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Figure 1. SUNDIAL scene and lighting disentanglement. SUNDIAL resolves ambiguous direct, ambient, and complex illumination
effects and estimates accurate surface albedo and transient features in satellite imagery, resulting in high-quality renders under novel
viewpoints and sun positions. By adapting priors from remote sensing literature, SUNDIAL adheres to a more physically-accurate scene
rendering, and enables joint estimation of scene geometry and sun direction.

Abstract

Estimating 3D geometry of terrain from satellite im-
agery is essential for environmental science, urban plan-
ning, agriculture, and disaster response. However, tradi-
tional 3D modeling techniques face unique challenges in the
remote sensing context, including limited multi-view base-
lines over extensive regions, varying direct, ambient, and
complex illumination conditions, and time-varying scene
changes across captures. In this work, we introduce SUN-
DIAL, a comprehensive approach to 3D reconstruction of
satellite imagery using neural radiance fields. We jointly
learn satellite scene geometry, illumination components,
and sun direction in this single-model approach, and pro-
pose a secondary shadow ray casting technique to 1) im-
prove scene geometry using oblique sun angles to render
shadows, 2) enable physically-based disentanglement of
scene albedo and illumination, and 3) determine the com-
ponents of illumination from direct, ambient (sky), and com-
plex sources. To achieve this, we incorporate lighting cues
and geometric priors from remote sensing literature in a

neural rendering approach, modeling physical properties of
satellite scenes such as shadows, scattered sky illumination,
and complex illumination of vegetation and water. We eval-
uate the performance of SUNDIAL against existing NeRF-
based techniques for satellite scene modeling and demon-
strate improved scene and lighting disentanglement, novel
view and lighting rendering, and geometry and sun direc-
tion estimation on challenging scenes with small baselines,
sparse inputs, and variable illumination.

1. Introduction
1.3 million images are taken daily from satellites orbit-
ing the Earth [31]. This imagery has wide-scale applica-
tions across fields of environmental science, urban develop-
ment, agriculture, and disaster response. Extracting 3D in-
formation from this remote sensing imagery, in particular,
remains an open problem with significant impact in each
field. For example, 3D scene understanding can help pro-
vide greater spatial awareness and context while monitoring
global phenomena such as deforestation, climate change,
and urban expansion.
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3D scene reconstruction from satellite images, however,
presents multiple challenges. First, satellite captures typ-
ically have limited multi-view baselines over large areas,
with multi-view cues only visible in low-altitude, high-
resolution, off-nadir satellite captures [25]. Second, im-
ages captured over time may contain transient, or chang-
ing, features such as shifting cars or construction. Third,
illumination in satellite imagery includes components of di-
rect, atmospheric, reflected, and scattered irradiance [2];
each component can vary greatly across captures, causing
inconsistencies across images. Fourth, accurately estimat-
ing camera pose and relative sun direction can be challeng-
ing, especially due to small baselines and large scene dis-
tances. Small errors in these poses can propagate through
3D modeling resulting in large geometry estimation errors
[26]. Despite these challenges, properly disentangling 3D
scene geometry and illumination components is essential to
minimize ambiguity and loss of spatial, lighting, and tem-
poral information. [23, 39, 45].

To overcome the unique constraints of 3D satellite im-
agery, shadow-based height estimation has been proposed
to overcome insufficient multi-view samples, harnessing
oblique sun angles and shadow rendering to uncover hidden
scene geometry [20, 22]. Recent techniques have applied
neural radiance fields (NeRFs) [30] to model and separate
these shadows in satellite imagery. S-NeRF [13] first pro-
posed estimating a sun-dependent shading scalar across im-
ages; SatNeRF [27] extended this work, modeling transient
features in addition to shading. EO-NeRF [27] then pro-
posed a geometric NeRF-based shadow rendering approach,
casting secondary sun-directed rays to determine regions
with primary occluders (i.e. in shadow). However, these
existing methods largely overlook the unique aspects of illu-
mination specific to satellite-captured scenes. In particular,
multi-bounce irradiance and reflections can create complex,
soft shadows that cannot be modeled only with secondary
ray casting. As a result, these approaches struggle to accu-
rately decompose illumination and scene geometry (Figure
5), causing ambiguities in separation. Overcoming these
ambiguities is critical; accurate shadow separation in satel-
lite imagery can help identify occluded objects [39], enable
more accurate land cover classification [23], and uncover
shadow-related surface temperature cooling effects [50].

In this work, we present SUNDIAL, a NeRF-based
framework that reduces ambiguity in satellite scene decom-
position by estimating three key illumination components:
direct illumination, ambient illumination, and complex il-
lumination. We propose a geometric shadow ray casting
approach, using the transmittance of these rays to render
physically-accurate, disentangled shadows. However, in ad-
dition to estimating direct and indirect illumination compo-
nent, we use these secondary rays to predict an additional
complex illumination component that captures the challeng-

ing, multi-bounce light transport of satellite scenes that may
be computationally infeasible to explicitly model. By es-
timating this additional scene lighting component, we are
also able to reduce ambiguity in shadow rendering, thereby
improving estimated scene geometry and lighting decom-
position in satellite-captured scenes.

We propose several techniques to achieve this scene de-
composition. First, we use secondary shadow ray trans-
mission to estimate the components of illumination at a
scene point, and apply loss functions inspired by prior re-
search in remote sensing to accurately predict ambient and
complex illumination. Second, we enforce more confident
shadow predictions, thereby refining both scene geometry
and shadow rendering jointly, and apply geometric regular-
ization to improve scene modeling. Third, given the crit-
ical importance of direct illumination and shadow render-
ing in our approach, we jointly estimate sun direction with
scene geometry during training, enabling refined sun direc-
tion prediction and mitigating propagated error from incor-
rect initial poses.

In summary, our contributions are the following:
• We disentangle and estimate direct, ambient, and com-

plex illumination in satellite imagery, enabling more ac-
curate, physically-based 3D scene modeling

• We jointly estimate sun directions and scene geometry,
and propose remote sensing-based illumination and geo-
metric priors to improve scene decomposition

• We enable more accurate separation of satellite scene
albedo, shadow, and complex shading through our de-
composition technique, improving novel view and light-
ing synthesis for satellite imagery

2. Related Work
2.1. Neural Radiance Fields
Neural Radiance Fields (NeRFs) have gained significant
traction in the field of multi-view 3D reconstruction. By
modelling the scene as coordinate-based neural networks,
Mildenhall et al. [30] demonstrated that NeRFs can syn-
thesize novel views of complex scenes with unprecedented
detail and photo-realism. Subsequent works have scaled
NeRFs from smartphone captures to in-the-wild internet
images [29], large unbounded scenes [3], drone videos [4],
city-scale regions [40, 47], and satellite imagery [27, 48].
NeRFs also show significant promise in 3D computer vi-
sion, with applications ranging from simultaneous local-
ization and mapping [59], robotics control [21], manipu-
lation [37] and navigation [1], semantic segmentation [44]
to scene understanding [55].
Disentangling appearance in NeRFs Conventional NeRFs
model the total radiance emitted by the scene that comprises
of the lighting, geometry and material properties of the
scene. Several works have explored disentangling the emit-
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ted radiance into its constituents by leveraging reflectance
priors [9, 10, 51, 53], specular reflections [24, 42, 43], shad-
ing [6, 52] and shadow cues [41, 49]. In this work, we focus
on shadow-based disentanglement given the prominence of
hard shadows in satellite imagery. We show how transmit-
tance along the shadow ray can allow us to decompose not
just the direct and shadow components, but also the compo-
nents corresponding to ambient environment illumination
and complex lighting effects.

2.2. Remote Sensing
While remote sensing research has made significant strides,
there remain key challenges in building generalized,
illumination-aware 3D reconstructions from satellite im-
agery. Particularly in urban areas, large shadows from
buildings can cause significant ambiguity and classification
errors [12, 46]. Both thresholding and geometric model-
ing techniques have been applied to this problem of shadow
removal [23, 56]. Multi-view stereo (MVS) is another stan-
dard approach to 3D scene modeling, utilizing stereo pairs
across images [5, 16]. However, MVS can produce errors
due to variability in sun direction, atmospheric conditions,
and seasonal features across images [11, 32, 39], requiring
manual filtering of stereo pairs [14, 16].
3D Satellite Modeling with NeRF Neural radiance fields
(NeRFs) have recently been applied to overcome these chal-
lenges. S-NeRF [13] introduced a technique for sepa-
rating shading from albedo; Sat-NeRF [27] extended this
work, highlighting the importance of bundle adjustment for
improving reconstruction. EO-NeRF [28] further imple-
mented a geometric shadow rendering approach, casting
secondary rays in input sun directions to refine geometry.
However, these methods still result in scene disentangling
ambiguities: S-NeRF and SatNeRF estimate scene shading
irrespective of geometry, resulting in inaccuracies in sepa-
ration; EO-NeRF uses a geometry-based shadow rendering
but still captures scene shading in non-shadowed regions,
indicating that separating direct and indirect lighting alone
is insufficient for remote sensing reconstruction. By mod-
eling complex illumination effects, sun position estimation,
and geometry priors, we achieve more accurate, physically-
based scene and lighting disentanglement compared to prior
NeRF-based techniques for satellite imagery (Fig. 5).

3. Formulation
We first describe our approach for modelling the complex
geometries and illumination of satellite image-captured
scenes. The key challenges in 3D satellite image recon-
struction are handling (1) small baselines, (2) occlusions
from top-down captures, and (3) complex mixed illumina-
tion sources. We handle challenges (1) and (2) by lever-
aging shadows, which provide secondary 3D cues that can
be used to constrain the 3D reconstruction (Section 3.2).

We handle (3) by modeling, and separating, different illu-
mination types using a neural network and a physics-based
forward model (Section 3.3).

3.1. NeRF Preliminaries
NeRF [30] is a volumetric representation, with inputs spa-
tial position x and viewing direction d, and outputs volume
density � and color c: F : (x,d) ! (�, c). Volumet-
ric rendering is achieved by uniformly sampling along rays
r(t) = o+ td, enabling color C(r) and depth d(r) estima-
tion of a ray as:

C(r) =
X

i

wici d(r) =
X

i

witi (1)

Ti = exp(�
iX

j=1

�j�j) wi = Ti(1� exp(��i�i)) (2)

where Ti is the accumulated transmittance by step size
�i, the distance between sampled points. We extend this
base NeRF formulation to account for unique challenges
of reconstruction from satellite imagery, including lever-
aging shadows to improve 3D reconstruction for occluded
regions (Section 3.2) and rendering different illumination
types (Section 3.3).

3.2. Small Baselines and Hidden Regions
When limited, top-down satellite views are sampled, 3D re-
construction of vertical surface geometries such as build-
ing facades becomes challenging [41, 54]. We address
this problem by leveraging shadows; while vertical sur-
faces may be hidden from primary satellite capture angles,
oblique lighting angles from the sun can help exploit and
model this hidden geometry. Specifically, we separate shad-
ows using secondary shadow rays cast from from scene sur-
face points to the sun direction (shown Figure 2). These
secondary shadow rays s, drawn from the surface intersec-
tion point of each primary ray r, are used to: 1) render sun-
dependent shadows, 2) provide an additional cue to con-
strain 3D reconstruction, and 3) help estimate the weight of
a complex illumination component, to account for regions
with challenging multi-bounce light that cannot be directly
modeled with a single-bounce secondary ray casting (Sec-
tion 3.3 below).

3.3. Disentangling Illumination
There are four primary radiative components in satellite im-
agery: 1) direct solar irradiance, 2) scattered atmospheric
irradiance, 3) irradiance from reflection between objects,
and 4) coupled irradiance from multiple scattering events
[2]. To better disentangle these lighting components, we
use secondary shadow rays to estimate the weights of three
illumination components for a given ray r:
1. Wdi(r): Direct illumination component weight
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Figure 2. Accumulated transmittance from secondary shadow rays as illumination cues. Final transmittance values of secondary
shadow rays are used to determine the proportion of direct, ambient, and complex illumination values. Direct light is the primary component
of rays with direct sun visibility (e.g. ray s1); ambient light is the primary component of rays distinctly in shadow (e.g. ray s2); complex
lighting is the primary component of rays with ambiguous or challenging geometry occluders (e.g. ray s3).

2. Wamb(r): Ambient illumination component weight
3. Wcomp(r): Complex illumination component weight

In general, Wdi is highest for regions with direct sun
visibility, Wamb is highest in shadowed areas with strong
atmospheric irradiance, and Wcomp is highest in complex-
geometry regions such as trees and water, where interreflec-
tions and multiple scattering events create intricate shading
[7, 18, 36]. Secondary shadow rays are used to determine
weightings for each illumination component, which we ap-
ply to three predicted rendering colors.
Direct Illumination Direct illumination is the primary ir-
radiance component for regions with direct sun visibility.
In these regions, the primary component of our final color
rendering is predicted as position-dependent calb(x), the
albedo color. We compute this direct lighting component
in the final rendering as:

Wdi(r) · calb (3)

which is a weighted quantity representing the direct illumi-
nation component of the final ray color. For pixels in com-
plete direct illumination (i.e. not in shadow), Wdi(r) = 1,
and the predicted albedo color is therefore the primary color
component of the final rendering.
Ambient Illumination For regions completely in shadow,
direct solar radiation is blocked, so scattered atmospheric
irradiance contributes most to total irradiance [2, 58]. To
model this atmospheric irradiance, we predict an ambient
color Camb(ds). This color is a function of the estimated
sun position ds for simplicity; in reality, atmospheric scat-
tering may depend on a variety of additional scatting fea-
tures, such as air, smoke, and cloud particles [34]. This
value Camb(ds) is a single RGB color value (typically a dark
blue hue) multiplied by the base albedo to render regions
in shadow where atmospheric irradiance is strongest. We
therefore apply this ambient light as a weighted component
(strongest for regions in shadow):

Wamb(r) · calb ⌦ Camb (4)
where ⌦ denotes elementwise multiplication.
Complex Illumination Captured irradiance in satellite im-
agery may also be explained by more complex multi-bounce
illumination features such as interreflections and scattered
light. Thus, we additionally predict a “complex illumina-
tion” feature cci(x,ds) as a function of position and sun
direction. This complex illumination feature cci is ap-
plied in the final rendering equation with weighted quantity
Wcomp(r), which is highest when occluder geometry is am-
biguous (i.e. in trees, bushes, and water). We apply this
spatially and sun position-dependent complex illumination
component in the final rendering as:

Wcomp(r) · calb · cci (5)

3.4. Final Rendering Equation
We combine the direct, indirect, and complex illumination
components to form the final rendering equation:

C(r) = Wdicalb +Wambcalb ⌦ Camb +Wcompcalbcci (6)

In this final rendering equation, the first term is strongest
for regions with well-defined geometry and that are di-
rectly visible to the sun. The second term is strongest
for regions with well-defined geometry that are entirely in
shadow (occluded from direct sun visibility). The third term
is strongest for regions requiring multi-bounce light shad-
ing, for example in regions with trees or water; in this case,
the complex illumination color can provide nuanced shad-
ing, potentially capturing interreflection and multiple scat-
tering components.

3.5. Refining Poses
Accurate camera poses are critical for 3D satellite scene
reconstruction, especially given the large scene distances
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Figure 3. Overview of our proposed architecture. Outputs of
SUNDIAL are highlighted in green . Primary ray densities � and
estimated sun directions are used to query secondary shadow rays
with density �s; final transmittance of these secondary ray are used
to compute direct, ambient, and complex illumination weights.

and small multi-view baselines. Prior work has demon-
strated the importance of bundle adjustments in this setting
[17, 27, 33]. We rely on direct sun illumination and shad-
ows as a secondary geometry cue; because camera pose and
relative sun direction are closely related, we propose a joint
geometry and sun direction estimation technique in SUN-
DIAL. By ensuring accurate relative sun directions, we can
avoid propagating error from imprecise estimated sun direc-
tion inputs.

4. Our Approach
We now describe how we estimate the components of our
proposed rendering equation using a NeRF-based approach.
We visualize our proposed architecture in Figure 3. The
proposed MLP takes as input spatial position x and a per-
image embedding ti. It outputs albedo calb, complex cci,
and ambient illumination Camb, along with density �, sun
direction ds, and a transient scalar �. Critically, we then
use density � and estimated sun direction ds to query sec-
ondary shadow rays s, from which we estimate density �s.
Density along the shadow rays are used to estimate the three
illumination component weights Wdi,Wamb,Wcomp, which
account for shadows and complex illumination.

4.1. Primary Ray Components
Primary rays are rays mapped directly from scene points
to camera pixels. The color resulting from the primary ray
can be expressed as the decomposition of three variables:
albedo, ambient color, and complex color.
Albedo We model scene albedo calb using a coordinate-
based MLP. We exclude view dependence in the spatial
MLP inputs, assuming Lambertian surface properties. Al-
though non-Lambertian modeling is critical for topography-
influenced lighting variation in certain terrains [35], assum-
ing Lambertian surfaces is often suitable for urban aerial
imagery [8, 19], the primary target of our evaluation.

Ambient Color Ambient color Camb, the primary color
component for regions in shadow, is predicted using a two-
layer MLP with input the estimated sun directions ds. This
single RGB color prediction is therefore uniform for a given
input image.
Complex Color We further model the complex color cci,
the primary color component for regions with challenging-
geometry occluders, using a 2-layer MLP with input spa-
tial features and estimated sun directions ds. This modeling
technique aims to capture intricate shading, multi-bounce
reflections, and ambient occlusions that are difficult to cap-
ture with direct and indirect light modeling alone. Instead,
shading is applied using coordinate and sun position-based
complex color, weighted with estimated quantity Wcomp.

4.2. Sun Direction, Shadows, and Illumination
For each primary ray r we cast secondary shadow rays s.
These secondary shadow rays are used to determine the pro-
portion of direct, ambient, and complex illumination values.
We visualize this shadow ray casting procedure in Figure 2.
Surface Estimation for Shadow Rays The secondary
shadow rays have origin os estimated using primary ray
depth predictions. Given estimated depth d(r) of ray r, we
compute a surface point os:

os = o+ (d(r)��(t))d (7)

Padded by �(r) = �0e�kr, a function of the training
iteration r and �0, some initial small padding constant.
In early stages of training, the estimated implicit surface
may not be well-formed, resulting in partial initial occlusion
in secondary shadow rays. This padding on the estimated
depth enables more confident shadow rendering (and down-
stream sun position estimation) in early stages of training,
and decays as the estimated surface becomes more refined.
Sun Direction Estimation We estimate sun directions ds
jointly with scene geometry during training. We first con-
sider original (input) sun directions ds0 with initial “up” di-
rections u. This formulation allows for initial estimates to
be used for faster convergence when sun direction is known.
For training settings without known sun directions, these
values may be randomly initialized for each image.

Given an input image embedding ti, the SUNDIAL
MLP predicts ui = [ui1, ui2, ui3], a new “up” direction for
the rotated sun direction reference frame in image i. We
compute Vi, the skew-symmetric matrix from v = u⇥ ui,
and compute a rotation matrix Ri from:

Vi =

0

@
0 �v3 v2
v3 0 �v1
�v2 v1 0

1

A Ri = I+Vi +
V2

i

1 + c
(8)

where I is the 3x3 identity matrix, c is the dot product u ·
ui, and Ri is the final rotation matrix for the sun directions
in image i. We then obtain the estimated sun direction, used
as the direction ds of the secondary shadow rays:
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Figure 4. SUNDIAL scene disentangling results. SUNDIAL can disentangle complex illumination (soft shadows, shading) in
challenging-geometry regions such as trees, bushes, and water. This complex illumination separation disambiguates albedo, transient,
and shadow predictions, refining SUNDIAL-estimated scene decomposition and improving novel viewpoint and sun direction rendering.

ds = Ri · ds0 (9)

Secondary Shadow Rays With the network-estimated sur-
face points os and predicted sun directions ds, we then cast
secondary rays s to predict shadowed regions. We deter-
mine the probability of the pixel being in shadow by the
transmittance at the end of the secondary shadow ray:

In shadowed regions, this secondary ray transmittance
will be low, as the ray s will be occluded from direct sun
visibility. Thus, we obtain the probability that the surface
of ray r is in direct sun lighting as: Pdi(r) = T (s).
Estimating Illumination Weights Using the probability of
direct lighting Pdi(r), we then compute the weights for the
three illumination components. First, we compute Wcomp:

Wcomp = 1� (
1

e(�⇠)�Pdi(r) + 1
+

1

ePdi(r)�⇠ + 1
) (10)

Where  and ⇠ are hyperparameters that can be tuned
according to the desired sensitivity to complex illumination.
This quantity is highest when predicted direct lighting prob-
ability Pdi(r) is near 0.5, where occluder geometry may be
ambiguously defined). Then, we obtain Wdi and Wamb as:

Wdi = (1�Wcomp) · Pdi(r) (11)

Wamb = (1�Wcomp) · (1� Pdi(r)) (12)

Intuitively, complex illumination weight decreases as
Pdi(r) probabilities become more confident (i.e. closer to 0

or 1), and increases when predictions are ambiguous (when
Pdi(r) = 0.5). This weighting method has two key advan-
tages: 1)this approach enables more confident shadow pre-
dictions, reducing the need for SUNDIAL to handle semi-
shaded areas with partial volume occlusions that may neg-
atively impact estimated geometry; 2) this approach repre-
sents complex illumination in both directly lit and shadowed
regions, increasing complex illumination weight as the pre-
cision of geometry-based occlusion prediction decreases.

4.3. Loss Functions
We incorporate photometric loss, normal orientation loss
[43], and distortion loss [3] in our architecture. We ad-
ditionally introduce three loss functions that help improve
rendering specifically for satellite imagery scenes by con-
straining ambient and complex color predictions.
Ambient Color Loss Prior work in atmospheric modeling
indicates that, due to the Rayleigh effect of atmospheric
scattering, the ambient lighting component of shadowed
regions has a higher saturation of blue and violet colors
[34, 57]. We therefore apply two physics-based loss func-
tions on the predicted ambient color Camb:

Lwhite(Camb) = �w ·max(0,
1

3
(r + g + b)� ⌧)2 (13)

Lblue(Camb) = �b ·max(0, · r + g

2
� b)2 (14)
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Where ⌧ is a “brightness” threshold,  is a “blue dom-
inance” factor, and �w and �b are scaling terms. These
terms ensure that predicted ambient light color Camb is suf-
ficiently dark and blue in color, adhering to establish prin-
ciples of atmospheric modeling. We find this prior is es-
pecially critical in cases where input images have shadows
in similar positions across captures, making it difficult to
separate albedo and shadows. The proposed ambient color
loss ensures that rendered shadows are sufficiently dark blue
(from ambient light), enabling accurate disentangling of
albedo in shadowed regions.
Complex Color Loss To prevent Pdi(r) from converging
to 0.5 for all regions, and to enable more confident direct
lighting probabilities, we similarly apply a “complex illu-
mination” loss for Wcomp(r) values near 0.5:

Lci = �ci ·Wcomp(r) (15)

This loss term helps disambiguate direct lighting prob-
abilities by penalizing values near 0.5; for challenging-
geometry regions that cannot be properly resolved, the es-
timated complex illumination component enables more nu-
anced shading and soft shadows.
Normal Estimation We estimate normal vector fields for
our scenes following [9, 38, 43], using the gradient of the
volume density with respect to position:

n̂(x) = � r�(x)
kr�(x)k (16)

And further predict a 3-vector output n̂0
i using the out-

put spatial MLP features, applying a regularization term as
follows to predict more accurate normal vector fields:

Lnormal =
X

i

wikn̂i � n̂0
ik2 (17)

In addition to smoother surface normal predictions, we
find this regularization term enables smoother geometry and
depth estimation, acting as an effective geometry prior par-
ticularly for urban scenes characterized by smooth, cuboidal
buildings.
Transient Loss Satellite imagery captures are both multi-
view and multi-time, capturing transient features such as
cars, construction events, and seasonal vegetation changes.
To account for transient features, we adopt the technique
proposed in NeRF-W [29], predicting �(ti,x) as a func-
tion of per-input transient embedding. We incorporate the
NeRF-W loss to ensure � uncertainty captures transients
without converging to infinity:

L� =
X

r

kc(r)� cgt(r)k22
2(�(r) + �min)2

+
log(�(r) + �min) + ⌘

2

(18)

Comparison of Satellite Reconstruction Techniques
Approach JAX 004 JAX 068 JAX 214 JAX 260

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
S-NeRF 21.80 0.641 21.13 0.691 18.70 0.577 17.62 0.546
SatNeRF 22.25 0.669 20.56 0.701 18.55 0.600 17.42 0.553
EO-NeRF* 20.52 0.619 18.37 0.693 19.92 0.684 17.96 0.569
SUNDIAL 21.75 0.646 21.35 0.735 20.41 0.704 18.31 0.581

Table 1. Evaluation metrics for SUNDIAL compared to pre-
vious approaches. Novel view rendering on real, unseen, future
satellite images. SUNDIAL provides improvements across test
scenes for novel view and lighting synthesis.

Satellite Depth Estimation MAE
Approach JAX 004 JAX 068 JAX 214 JAX 260
S-NeRF 1.890 1.800 4.510 3.070
SatNeRF 1.508 1.432 2.898 2.413
EO-NeRF* 2.275 1.928 2.557 1.953
SUNDIAL 2.241 1.533 2.289 1.893

Table 2. Digital surface model estimation for real satellite
scenes. SUNDIAL, trained without initial sun directions, demon-
strates comparable depth estimation to previous approaches (that
use sun direction), and consistently outperforms EO-NeRF.

5. Experiments
5.1. Dataset

We evaluate SUNDIAL on real satellite imagery captured
by WorldView-3, a high resolution satellite operating at al-
titude 617km. The dataset includes images from four loca-
tions in Jacksonville, Florida, spanning 2014-2016. Each
location has 10-25 multi-date captures at 0.3m resolution.
Image metadata was used to verify sun position and capture
time. In some cases, multiple image captures of a scene
were taken in a single day. To avoid overfitting on one of
these instances, we train SUNDIAL on the earliest 75% of
sequentially captured images from each scene, and evaluate
on the remaining 25% of images (captured at subsequent
times). Additional details are provided in the supplement.

5.2. Implementation Details

We use bundle-adjusted rational polynomial camera (RPC)
models to cast scene sampling rays, following [15, 27]. We
train SUNDIAL with a batch size of 2048 rays for 200k
iterations, using an initial learning rate of 5 ⇥ 10�4 using
a step scheduler with decay factor 0.9. Additional training
details are provided in the supplement.

5.3. Disentangling Appearance

We show results for the disentangled outputs of SUNDIAL
in Figure 4. We observe that SUNDIAL can effectively re-
solve scene albedo, physically-accurate shadows, transient
features, scene depth, as well as complex illumination fea-
tures, which primarily enable shading for challenging ge-
ometry regions in trees and water.
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Figure 5. Scene disentangling comparison. SUNDIAL can re-
solve physically-accurate, disambiguated shadows by estimating
an additional complex illumination component. EO-NeRF, despite
casting geometric shadow rays, cannot properly disentangle soft
shadows and shading, instead estimating an ambiguous shading
component similar to the non-geometric SatNeRF predictions.

5.4. Comparisons with Baseline

We provide quantitative comparisons to previous ap-
proaches in Tables 1 and 2. EO-NeRF does not have a
publicly available code release, so we reimplement the pro-
posed model (EO-NeRF*). Our evaluation demonstrates
that SUNDIAL accurately disentangles scene geometry, il-
lumination, and sun direction, enabling accurate novel view
and lighting synthesis for future, unseen, test images.

We further demonstrate this decomposition accuracy in
Figure 5. SUNDIAL is able to resolve accurate, confi-
dent shadow and albedo predictions compared to EO-NeRF
and SatNeRF. In particular, SatNeRF shading scalars en-
compass both shadows and complex illumination compo-
nents; while EO-NeRF implements a geometric approach
to shadow rendering, this simple direct and indirect lighting
separation cannot account for these nuanced, soft shadows,
resulting in ambiguous shadow predictions.

(a) JAX 214 estimated geometry and sun dir.

Data ID Sun Dir.
MAE ↓ (°)

JAX 004 8.404

±3.026

JAX 068 1.928

±1.332

JAX 214 1.608

±1.177

JAX 260 5.468

±4.043

(b) Sun dir. MAE

Figure 6. SUNDIAL-estimated scene geometry and sun direc-
tions. SUNDIAL can jointly estimate accurate scene geometry
and sun positions (a); SUNDIAL-estimated sun directions are ac-
curate compared to initial dataset-provided directions (b).

Sun-Based Image Location and Time Estimation
Dataset Location (lon,lat) Error (miles) Time Error (mins)

True Predicted Great-Circle L1 Error
JAX 004 (-81.706, 30.358) (-82.200, 29.611) 34.86 12.89± 14.34
JAX 068 (-81.664, 30.349) (-81.700, 30.159) 3.14 6.55± 5.88
JAX 214 (-81.664, 30.316) (-81.576, 30.129) 6.32 4.97± 4.57
JAX 260 (-81.663, 30.312) (-81.433, 29.820) 16.67 14.66± 18.35

Table 3. Image time and location prediction using estimated
sun position. SUNDIAL accurately predicts the time-of-capture
and location of images (within a few minutes and miles of ground
truth values) using model-estimated sun directions.

5.5. Applications
Sun Estimation SUNDIAL accurately estimates sun direc-
tions jointly with scene geometry (Figure 6) during training,
with reasonable accuracy compared to dataset-provided sun
directions. This joint estimation helps disentangle scene ge-
ometry and illumination even when sun direction estima-
tions are not available.
Image Time and Location Estimation Given known scene
location information, we can use SUNDIAL-estimated
sun directions to predict image time-of-capture informa-
tion. Similarly, given time-of-capture information and
SUNDIAL-estimated sun directions, we can estimate image
location information. We demonstrate these results in Table
3. SUNDIAL can estimate image time to within 5 minutes,
and location within 4 miles, of ground truth values.

6. Conclusion
We present SUNDIAL, a technique for reconstructing 3D
satellite-captured scenes by decomposing direct, ambient,
and complex illumination effects. Our method can accu-
rately disentangle scene albedo, shadows, ambient illumina-
tion, complex illumination, and transient features in satellite
imagery. We achieve this by jointly estimating sun direction
with scene geometry, and casting geometry-based shadow
rays that 1) refine hidden scene geometry using oblique
sun angles, 2) render separated, geometric shadows, and
3) determine illumination component weights. By disen-
tangling scene geometry and illumination components, we
enable accurate novel view and lighting synthesis, unlock-
ing new applications in wide-scale environmental modeling.
For example, SUNDIAL can help build detailed illumina-
tion and transient-aware city models using drone imagery,
or render novel scenes with weather features such as fogs,
clouds, and weather events that may otherwise inhibit satel-
lite captures. Future work may consider additional geomet-
ric cues to overcome small baselines in low-resolution satel-
lite imagery, such as from near-nadir Sentinel-2 images, or
in captured scenes with low sun direction variance, which
may provide weaker secondary shadow cues. Our approach
demonstrates the importance of incorporating both physics
and remote sensing-based insights to extract hidden infor-
mation from global satellite captures.
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