eq. (4) in Fig. 6a with an image resolution of R = 600,
and an estimated client upload datarate of 10 MBps, 5 MBps,
and 1 MBps. We choose 20 different S ¢ values sampled from
0to 1. We use 21 different R ¢ uniformly spaced from O to 1.
This forms 420 different configurations of (R¢, S¢). Fig. 6a
provides analytical latency calculations given different data
rates, such that we observe latency of transmission increases

2223

D
(=)
D
(=)

wn
(e}
wn
(=)

S € 40!
oy oy
£ 30 g 30
= =
3 20 3 20
2 2

—_
(=]
—_
(=]

—o— Baseline
—®— Proposed

—e— Baseline
—#— Proposed

Accuracy (%)
— o W A L
(=) (=) (=) (=) (e} (e}

—o— Baseline
—#— Proposed

| | | | 0 | | | 0 | | | | |
0 100 200 300 400 0 200 400 600 0 200 400 600 800 1000
Latency constraint (ms) Latency constraint (ms) Latency constraint (ms)
(a) y = 10 MBps (b) y =5 MBps (¢) y=1MBps

Figure 8. Accuracy of face identification after computation offloading for different latency constraints and data rates.

proportionally to S and R.

Fig. 6b displays the accuracy profile of our face iden-
tification model given different Sy and Ry configurations,
which are calculated offline. This accuracy profile is gener-
ated by evaluating the accuracy on a validation dataset that
is scaled using the proposed content-aware scaling for all
420 (R, Sy) configurations.

As discussed in Sec. 3.5, given the latency constraints,
we find Cy, i.e. a subset of (Rr, S¢) configurations using
the latency profile. The accuracy profile is then looked up
to choose the (Ry, Sy) configurations with the highest ac-
curacy, which is the optimum configuration for the given
latency constraint. This configuration is used to downscale
the image in the proposed content-aware manner and is trans-
mitted to the edge server which performs the downstream
tasks.

4.5. Server-side downstream task

As a baseline design, we consider an offloading system that
transmits an input image by downscaling it without content
awareness. The entire image is downscaled to meet the
latency constraint without partitioning into ROI and non-
ROL

For the downstream task, we use off-the-shelf (pre-
trained) ArcFace [3] model for face identification. We
evaluate our approach against the baseline using the dataset
described in Sec. 4.2. In Fig. 8, accuracy scores for face
identification are plotted as a function of latency constraint
for various data rate settings. Our method outperforms the
baseline resolution scaling across all the data rates with
16.5%—17.3% higher accuracy on average.

Given the latency, our method achieves better perfor-
mance by dynamically selecting (Ry,Sy) configuration
based on the latency and accuracy profiling done in the of-
fline stage. In the baseline approach where the entire image
is downscaled to meet the latency requirement, important
details in the image (e.g. facial features in this case) are lost
due to downscaling, which hampers the accuracy of the face

mAP@OKSO 5:95
02 03 04 05

mAP@IoU05'95
02 03 04 05

h-Li

Scahng factor

Resolution factor

Scahng factor

(a) Keypoint detection (b) Instance segmentation
Figure 9. Accuracy profiling for (a) Person keypoint detection (b)
Person instance segmentation.

identification task. On the other hand, our method better
preserves the important details while meeting the latency
requirement by intelligently preserving the resolution of im-
portant regions in the image leading to better performance.
Across different data rates, the improvement in accuracy is
more pronounced when the latency requirement is stringent
as shown in Fig. 8.

5. Generalizability to Other Downstream Tasks

In this section, we show the generalizability of our approach
by applying it to other typical downstream tasks such as
person keypoint detection and instance segmentation.

The person keypoint detection task consists of simultane-
ous person detection and their keypoint localization. For this
task, we regard the pixels corresponding to persons as our
regions of interest. We use the COCO dataset [9] for train-
ing and evaluation of the approach. This dataset consists of
annotations of 17 keypoints for the instances of persons in an
image. The coarse segmentation model is trained to predict
the regions in the image that contain persons. To generate

2224

ground truth for the coarse segmentation task, we use the
instance segmentation masks in COCO annotations. If an
instance segmentation mask is present in a patch (partially
or fully), the patch is marked as ‘1’ and ‘0’ otherwise. From
the training dataset, we keep out 400 images to generate our
accuracy profile for various configurations of S and Ry as
shown in Fig. 9.

We use the same lightweight model as face ROI detection
described in Sec. 4.3. Binary cross-entropy loss is used to
train the model for 200 epochs with Adam optimizer and a
learning rate of 0.001. We use the value of cross-validation
(20% of data split from the training set) to select the best
weights with minimum validation loss. On evaluating the
trained coarse segmentation model on test data (referred to
as val2017 in the COCO dataset), we obtain an accuracy of
91.5%. Fig. 7b shows some sample outputs of the trained
model.

For the downstream task of person keypoint detection,
we use pre-trained YOLOv8n-pose model [7]. Evaluation
of our approach is done using COCO validation set. For a
given data rate and different latency constraints, images are
scaled using our proposed content-aware manner by select-
ing the optimum (R, S y) configuration. These intelligently
downscaled images are input to the keypoint detector model
and evaluated against the ground truth. This performance is
compared against the evaluation metrics obtained for images
that have been downscaled using the baseline approach. The
scores MAP@QOKS0.5:0.95 metric are shown in Fig. 10a.
Specifically in the low latency constraint region (16 ms),
our approach outperforms the baseline by 6.8% mAP score.

Similar experiments are performed on the person instance
segmentation task. Evaluation on the COCO dataset and
comparison with the baseline is shown in Fig. 10b. For low
latency constraint (16 ms), our approach outperforms the
baseline by 5.9% mAP score.

6. Conclusions

Computation offloading, if properly designed, can signifi-
cantly improve the performance and latency of DL applica-
tions on embedded vision systems. We introduced a method
to improve computation offloading from an embedded de-
vice to an edge server. Our method optimizes the scaling
of wirelessly transmitted images by identifying ROI to pre-
serve its fidelity while reducing the fidelity of non-ROI back-
ground. We used face identification as the downstream DL
task as an example and demonstrated a significant improve-
ment in accuracy under the same latency constraint. We
achieved 16.5%—17.3% higher downstream task accuracy
for three different data rates under the same latency con-
straints as the baseline naive resolution scaling. Similarly,
performance gains are obtained for other downstream tasks
of keypoint detection and instance segmentation.

For future work, our method can be extrapolated to a

0.5 4 .
Baseline
I Ours
0.4
v
)
<
E 03
2
N
S
= 0.2
<
=
0.1
0.0 -
4 7 16 23 40 46 62 82 104
Latency constraint (ms)
(a) Person keypoint detection
0.4 Baseline
I Ours
& 034
(=]
w
S
5 0.2 4
®
¥
<
g
0.1

4 7 16 23 40 62 88 188
Latency constraint (ms)

(b) Person segmentation

Figure 10. Comparison of the proposed approach with the baseline
for the downstream tasks of (a) person keypoint detection, and (b)
person segmentation for y = 5 MBps.

variety of different downstream tasks, such as pose segmen-
tation. Additionally, multiple other control knobs, such as
variable resolution adjustment for higher Ry around ROI or
variable data rate fluctuation, can be examined for accuracy
preservation.

7. Acknowledgements

This work was supported by the National Science Founda-
tion under awards CNS-1845469 and CNS-2112562, and
by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (RS-2023-00261534).

2225

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

Manish Bhattarai, Aura Rose Jensen-Curtis, and Manel
Martinez-Ramén. An embedded deep learning system for
augmented reality in firefighting applications. In Proceedings
of the IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 1224-1230, 2020. 1

Shaveta Dargan, Shally Bansal, Munish Kumar, Ajay Mittal,
and Krishan Kumar. Augmented reality: A comprehensive
review. Archives of Computational Methods in Engineering,
30(2):1057-1080, 2023. 1

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. ArcFace: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 46904699, 2019. 7

Hongpeng Guo, Shuochao Yao, Zhe Yang, Qian Zhou, and
Klara Nahrstedt. CrossRol: cross-camera region of interest
optimization for efficient real time video analytics at scale.
In Proceedings of the ACM Multimedia Systems Conference
(MMSys), pages 186-199, 2021. 2

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1314-1324, 2019. 6

Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and
Yunxin Liu. Flexible high-resolution object detection on
edge devices with tunable latency. In Proceedings of the
ACM International Conference on Mobile Computing and
Networking (MobiCom), pages 559-572, 2021. 2

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics
YOLOVS, 2023. 8

Yuangqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang,
Guogqing Harry Xu, and Ravi Netravali. Reducto: On-camera
filtering for resource-efficient real-time video analytics. In
Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM), pages
359-376, 2020. 2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 740-755. Springer, 2014. 7

Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted
real-time object detection for mobile augmented reality. In
Proceedings of the International Conference on Mobile Com-
puting and Networking (MobiCom), pages 1-16, 2019. 2
Jestis Lopez-Belmonte, Antonio-José Moreno-Guerrero,
Juan-Antonio Lépez-Nuiez, and Francisco-Javier Hinojo-
Lucena. Augmented reality in education. A scientific map-
ping in Web of Science. Interactive Learning Environments,
31(4):1860-1874, 2023. 1

Oceane Peretti, Yannis Spyridis, Achilleas Sesis, Georgios
Efstathopoulos, Anastasios Lytos, Thomas Lagkas, and Pana-
giotis Sarigiannidis. Augmented reality training, command

(13]

[14]

[15]

(16]

(17]

(18]

2226

and control framework for first responders. In South-East Eu-
rope Design Automation, Computer Engineering, Computer
Networks and Social Media Conference (SEEDA-CECNSM),
pages 1-5, 2022. 1

Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi Chen.
Delivering deep learning to mobile devices via offloading. In
Proceedings of the Workshop on Virtual Reality and Aug-
mented Reality Network (VR/AR Network), pages 42-47,
2017. 1

Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan
Lu. Visual tracking with fully convolutional networks. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), pages 3119-3127, 2015. 3,4, 5

Ziyi Wang, Xiaoyu He, Zhizhen Zhang, Yishuo Zhang, Zhen
Cao, Wei Cheng, Wendong Wang, and Yong Cui. Edge-
assisted real-time video analytics with spatial-temporal re-
dundancy suppression. IEEE Internet of Things Journal, 10
(7):6324-6335, 2022. 2

Zheng Yang, Xu Wang, Jiahang Wu, Yi Zhao, Qiang Ma, Xin
Miao, Li Zhang, and Zimu Zhou. EdgeDuet: Tiling small
object detection for edge assisted autonomous mobile vision.
IEEE/ACM Transactions on Networking, 2022. 2

Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang,
Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher. Deep
compressive offloading: Speeding up neural network infer-
ence by trading edge computation for network latency. In Pro-
ceedings of the Conference on Embedded Networked Sensor
Systems (SenSys), pages 476488, 2020. 2

James Zhang, Victor Lu, and Vikas Khanduja. The impact of
extended reality on surgery: a scoping review. International
Orthopaedics, 47(3):611-621, 2023. 1

