
ED-DCFNet: an unsupervised encoder-decoder neural model for event-driven
feature extraction and object tracking

Raz Ramon Hadar Cohen-Duwek Elishai Ezra Tsur

Neuro-Biomorphic Engineering Lab (NBEL)
Department of Mathematics and Computer Science, The Open University of Israel

elishai@nbel-lab.com

Abstract

Neuromorphic cameras feature asynchronous event-
based pixel-level processing and are particularly use-
ful for object tracking in dynamic environments. Cur-
rent approaches for feature extraction and optical flow
with high-performing hybrid RGB-events vision systems re-
quire large computational models and supervised learn-
ing, which impose challenges for embedded vision and re-
quire annotated datasets. In this work, we propose ED-
DCFNet, a small and efficient (< 72k) unsupervised multi-
domain learning framework, which extracts events-frames
shared features without requiring annotations, with compa-
rable performance. Furthermore, we introduce an open-
sourced event and frame-based dataset that captures in-
door scenes with various lighting and motion-type condi-
tions in realistic scenarios, which can be used for model
building and evaluation. The dataset is available at
https://github.com/NBELab/UnsupervisedTracking.

1. Introduction
Neuromorphic (brain-inspired) event-driven cameras

communicate transients in luminance as events. They are
characterized by high temporal resolution, high dynamic
range, sparse data representation, and low power consump-
tion of up to 10 µW [1], and are therefore well suited to em-
bedded vision. Their asynchronous event-based pixel-level
processing allows for fast movement detection in dynamic
environments with applications ranging from robotics to
star tracking [2, 7, 8, 18].

Feature detection and object tracking with an event cam-
era that generates an event stream are key for a wide range
of vision tasks [8]. Some approaches adapted conventional
frame-based feature extraction and tracking through the in-
tegration of global and local object detection and online

learning [13, 14]. Others used a parametric model to de-
tect and track moving objects that did not conform to the
camera’s motion compensation model [10,12,27]. Contem-
porary methodologies leveraged deep learning for feature
extraction, with architectures ranging from convolutional
neural networks (CNNs) [5, 6, 21] to transformers [23].

Several studies exploited the complementary features of
frames and events to improve frame-based vision track-
ing by integrating event data and frames [3]. For exam-
ple, [25] utilized a spiking neural network (SNN) to extract
event-driven features and a deep CNN to extract RGB-based
features to capture complementary visual constructs. In a
follow-up work, [24] used those cross-domain visual con-
structs to enhance object tracking performance in challeng-
ing conditions. In a later study [21], a cross-modality trans-
former was developed to further facilitate event-frames fea-
ture fusion. Those hybrid dual-modality frameworks lever-
age the strengths of frame-based vision, which excels at
capturing texture details and slow-motion sequences, and
event-based cameras, which are less sensitive to motion blur
and have a wider dynamic range thus leading to a more re-
liable object tracking.

The main disadvantages of these frameworks are the
underlying model size and the required computational re-
sources, making them unsuitable for embedded systems.
Moreover, most of these methods necessitate supervised
learning, and thus require annotated datasets.

In [20], DCFNet was introduced, demonstrating simul-
taneous learning of convolutional features and feature cor-
relation for object tracking using a lightweight neural net-
work. In a follow-up study, [19] extended DCFNet to sup-
port unsupervised training in a framework termed unsu-
pervised deep tracking (UDT). UDT utilizes bidirectional
tracking in which the model learns to localize and backtrack
a target object in successive frames using a siamese corre-
lation filter network (two identical networks that share the

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2191

https://github.com/NBELab/UnsupervisedTracking

same features). UDT demonstrated comparable real-time
tracking performance. This unsupervised learning approach
frames DCFNet into a Siamese framework in which a se-
ries of shared-weight branches are used to extract feature
representations. These representations are utilized to train
correlation filters for each feature, which are subsequently
convolved with the succeeding feature in the sequence to
produce the result. A key benefit of the Siamese DCF net-
work lies in its ability to incorporate both the feature ex-
traction CNN and the correlation filter within an end-to-end
framework.

In this work, we extended DCFNet [20] and UDT [19]
for both event-based and hybrid tracking. We used unsuper-
vised multi-domain learning to extract shared features from
event and frame data without requiring annotations. This al-
lows us to leverage a single online (real-time) tracker capa-
ble of operating in both domains: frames and events, as well
as in a hybrid setting. Our real-time tracker seamlessly in-
tegrates event features, frame features, and shared features
to enhance tracking performance while using a lightweight
neural model. Furthermore, we introduce an open-sourced
event and frame-based dataset that captures realistic indoor
scenes in various conditions, such as low light, bright light,
different motion types, and blur levels. Our dataset contains
various sequence lengths for testing long- and short-term
tracking.

2. Methods

2.1. Input representation

We adapted DCFNet, originally crafted for frame-based
input, by converting event data into a voxel grid repre-
sentation [15, 16, 26]. We modified DCFNet-tracking to
apply to both grayscale frames and events by incorporat-
ing event voxels along with their corresponding grayscale
frames. Considering N events between two successive
frames, each event ei was represented by four values: ei =
{xi, yi, ti, pi}i=1..,N , where xi, yi are the location of the
event in the sensor, ti is the event’s timestamp (in millisec-
onds) and pi is its polarity (a binary output correlated to
the increase or decrease in the intensity of the pixels). We
define t∗i as the normalized timestamp of the ith event by
t∗i = ti−tmin

tmax−tmin
(B − 1). An Event Voxel V has the di-

mensions of H × W × B and is defined using temporal
interpolation using:

Vtn =

N∑
i=0

pimax(0, 1− |tn − t∗i |) (1)

where H , W are the sensor’s height and width, n is the
temporal bin index, and B is the number of temporal bins.

2.2. Network architecture

The proposed tracking architecture (Figure 1) comprises
the following stages: 1. A lightweight encoder-decoder net-
work processes a template input (an object to track, which
can be in frames, events, or in a hybrid modality) and a
searched input (the subsequent voxel or frame for object
tracking) to extract a shared feature space; 2. The tem-
plate feature vector is converted to the Fourier domain to
produce a discriminative correlation filter (DCF); 3. The
correlation response between the DCF of the template and
the searched feature vector is calculated to derive a corre-
lation response map. In the correlation response map, the
peak response signifies the template’s location relative to
the searched input. During unsupervised training, both for-
ward and backward tracking takes place (Figure 2). During
forward tracking, the correlation between the template and
‘search1’ (the subsequent input in the sequence of frames or
voxels) is calculated. Subsequently, forward tracking is per-
formed between the objects in ‘search1’ and ‘search2’ (the
next frame or voxel in the sequence). Finally, backward
tracking is conducted between ‘search2’ and the template.
Ideally, the correlation between ‘search2’ and the template
yields a peak at the center of the correlation response map
(the original object location). The network is trained using
consistency loss to minimize the distance between forward
and backward tracking.

Figure 1. ED-DCFNet network architecture.

To extract shared features from both event voxels and
grayscale frames, we used an Encoder-Decoder neural
network, where the event voxels have one encoder, the
grayscale frames have another encoder, and they share the
same decoder (Figure 1). While the first layer’s size of the
event encoder is B × 3 × 32 × 32, the size of the corre-
sponding layer in the grayscale frames is 1 × 3 × 32 × 32
(the number of color channels). In both encoders, the sec-
ond convolution layer 32×3×32×64 is followed by a max
pooling layer. The decoder consists of two 2× 2× 64× 32

2192

Figure 2. ED-DCFNet unsupervised learning architecture.

and 2×2×32×32 convolution layers. In total, the network
features only 70K parameters.

DCFNet [20] is a shallow CNN that contains two 3 ×
3× 3× 32 and 3× 3× 32× 32 convolution layers. We in-
corporated the original DCFNet network with our Encoder-
Decoder network, as shown in Figure 1. This architec-
ture, we termed ED-DCFNet (Encoder-Decoder DCFNet)
uses two DCFNet networks as skip connections. It ampli-
fies the extracted features by merging the features derived
from each input domain via the DCFNet networks, with the
encoder-decoder network-derived shared features.

2.3. Unsupervised deep tracking

Annotating event-camera data, which is required for su-
pervised learning, presents a prominent challenge for the
design of neural trackers. Here, we extended DCFNet [20]
and UDT [19] to provide an unsupervised neural model. To
train the network we used sequences of event voxels along
with their corresponding grayscale frames. Each sequence
S contained both a sequence of event voxels V and a se-
quence of corresponding grayscale frames G, where

S = [VT , VS1 , VS2], [GT , GS1 , GS2] (2)

In this context, T denotes the selected template input (the
tracked object), while S1 and S2 donate the selected search
inputs (search1 and search2), the subsequent frames or vox-
els where the object will be searched. We introduced each
input into its corresponding encoder, to derive an encoder

vector:

EV : ∀V : EV = EncoderEvents(V) (3)

EG : ∀G : EG = EncoderGrayscale(G) (4)

The encoder vectors (EV and EG) were introduced into
the Decoder to extract shared feature vectors:

FVDec
= Deccoder(EV) = Decoder(EG) = FGDec

(5)

Each input was also introduced to a DCFNet network to
derive feature vectors:

∀V : FV = FVDec
+ FVDCF

(6)

∀G : FG = FGDec
+ FGDCF

(7)

Finally, the derived features were combined into a single
feature:

F = FG + FV (8)

creating the merged features sequence [FT , FS1 , FS2].
A DCF was calculated using the template feature vector

within the Fourier domain, as follows:

DCF (X,Y) = F−1(
F (X)⊙ F ⋆(Y)

F ⋆(X)⊙ F (X) + λ
) (9)

where X is the feature vector to correlate with, Y is the la-
bel, ⊙ is the element-wise product, F (·) is the Discrete

2193

Fourier Transform (DFT), F−1(·) is the inverse DFT, ⋆
denotes complex-conjugate operation, and λ is a regular-
ization parameter. We used (9) to calculate DCFT =
DCF (FT , YT), where YT is a pseudo-sharp Gaussian label
centered at the middle of the input, frame or voxel. The cor-
relation response between the DCF of the template and the
S1 feature vector (RT→S1) was then calculated. The dis-
criminative correlation response [4] was calculated using:

R(X,Y) = X ∗ Y = F−1(F ⋆(X)⊙ F (Y)) (10)

where ∗ denotes a circular convolution. We used (10) to
calculate RT→S1 = R(DCFT , FS1). Using Equations
(9), (10) we calculated DCFS1 = DCF (FS1 , RT→S1)
and the discriminative correlation response between S1 and
S2:RS1→S2

= R(DCFS1
, FS2

).We termed RT→S1
and

RS1→S2
as forward tracking.

During backward tracking, we calculated the discrimi-
native correlation response opposite to the sequence order,
using Equations (9), (10): DCFS2 = DCF (FS2 , Rs1→S2)
and RS2→T = R(DCFS2

, FT). The backward response
RS2→T is expected to be a sharp Gaussian profile, aligning
with the expectation that the tracker returns to its original lo-
cation in the center of the voxel. To achieve this, the model
was trained to minimize the consistency loss, as described
below.

2.4. Consistency loss

With the expectation that the backward tracking will
backtrack the tracker to its original location, the consistency
loss, LC , was calculated using:

LC = ||RS2→T − YT ||22 (11)

This loss enables unsupervised feature extraction. Since the
loss was computed using the discriminative correlation re-
sponses rather than with the actual inputs, we could train
the model and use it to track objects within multi-domain
input, as well as within only grayscale frames or event vox-
els. Multi-domain training allows the definition of weighted
average loss, one for each domain, while using the RS1→S2

and the separated feature vectors, FG, FV to perform back-
ward tracking, as follows:

DCFG[S2] = DCF (FG[S2], RS1→S2)

DCFV [S2] = DCF (FV [S2], RS1→S2
)

(12)

RG[S2]→G[T] = R(DCFG[S2], FG[T])

RV [S2]→V [T] = R(DCFV [S2], FV [T])
(13)

And finally:

LC = α||RS2→T − YT ||22
+β||RG[S2]→G[T] − YT ||22
+γ||RV [S2]→V [T] − YT ||22

(14)

a

b

c

d

Figure 3. Examples of the real-event-camera-indoor dataset; a)
Regular light, static object, and a moving camera; b) Moving ob-
ject with a static camera; c) Overexposed imagery with motion
blur; d) Underexposed imagery.)

where here we chose α = 0.5, β = 0.3, γ = 0.2.

2.5. Training data

We used ESIM [11] to synthetically generate events from
frame-based video, where ESIM provides both events and
grayscale frames for the same video. The process involves
creating a virtual 3D scene and simulating the movement
of a camera within it to generate a stream of events, inten-
sity frames, and depth maps. Thousands of rendered im-
ages were generated along the specified trajectory, ensuring
minimal motion between consecutive images. Each pixel
retained the timestamp of the last event triggered at that
location, allowing for time interpolation of image intensi-
ties and detecting brightness changes between images. This
method effectively provides continuous timestamps, simu-
lating asynchronous event generation. Like [16], we used
objects from the COCO [9] dataset to simulate the move-

2194

GT ED-DCFNet*, Combined DCFNet, Frames ED-DCFNet, Frames

Figure 4. Selected results from the grayscale frames datasets, where the first row showcases scenes from OTB2015 and the second row
showcases scenes from our real-event-camera-indoor dataset

ment of trackable objects, with the objects being randomly
selected from the dataset. In the generated videos (111
videos, each 10 seconds in length), the objects’ motion was
restricted to affine transformations such as translations, ro-
tations, and dilations at different velocities. During training,
a wide range of scene dynamics was introduced to the net-
work, which promoted the network’s generalization from
static images to arbitrary camera motions. During the train-
ing process, sequence augmentation (described below) was
used to increase the veracity of the data.

2.6. Sequence augmentations

We employed event-voxel augmentations (AUG) during
training to create a variety of possible movements, and ap-
ply these augmentations for both the voxel and the grayscale
frames sequences. The augmentations applied to the dataset
included: 1. Reversing sequence, which reversed the order
of the voxels sequence; 2. Opposite polarities sequence,
where each event had the opposite polarity; 3. Random
order sequence, which randomly chooses the order of the
search voxels in the sequence; and 4. Fastback sequence,
where the last search voxel or frame was replaced by the
template voxel or frame.

2.7. Dataset acquisition

Several real event-tracking datasets have been intro-
duced in the literature [5, 10, 24]. However, a portion of
these datasets remain unavailable to the public. Moreover,
these datasets often consist of merely a few frames per video
and contain scenes that are not relevant to typical camera us-
age scenarios. Therefore, we captured and built a new event
dataset using the DAVIS346 [17], an event camera with a
spatial resolution of 260X346. Our dataset contains 19 dif-
ferent sequences captured in two main scenarios: a mov-
ing object with a static camera and a moving camera with

a static object, in various conditions, such as daylight, low
light, fast motion, motion blur, over and under exposure,
and reflective scenery and transparent objects. We man-
ually annotated the dataset. The dataset sequence lengths
vary when the shortest contained 8 frames and the longest
contained 240 frames. Figure 3 presents examples from the
dataset and it is available in project’s repository.

2.8. Real time object tracking

A trained network can be deployed as a real time (online)
tracker. In the frame-based implementation of the online
learning tracker, a DCF (Equation 9) between two consecu-
tive frames can be updated as follows:

Nett = (1− αt)Nett−1 + αtNet (15)

where αt ∈ [0, 1] is the linear interpolation coefficient, and:

Net = DCFNetEvents + Enc−DecEvents

Net = DCFNetFrames + Enc−DecFrames

(16)

The online DCF tracker works as follows: after receiving
the initialized bounding box, the tracker updates the DCF
according to this patch. Afterward, for all incoming vox-
els, we cut around the current patch a series of windows
with growing sizes, where each window transverses back
to the network, retrieving a response map. The maximum
correlation score of each map is calculated, while each is
penalized by its scale factor. As soon as the tracker has de-
termined the best window for continuing tracking, we up-
date the tracker’s DCF, window size, and window position
in preparation for the next voxel search.

As shown in Figure 1, we can partition the new archi-
tecture into distinct domains and leverage each one as an

2195

GT ED-DCFNet Events DCFNet Events

Figure 5. Selected results from the events datasets, where the first row showcases scenes from OTB2015 and the second row showcases
scenes from our real-event-camera-indoor dataset.

independent tracker. The combined-domain network works
as follows:

Net = DCFNetEvents+

Enc−DecEvents + Enc−DecFrames+

DCFNetFrames

(17)

3. Results
3.1. Evaluation metrics

To evaluate the performance of our ED-DCFNet tracker,
we correlated the annotated ground truth (GT) and the pre-
dicted bounding boxes using the following metrics: 1. Suc-
cess score – the percentage of overlap between the predicted
and GT bounding boxes; 2. Precision score – the distance
between the centers of the predicted and the GT bounding
boxes; and 3. Success rate – the proportion of the predicted
bounding boxes that have at least a 50% overlap with the
GT.

Success
score

Success
Rate

Precision
Score

DCFNet Events 0.2731 0.303 0.3665
DCFNet Frames 0.4575 0.5449 0.5728
ED-DCFNet
Events 0.2987 0.3437 0.3894

ED-DCFNet
Frames 0.4326 0.5027 0.5407

ED-DCFNet
combined 0.4634 0.5511 0.5756

VisEvent 0.33

Table 1. Evaluation of the OTB2015 dataset using VisEvent [21],
DCFNet grayscale frames [26] and DCFNet events. Higher scores
indicate superior tracking performance.

Success
score

Success
Rate

Precision
Score

DCFNet Events 0.5787 0.6363 0.7071
DCFNet Frames 0.7843 0.9227 0.8739
ED-DCFNet
Events 0.5995 0.6693 0.7168

ED-DCFNet
Frames 0.785 0.9231 0.874

ED-DCFNet
combined 0.785 0.9231 0.874

ED-DCFNet*
combined 0.7873 0.9226 0.8729

Table 2. Evaluation of the real-event-camera-indoor dataset using
the DCFNet grayscale frames [26] and DCFNet events. Higher
scores indicate superior tracking performance.

3.2. Testing datasets

We tested our architecture on the OTB2015 dataset [22].
The OTB2015 dataset contains 100 videos, recorded at 30
fps, featuring a variety of attributes, including illumination
variation and motion blur. The videos in the dataset are fully
annotated and depict a wide range of scenarios, from small
moving objects to static objects with camera movement. We
used ESIM [11] to convert the dataset into events, employ-
ing contrast thresholds of 0.15 for both negative and positive
contrasts.

We compared our results with the original DCFNet
[20] and with DCFNet-events [21]. We unsupervisedly
trained DCFNet with our grayscale training data (the origi-
nal DCFNet was trained with color [19]) and the DCFNet-
events with the OTB2015 [22] dataset. Table 1 shows the
evaluation results, comparing the different modalities of our
framework with DCFNet [20], and DCFNet-event. Results

2196

Sequence
Name

Changing
scales

Long term
moving object

Transparent
glass

Under-exposure
moving object

Under-exposure
moving camera

Events 0.6232 0.2984 0.6156 0.4159 0.2504
Frames 0.6896 0.8926 0.4546 0.6491 0.8674

Combined 0.6896 0.8926 0.4546 0.6491 0.8674
Combined* 0.7032 0.888 0.4557 0.6547 0.8396

Table 3. The success scores of our tracker on the real-event-camera-indoor dataset, showing some of the challenging scenes results.

show that our proposed architecture, which combines both
events and grayscale frames, outperformed [19], demon-
strating that adding events-driven features enhances perfor-
mance. We further compared our design to VisEvent [21],
orders of magnitude larger supervised transformer. While
our design surpasses the performance of DCFNet-events, it
falls short compared to the VisEvent [21].

We further assessed the performance of ED-DCFNet on
our new real-event-indoor dataset. The scenes detailed in
Table 3 fall into two distinct categories: those featuring a
moving object with a stationary camera and those depict-
ing a moving camera with a stationary object. These scenes
encompass diverse lighting and camera conditions. For in-
stance, the ”changing scales” scene portrays rapid move-
ment toward and away from a stationary object, while the
”long-term moving object” spans 240 frames, capturing a
moving object with a stationary camera, where the object
maneuvers in various directions and scales. Scenes such
as those involving under-exposure, characterized by fewer
events, and ”Transparent glass,” which features a moving
camera with a transparent object, exhibit challenges includ-
ing overexposure, reflective light, and rapid movement with
motion blur. The results, shown in Figure 3, indicate that
various scenarios may necessitate different tracking meth-
ods. For instance, in the ”transparent glass” scenario, where
the video contains transparent objects, the events tracker
outperforms both grayscale and hybrid trackers. However,
in other scenarios, the hybrid tracker may perform better,
while in some cases, the frame-based tracker may exhibit
superior performance. Table 2 showcases the evaluation
outcomes of the entire dataset. Our ED-DCFNet archi-
tecture exhibited strong performance, achieving a success
score of 0.785.

As depicted in Tables 2, 3, both the ED-DCFNet Frames
and the ED-DCFNet combined achieved close results, indi-
cating that the grayscale frame features dominate over the
event voxel features. To mitigate this imbalance, we further
propose a method to attenuate the signal of the grayscale
frame features by modifying Equation 17 as follows:

Net∗ = DCFNetEvents+

Enc−DecEvents + Enc−DecFrames+

DCFNetFrames ∗ p
(18)

where p represents a scale factor determining the degree of
incorporation of the features into the overall feature rep-
resentation. Here we chose p = 0.3. Results, marked
with ’*’, were incorporated into Tables 2, 3, revealing only
marginal enhancements in the success scores.

Figure 4 illustrates tracking outcomes on both the
OTB2015 and our real-event-camera-indoor datasets. In
the figure, the green bounding box represents the ground
truth (GT), the white bounding box indicates the tracker
results achieved with ED-DCFNet* when applied to both
frames and events, the blue bounding box depicts the re-
sults obtained using frames tracking with DCFNet, and
the red bounding box shows frames tracking with ED-
DCFNet. Similarly, Figure 5 demonstrates tracking results
using examples from both the OTB2015 and our real-event-
camera-indoor datasets, focusing on event-driven models:
ED-DCFNet and DCFNet, highlighting ED-DCFNet‘s en-
hanced tracking performance.

3.3. Ablation studies and analyses

Success
score

Success
Rate

Precision
Score

3
bi

ns Events 0.1264 0.1355 0.1828
Frames 0.4445 0.5259 0.5523
Combined 0.4354 0.5163 0.538

5
bi

ns Events 0.2987 0.3437 0.3894
Frames 0.4326 0.5027 0.5407
Combined 0.4634 0.5511 0.5756

9
bi

ns Events 0.1936 0.2247 0.2498
Frames 0.4123 0.4784 0.5262
Combined 0.4613 0.5544 0.5725

Table 4. Result of using different numbers of temporal bins with
ED-DCFNet on the OTB2015 dataset.

To further evaluate ED-DCFNet, we compared the
tracker performance with different numbers of temporal
bins. Tables 4 and 5 present ED-DCFNet’s tracking per-
formance on both OTB2015 and our real-events-indoor, re-
spectively, employing 3, 5, and 9 bins. We further evalu-
ated ED-DCFNet*, on each configuration, tuning the p pa-
rameter to p = 0.4 for 3 bins, p = 0.3 for 5 bins, and
p = 0.1 for 9 bins. We assessed each configuration with

2197

Success
score

Success
Rate

Precision
Score

3
bi

ns

Events 0.5343 0.5974 0.6736
Frames 0.7823 0.9216 0.872
Combined 0.7823 0.9216 0.872
Combined* 0.7851 0.9226 0.8707

5
bi

ns

Events 0.5995 0.6693 0.7168
Frames 0.785 0.9231 0.874
Combined 0.785 0.9231 0.874
Combined* 0.7873 0.9226 0.8729

9
bi

ns

Events 0.5072 0.5315 0.6388
Frames 0.7849 0.9253 0.8726
Combined 0.7849 0.9253 0.8726
Combined* 0.7851 0.9229 0.8725

Table 5. Result of using different numbers of temporal bins with
ED-DCFNet on our real-event-camera-indoor dataset.

event-based, frame-based, and combined inputs, using suc-
cess score, success rate, and precision score. Results show
that the ED-DCFNet* (Equation 18) enhances the success
score, while showing a slight decrease in the other metrics.
Note that the results shown in Tables 1, 2 and 3 were gained
using B = 5 temporal bins.

Additionally, we analyzed all ED-DCFNet variations
(events, frames, and their fusion) and compared their per-
formance with DCFNet Events and DCFNet Frames (Table
6). The comparison was based on several metrics, includ-
ing the number of learnable parameters (network size), net-
work latency, working memory usage per forward or back-
ward pass, and weight storage size for each network. Our
proposed ED-DCFNet, which integrates two DCFNets and
an Encoder-Decoder architecture with a single Decoder is
larger than the individual DCFNets (Figure 1). However,
despite its increased memory footprint, the proposed archi-
tecture maintains low latency, similar to that of the stan-
dalone DCFNets.

Network
size

Latency
(mS)

Memory
(MB)

Storage
(KB)

ED-DCFNet
Events 43,040 6.5 28.12

572ED-DCFNet
Frames 40,736 5.0 27.58

ED-DCFNet
Combined 71,424 10.3 53.17

DCFNet
Events 10,144 6.3 8.63 83

DCFNet
Frames 9,568 3.78 8.49 78

Table 6. Performance analysis of the ED-DCFNet architecture, the
DCFNet Events, and the DCFNet Frames.

4. Conclusions
In this work, we propose an unsupervised multi-domain

learning algorithm tailored for object tracking across both
events and frames. Our methodology capitalizes on un-
supervised training techniques, enabling the utilization
of non-annotated and synthetic datasets. Leveraging
a lightweight encoder-decoder architecture, our network
adeptly learns shared features from both domains, enhanc-
ing its versatility and adaptability. With merely 70K pa-
rameters, our model is lightweight and resource-efficient,
making it adequate for deployment in energy-constrained
embedded systems.

References
[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jef-

frey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexander
Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al.
A low power, fully event-based gesture recognition system.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7243–7252, 2017. 1

[2] Anastasios N Angelopoulos, Julien NP Martel, Amit PS
Kohli, Jorg Conradt, and Gordon Wetzstein. Event based,
near eye gaze tracking beyond 10,000 hz. arXiv preprint
arXiv:2004.03577, 2020. 1

[3] Avinoam Bitton, Hadar Cohen Duwek, and Elishai Ezra
Tsur. Adaptive attention with a neuromorphic hybrid frame
and event-based camera. In 2022 IEEE 21st International
Conference on Cognitive Informatics & Cognitive Comput-
ing (ICCI* CC), pages 242–247. IEEE, 2022. 1

[4] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui. Visual object tracking using adaptive corre-
lation filters. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 2544–2550.
IEEE, 2010. 4

[5] Yujeong Chae, Lin Wang, and Kuk-Jin Yoon. Siamevent:
Event-based object tracking via edge-aware similar-
ity learning with siamese networks. arXiv preprint
arXiv:2109.13456, 2021. 1, 5

[6] Haosheng Chen, David Suter, Qiangqiang Wu, and Hanzi
Wang. End-to-end learning of object motion estimation from
retinal events for event-based object tracking. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
pages 10534–10541, 2020. 1

[7] Hadar Cohen Duwek, Avinoam Bitton, and Elishai Ezra
Tsur. 3d object tracking with neuromorphic event cameras
via image reconstruction. In 2021 IEEE Biomedical Circuits
and Systems Conference (BioCAS), pages 1–4. IEEE, 2021.
1

[8] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al.
Event-based vision: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(1):154–180, 2020. 1

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

2198

Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 4

[10] Anton Mitrokhin, Cornelia Fermüller, Chethan Paramesh-
wara, and Yiannis Aloimonos. Event-based moving object
detection and tracking. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 1–9.
IEEE, 2018. 1, 5

[11] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Del-
bruck, and Davide Scaramuzza. The event-camera dataset
and simulator: Event-based data for pose estimation, visual
odometry, and slam. The International Journal of Robotics
Research, 36(2):142–149, 2017. 4, 6

[12] Yonhon Ng, Yasir Latif, Tat-Jun Chin, and Robert Mahony.
Asynchronous kalman filter for event-based star tracking.
In European Conference on Computer Vision, pages 66–79.
Springer, 2022. 1

[13] Bharath Ramesh, Shihao Zhang, Zhi Wei Lee, Zhi Gao, Gar-
rick Orchard, and Cheng Xiang. Long-term object tracking
with a moving event camera. In Bmvc, page 241, 2018. 1

[14] Bharath Ramesh, Shihao Zhang, Hong Yang, Andres Ussa,
Matthew Ong, Garrick Orchard, and Cheng Xiang. e-tld:
Event-based framework for dynamic object tracking. IEEE
Transactions on Circuits and Systems for Video Technology,
31(10):3996–4006, 2020. 1

[15] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick
Barnes, Robert Mahony, and Davide Scaramuzza. Fast im-
age reconstruction with an event camera. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 156–163, 2020. 2

[16] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza,
Tom Drummond, Nick Barnes, Lindsay Kleeman, and
Robert Mahony. Reducing the sim-to-real gap for event cam-
eras. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXVII 16, pages 534–549. Springer, 2020. 2, 4

[17] Gemma Taverni, Diederik Paul Moeys, Chenghan Li, Celso
Cavaco, Vasyl Motsnyi, David San Segundo Bello, and Tobi
Delbruck. Front and back illuminated dynamic and active
pixel vision sensors comparison. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 65(5):677–681, 2018.
5

[18] Elishai Ezra Tsur. Neuromorphic Engineering: The Scien-
tist’s, Algorithms Designer’s and Computer Architect’s Per-
spectives on Brain-Inspired Computing. CRC Press, 2021.
1

[19] Ning Wang, Wengang Zhou, Yibing Song, Chao Ma, Wei
Liu, and Houqiang Li. Unsupervised deep representation
learning for real-time tracking. International Journal of
Computer Vision, 129:400–418, 2021. 1, 2, 3, 6, 7

[20] Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, and
Weiming Hu. Dcfnet: Discriminant correlation filters net-
work for visual tracking. arXiv preprint arXiv:1704.04057,
2017. 1, 2, 3, 6

[21] Xiao Wang, Jianing Li, Lin Zhu, Zhipeng Zhang, Zhe Chen,
Xin Li, Yaowei Wang, Yonghong Tian, and Feng Wu. Visev-
ent: Reliable object tracking via collaboration of frame and

event flows. IEEE Transactions on Cybernetics, 2023. 1, 6,
7

[22] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-
ing benchmark. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(9):1834–1848, 2015. 6

[23] Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Fe-
lix Heide, Baocai Yin, and Xin Yang. Spiking transform-
ers for event-based single object tracking. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pages 8801–8810, 2022. 1

[24] Jiqing Zhang, Xin Yang, Yingkai Fu, Xiaopeng Wei, Bao-
cai Yin, and Bo Dong. Object tracking by jointly exploiting
frame and event domain. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 13043–
13052, 2021. 1, 5

[25] Jiqing Zhang, Kai Zhao, Bo Dong, Yingkai Fu, Yuxin Wang,
Xin Yang, and Baocai Yin. Multi-domain collaborative fea-
ture representation for robust visual object tracking. The Vi-
sual Computer, 37(9-11):2671–2683, 2021. 1

[26] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based learning of
optical flow, depth, and egomotion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 989–997, 2019. 2, 6

[27] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis.
Event-based visual inertial odometry. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5391–5399, 2017. 1

2199

	. Introduction
	. Methods
	. Input representation
	. Network architecture
	. Unsupervised deep tracking
	. Consistency loss
	. Training data
	. Sequence augmentations
	. Dataset acquisition
	. Real time object tracking

	. Results
	. Evaluation metrics
	. Testing datasets
	. Ablation studies and analyses

	. Conclusions

