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S1. Latent-Weight-Free Training of MBNs

One of the contributions of this work is to bring the latent-
weight-free optimizer (BOP [4]) to the multi-bit network
(MBN) domain. To better understand the effect of BOP
on MBNs and its influence on the Top-1 accuracy, Tab. 1
shows an ablation study for different network architec-
tures and datasets trained with different training hyper-
parameters. The ablation study is performed across two dif-
ferent optimizers (ADAM [5] and AMSGrad [8]) training
the network parameters for batch norm (θBN) and operation-
oriented scaling factors (θSF), while the weight parameters
(θW) are trained with BOP [4]. For the latter, we consider
different values for the adaptivity rate φ and the thresh-
old τ steering the learning process of the weights, while
the learning rate η is considered in the optimizer scope of
ADAM or AMSGrad. The learnings from this ablation
study led to the training hyper-parameters chosen for the
networks presented in the main paper. For CIFAR-10 [6],
50K train and 10K test images (32 × 32 pixels) are used to
train and evaluate the multi-bit configurations of ResNet-
20/56 [3]. ImageNet [9] consists of ∼ 1.28M train and
50K validation images (256 × 256 pixels), where multi-
bit configurations of ResNet-18 [3] are trained and evalu-
ated. The presented network architectures for CIFAR-10
are trained for 500 epochs with varying initial learning rates
η ∈ {1e-2; 1e-3}, adaptivity rates φ ∈ {1e-3; 1e-4} and
thresholds τ ∈ {1e-6; 1e-7; 1e-8}. η and φ are decayed
by 0.1 every 100 epochs (step-wise). For ImageNet ex-
periments, the network configurations are trained for 100
epochs, where we vary the threshold τ ∈ {1e-7; 1e-8} and
the initial adaptivity rate φ = 1e-4 is decayed linearly to
the final φ ∈ {1e-6; 1e-8} for weight training. To update
the remaining network parameters (θBN, θSF), we explore
the effect of the optimizers ADAM and AMSGrad, where
the initial learning rate is η ∈ {1e-3; 2.5e-3} decayed lin-
early down to η ∈ {5e-6; 5e-8}. Note that all multi-bit
network configurations are initialized with pre-trained full-
precision network parameters, as is standard in [7]. The

bit-width of weights and activations is denoted as IW and
IA. From Tab. 1, we observe that one particular hyper-
parameter configuration (η=1e-3, φ=1e-3 and τ=1e-7) is
consistently outperforming the others on CIFAR-10 for both
networks ResNet-20/56. For ImageNet, both AMSGrad
configurations significantly outperformed all four ADAM
optimizer configurations. This aligns with existing liter-
ature suggesting AMSGrad for the complex task of Ima-
geNet [4, 8].

S2. Pruning Specific Training Parameters
Start (tstart) and end (tend) of pruning, are training spe-
cific hyperparameters, which define the warm-up phase, the
pruning phase, and the fine-tuning phase of PaBT. The total
epochs are taken from [4], then the choice of pruning start
and end points was done empirically, such that sufficient
epochs are dedicated for the MBN to warm-up to a reason-
able accuracy, followed by a long enough pruning stage that
enables the gradual convergence down to a BNN. Finally, in
the fine-tuning stage we use the remaining epochs to retrain
until the accuracy is recovered. We found that extending the
total number of epochs did not result in improved accuracy.

S3. Pruning as a Binarization Technique for
Semantic Segmentation
Semantic segmentation is a crucial task which provides
pixel-wise predictions in many application fields such as
robotics and autonomous driving. Due to typically larger
input image resolutions and additional layers in network
architectures (bottleneck, Atrous Spatial Pyramid Pooling
(ASPP) block and decoder layers), semantic segmentation
surpasses the computational complexity of image classifi-
cation. We show the scalability of PaBT to the task of se-
mantic segmentation, where we adopt the DeepLab-based
CNN architecture [1] with a ResNet-18 backbone. The
last two residual blocks use a dilation rate of 2, while
the ASPP blocks incorporate dilation rates {1, 8, 12, 18}.
For all experiments, we set the input image resolution to
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Table 1. Influence of the binary optimizer (BOP) training hyper-
parameters, adaptivity rate φ and threshold τ , to train multi-bit
networks in terms of Top-1.

Model/ Optimizer IW /IA η
BOP Parameter Top-1

Dataset φ τ [%]
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0

SGD (θ) 8/8 0.1 - - 92.4

ADAM (θBN,SF),
BOP (θW) 3/3

1e-2
1e-3

1e-6 89.63
1e-7 89.17
1e-8 88.82

1e-4 1e-6 86.84
1e-7 89.73

1e-3 1e-3
1e-6 89.74
1e-7 90.00
1e-8 89.07
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0

SGD (θ) 8/8 0.1 - - 93.89

ADAM (θBN,SF),
BOP (θW) 1/1

1e-2 1e-3 1e-6 83.95
1e-7 81.96

1e-4 1e-8 86.78

1e-3 1e-3 1e-6 87.40
1e-7 87.52

1e-4 1e-8 87.34

ADAM (θBN,SF),
BOP (θW) 3/3

1e-2
1e-3

1e-6 89.91
1e-7 89.63
1e-8 89.07

1e-4 1e-7 89.86
1e-8 89.31

1e-3 1e-3 1e-6 90.73
1e-7 91.74

1e-4 1e-7 90.47
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SGD (θ) 8/8 0.1 - - 69.30

ADAM (θBN,SF),
BOP (θW) 3/3

[2.5e-3, 5e-6] [1e-4, 1e-6] 1e-7 59.78
1e-8 58.01

[2.5e-3, 5e-8] [1e-4, 1e-8] 1e-7 58.63
1e-8 60.00

AMSGrad (θBN,SF),
BOP (θW) 3/3 [2.5e-3, 5e-8] [1e-4, 1e-8] 1e-8 62.60

[1e-3, 5e-8] 62.86

512 × 1024, where we quantize the ResNet-18 backbone
as well as the decoder layers as they hold the majority
of computational complexity. Tab. 2 presents the investi-
gation of base-oriented (α and β) and operation-oriented
(γ) scaling factors, different optimizer settings and PaBT-
based quantization of MBNs, on the semantic segmentation
dataset CityScapes [2] in terms of bit-widths and mIoU.
PaBT shows its improvements when compared to experi-
ments with network parameters trained using AMSGrad [8].
PaBT also outperforms equivalent 1 × 1 models which use
the binary optimizer (BOP) [4] to train weights in a latent-
free manner, and train batch norm (θBN ) and scaling factors
(θSF ) with AMSGrad. PaBT is able to produce dominating
solutions (mIoU) through pruning an over-parameterized
MBN from M=N=3 down to M=N=1, resulting in an im-
provement of 3.57 p.p. compared to directly learning a
DeepLab with 1-bit for weights and activations with BOP
training for weights and AMSGrad optimizer for θBN and
θSF .

Table 2. Influence of the scaling factors θSF, the used opti-
mizer and operation level pruning in terms of number of bit-
operations (bit-OPs) and mIoU for the semantic segmentation task
on CityScapes [2].

Model/
θSF

Optimizer Operation Bit-Width mIoU
Dataset (Parameter Scope) Pruning IW IA [%]
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- ADAM (θ) ✗ 8 8 68.53

α, β ADAM (θ) ✗

1 1

50.95
γ AMSGrad (θ) ✗ 50.21

γ
AMSGrad (θBN,SF ),

✗ 51.10BOP (θW )

α, β AMSGrad (θ) ✗

3 3

60.15
γ AMSGrad (θ) ✗ 59.85

γ
AMSGrad (θBN,SF ),

✗ 60.61BOP (θW )

γ
AMSGrad (θBN,SF ),

✓ 1 1 54.67BOP (θW )
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