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Abstract

Hurricanes and coastal floods are among the most disas-
trous natural hazards. Both are intimately related to storm
surges, as their causes and effects, respectively. However,
the short-term forecasting of storm surges has proven chal-
lenging, especially when targeting previously unseen loca-
tions or sites without tidal gauges. Furthermore, recent
work improved short and medium-term weather forecasting
but the handling of raw unassimilated data remains non-
trivial. In this paper, we tackle both challenges and demon-
strate that neural networks can implicitly assimilate sparse
in situ tide gauge data with coarse ocean state reanalysis in
order to forecast storm surges. We curate a global dataset
to learn and validate the dense prediction of storm surges,
building on preceding efforts. Other than prior work limited
to known gauges, our approach extends to ungauged sites,
paving the way for global storm surge forecasting.

1. Introduction

Space-borne Earth observation allows for large-scale moni-
toring of our planet, its atmosphere and events such as nat-
ural hazards that may pose significant threat to human life.
While the strengths of satellite imagery are its broad spa-
tial extent, its spatio-temporal resolution is inferior com-
pared to on-site measurements. In contrast, in situ sensors
may provide (sub-)hourly recordings at highest accuracy,
yet they are sparsely deployed and thus lack spatial cov-
erage. Fusing both kinds of data at a global scale holds
promises, but harmonizing the sensors in a manner suit-
able for neural networks to process is an open research di-
rection. A well-established paradigm tackling this issue in
the context of weather analysis is that of data assimilation
[10, 13]. However, it is computationally costly and not eas-
ily approachable. In this work, we address the challenge
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Figure 1. Overview: Our approach provides densified high-
resolution storm surge forecasts (top) by implicitly assimilating
inputs of sparse in situ tide gauge time series (top) with paired se-
quences of ocean (center) and weather state (bottom) re-analysis
products. For additional supervision, coarse ocean state reanalysis
maps (bottom) at coinciding lead time are also predicted.

of global storm surge forecasting by implicitly assimilat-
ing sparse and raw tide gauge data with coarse weather
and ocean state reanalysis products. Storm surges are ex-
treme weather-driven ocean dynamics superimposed on the
mean sea level and tidal rhythms, which can cause coastal
floods. Scientific consensus is that the coming decades
will bring a sharp increase of coastal hazards due to cli-
mate change-caused rise in mean sea levels [17, 22, 36],
aggravated by land subsidence [39] and more intense ex-
treme storm events [2, 8]. Our work on storm surge fore-
casting is motivated to address such hazards, aligning with
the United Nation Sustainable Development Goals 11.5 &
13 [28, 31]. Particularly, our approach is inspired by recent
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advances in weather forecasting that allow generalization to
previously unencountered or ungauged sites, which may es-
pecially benefit under-served communities with less access
to well-maintained in situ measurement infrastructure. To
empower worldwide AI-driven surge forecasting, we curate
a novel global and multiple decades spanning dataset of in
situ tidal gauge records, paired with weather and ocean state
reanalysis, all preprocessed according to the best domain-
specific practices. We highlight the dataset’s worth by
benchmarking a diverse landscape of approaches including
conventional forecasting techniques, an operational numeri-
cal model, state-of-the-art deep neural networks, a recent vi-
sion transformer for weather forecasting and our enhanced
adaptation of a popular lightweight temporal attention net-
work. While we evince the competitiveness of the latter
model, the main objective of our experiments is to demon-
strate the predictability of storm surges at previously unen-
countered or altogether ungauged locations, an aim whose
feasibility has been questioned in prior work [4, 37].

In sum, our main contributions are two-fold:
• We introduce a novel, global and multi-decadal dataset of

in situ ocean surge time series, paired with atmospheric
and ocean state reanalysis products, spuring and facilitat-
ing further research on this critical matter.

• We demonstrate that precise and dense storm surge fore-
casts can be obtained by fusing sparse in situ data of
coastal tide gauges with coarse atmosphere and ocean re-
analysis. Critically, our forecasts extend to previously un-
seen gauges and entirely ungauged locations, which may
benefit under-served communities.

2. Related Work
2.1. Short-to-medium Range Weather Forecasting

Recent work marked notable progress on numerical weather
prediction [3, 20, 26, 34]. Such models typically rely on at-
mospheric initial values from a reanalysis product such as
ERA5 [10], i.e. best estimates derived by updating prior
knowledge with multi-source weather observations. Con-
trarily, the contribution of [1] proposes an implicit assim-
ilation approach to fuse in situ weather radar station data
with coarse resolution reanalysis products, yielding dense
and skillful rainfall forecasts over the United States. While
we draw inspiration from this approach, our focus is on the
global coastlines to model marine dynamics. Technically,
our approach deviates from the aforementioned ones by pro-
cessing local patches of data instead of a coarsely resolved
global context in a single forward pass of the network, and
is thus significantly more lightweight.

2.2. Storm Surge Forecasting

Operational storm surge forecasting pre-dates deep learn-
ing, with early techniques explicitly modeling the physics of

maritime dynamics with a focus on particular ocean basins
[21, 35]. Of particular interest is the Global Tide and Surge
Model (GTSM), a hydrodynamic model forced with ERA5
to globally predict surge on an irregular grid. In this study,
we built upon coarsely resolved GTSM ocean state analysis
[23] to drive the assimilation of raw in situ data. That is, we
fuse the reanalysis product with accurate but sparse in situ
records for improved and densified surge predictions.

Initial efforts for global storm surge modeling via deep
learning are given by [4, 37]. Both studies are limited to
temporal generalization, i.e. they evaluate on gauges trained
upon and solely generalize to future time points of these
gauges. In contrast, our data and approach enable to gen-
eralize in both time and space: Relatedly, recent work [25]
proved the feasibility of river streamflow predictions at un-
gauged basins, in the spirit of which we generalize coastal
storm surge forecasting to unseen shores. This defeats the
prevailing wisdom that ocean modeling necessitates at least
6-7 prior years of training data at any site of interest [4, 37].

3. Data
We collect a new global multi-decadal dataset combining
co-registered atmosphere reanalysis, ocean state reanalysis
and pre-processed in situ tide gauge measurements. All
data is sampled to an hourly frequency with dates rang-
ing from the beginning of 1979 to the start of 2019, and
gridded at 0.025◦ spatial resolution. The atmosphere re-
analysis denotes best estimates of historical mean sea level
pressure as well as 10 metre U and V wind components
(’msl’, ’u10’ and ’v10’, respectively) at about 30 km res-
olution, as provided by the ERA5 catalogue [10]. The
ocean-state model forced by ERA5 meteorology provides
the storm surge residual based upon the irregularly gridded
Deltares Global Tide and Surge Model (GTSM) forced via
the aforementioned ERA5 inputs, as given by the Coper-
nicus Climate Change Service (C3S) Climate Data Store
(CDS) [23]. Furthermore, a global land-sea mask [15, 40]
resampled to circa 3 km resolution is provided. Finally, pre-
cise storm surge measurements are derived from in situ tide
gauge records collected in GESLA-3 [9] and spatially dis-
tributed as shown in Fig. 2. Principally, our pre-processing
pipeline follows the established workflow of [37]; featur-
ing mean sea level de-trending, harmonic decompositioning
[5] and de-noising steps. Key differences to the prior work
are their filtering of any in situ sites with records shorter
than seven years, whereas we take inspiration from recent
progress on (un)gauged river streamflow forecasting [25]
and keep such data. While shorter durations pose a greater
challenge to learn site-wise dynamics, this drastically in-
creases the overall amount of valuable in situ data from a
total of 736 tidal gauges in [37] to 3553 locations in our
work — yielding an almost five-fold increase of valuable in
situ data compared to preceding efforts.
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Figure 2. Data. Green & orange dots denote storm surge time series locations with records in 1979-2019, as pre-processed from the
GESLA-3 collection of tide gauges [9]. Dark lines indicate hurricane tracks in 2014-2019 as indexed by IBTRaCS [18]. Pink markers
highlight test split gauges, biased to points of landfall. Visualizations of the ERA5 grid and the irregular GTSM grid are omitted for brevity.

4. Methods

The problem tackled herein is that of forecasting the highly
non-linear dynamics of storm surges on a short lead time:
Every sample i = 0, 1, ..., |D| of the dataset D denotes a
pair (Xi, Y i), with Xi = [Xi

1, · · · , Xi
T ] being the input

time series of size [T × Cin ×H ×W ] featuring in situ
plus atmospheric reanalysis and model-based surge data,
and Y i is the target image of shape [Cout ×H ×W ] at a
lead time of L hours. T is the temporal length of the input
series, Cin and Cout denote the number of input and output
channels, and H ×W the images’ two spatial dimensions.
For convenience, the i superscript is omitted in the remain-
der of the paper. Unless stated otherwise, we set T = 12,
Cin = 5, Cout = 2, H = W = 256 and L = 8 hours,
which has been a common choice in prior short-term fore-
casting works [34]. Example data are illustrated in Fig. 3,
showcasing the time series dynamics, the diversity in con-
text and the presence of extreme weather events in the data.

4.1. Models

We demonstrate the feasibility of our implicit assimilation
and densification approach by adapting a representative va-
riety of models. Besides highlighting our paradigm’s effec-
tiveness for sparse coastal observations, these evaluations
may serve as a benchmark for future research. For each
considered network, we follow the respective architecture’s
best practice in terms of hyperparameters given in the refer-
enced literature, unless otherwise specified. Models are:

Conventional baselines As a simple baseline, we con-
sider the seasonal average surge based on historic values at
the gauge of interest and the given target time. This neces-
sitates historical data at the target gauge, but is expected to
provide a solid baseline for sites experiencing seasonal cy-
clone activity [32]. Second, we consider the mean surge at
the gauge of interest over the input time period. While again
requiring access to the gauge’s records, this would prove
beneficial whenever the surge at target time doesn’t deviate
too much from the input period’s. Third, we consider the
linear extrapolation of surge time series inputs to the target
time. Finally, the global physical storm surge predictions of
GTSM forced with ERA5 data are reported and compared
against [23]. As GTSM is numerically simulated on an ir-
regular grid [6, 14] we perform nearest neighbor extrapo-
lation to get coarse forecasts at any site of interest, specif-
ically for getting predictions at unknown test split gauges,
and then extrapolate these to the target time.

LSTM-based Long short-term memory (LSTM) net-
works [11] are the state-of-the-art architectures for tempo-
ral modeling of fluvial [19, 25] and coastal dynamics [37].
Accordingly, we consider classical as well as convolutional
LSTM (ConvLSTM) [33] for storm surge forecasting. We
use the architectures from [37] and minimally adapt them
for the sake of comparability to accept our more compre-
hensive data, including time series of preceding gauge val-
ues. As such, both models receive a 5x5 context window
around the gauge, and predict a single point in the future.
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(a) In situ time series. (b) Input (c) Target

Figure 3. Example data, one local sample per row. Input grouped at the left, targets at the right. Inputs: Time series of target (blue) and
context gauges (grey), with target history only given in the hyperlocal setting. gauge locations and surge values. ERA5 pressure at mean
sea level, wind at 10 m in u and v directions. Coarse GTSM input. Targets: Surge at target time, GTSM at target time.

Attention-based We consider spatio-temporal trans-
former models, which both principally share a common
structure of inputs and outputs as depicted in Fig. 1.
First, we evaluate a MaxVIT U-Net backbone [38] as re-
cently proposed for weather forecasting in [1], adapted to
our problem statement. The network collates temporal in-
formation into the channel dimension, but is conditioned on
the lead time of the target via Feature-wise Linear Mod-
ulation (FiLM) [27]. Finally, we consider the U-TAE of
[7], originally proposed for panoptic segmentation. We ad-
just U-TAE by introducing FiLM at each of its convolution
blocks—such that additionally to temporal embeddings at
the input time points, our adaptation of the model is condi-
tioned to forecast at a variable target time. Notably, the key
difference between the last two models is that [38] resolves
the input time series into the channel dimension and doesn’t
model time dynamics explicitly, whereas [7] processes time
series explicitly and applies lightweight temporal attention
but doesn’t explicitly model global spatial interactions.

4.2. Densification

Central to our approach generalizing storm surge forecast-
ing to previously unseen or ungauged sites is the concept of
densification. For any model that outputs a two-dimensional
storm surge forecast map ŷs, we implement densification
via the built-in spatial parameter sharing of the convolution
operator. Specifically, we utilize 1 × 1 convolution kernels
with a stride of 1 at the final network layer to broadcast from
sparsely populated to non-observed pixel coordinates in the
spatial dimensions. Auxiliary supervision and input data
dropout are also used to further encourage the networks to
learn densification, as proposed by Andrychowicz et al [1].

Auxiliary supervision Complementarily to learning a
densified forecast of the sparse in situ time series, the net-
works additionally predict a forecast ŷc of the coarse GTSM
ocean state at the same lead time L, as depicted in Fig. 1.
This way, the models receive additional feedback at pixels
which would otherwise not be populated and the preceding
shared layers internalize to implicitly assimilate the sparse
observations with the coarse reanalysis. To only evaluate
the coarse ocean state predictions over valid locations we
mask the loss computation with a land sea mask 1lsm.

In situ dropout To furthermore encourage the densifying
networks to predict non-trivial outputs at unpopulated
pixels within the sparse input time series we perform data
dropout. Specifically, we randomly remove in situ tide
gauges from the input with a probability p but keep all sites
within the target patch, such that the network is forced to
learn extrapolating to the dropped sites. We set p = 0.25
and include a binary validity mask 1val in the network
inputs as proposed in a weather prediction context by [1].

In sum, the densifying network architectures output two
maps ŷ = [ŷs, ŷc]. Map ŷs densely predicts the sparse
GESLA gauges, and ŷc predicts the spatially interpolated
future coarse GTSM values. Thus, they are trained via a
weighted combination of two masked L1 cost functions

Ls(ŷs,yGESLA) =
1

n

n∑
j=1

1val(j) · ∥ŷj − yj∥1 , (1)

Lc(ŷc,yGTSM ) =
1

n

n∑
j=1

1lsm(j) · ∥ŷj − yj∥1 , (2)

474



masked via 1val and 1lsm, resulting in the combined loss

L(ŷ,y) = Ls(ŷs,yGESLA) + λLc(ŷc,yGTSM ) . (3)

We set the hyperparameter λ = 1
100 , to account for the

sparseness of in situ data in comparison to the pixel-wise
coarse evaluations and to compensate for the resulting mag-
nitudes of differences in supervision frequency across both
domains as well as their respective loss terms.

4.3. Lead time conditioning

To enable a flexible forecasting, accommodating for vary-
ing hours of look-ahead predictions at inference time and
via a single forward-pass, we implement lead time condi-
tioning via Feature-wise Linear Modulation (FiLM) [27].
Specifically, a shallow encoder projects queried lead times
L into a low-dimensional feature space and linearly modu-
lates convolutional feature maps via a learned scale and bias
offset. We utilize lead time conditioning for the two consid-
ered densifying networks, and have one shallow encoder per
each of their U-Net backbone’s convolutional blocks.

5. Experiments
Splits For our experiments, we set up splits by defining
holdout data in terms of both the spatial and temporal di-
mensions: A globally distributed 20 % of coastal gauges
across all ocean basins are reserved for the test split, whose
temporal extent starts from April 2014 and is thus well ob-
served via satellites, in the interest of follow-up works. The
remaining 70 and 10 % of locations are utilized as train-
ing and validation splits, with records ranging from 1979 to
2014. This amounts to a total of 2561, 284 and 708 gauges
for our train, validation and test split, respectively. The
resulting map of in situ recordings (color-coded according
to their splits) and hurricane trajectories is depicted in Fig.
2. The distribution of accessible and gauged sites is biased
towards developed countries, underlining the need for ma-
chine learning solutions to serve under-represented regions.

Sampling Having assigned a subset of gauges to the hold-
out splits, we determine the test dates by identifying coin-
cidences of in situ records with storm tracks as given by
IBTrACS [18]. When a storm passes within 100 km of a
holdout tide gauge then we set such a date as the sample’s
target time. If no storm tracks pass by, then we resort to
sampling target times at outlier surge values deviating more
than 2 train split standard deviations from the train split’s
mean surge. At train time, we likewise perform outlier sam-
pling with a probability of 0.5, roughly mirroring the distri-
bution of (non) storm events at holdout gauges in the valida-
tion and test splits. If no such sample exists for the current
gauge, then a random target date is drawn instead.

Input gauges

Evaluation gauges

Context gauges

Holdout gauges
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Figure 4. Experimental setup. Design of the densification and
hyperlocal evaluation schemes, conceptualizing their respective
inputs and outputs. The hyperlocal protocol focuses on forecast-
ing of novel dynamics encountered at inference time, predicting
surge at holdout target (green) and context gauges (blue) L hours
ahead. The generalization setup quantifies the goodness of mod-
els to broadcast predictions to ungauged locations, i.e. unknown
gauges not contained in the input and solely used for evaluation.

5.1. Implementation details

To enable fast online sampling of data and efficient train-
ing of deep networks, we represent all spatio-temporal data
as netCDF files [29] via xarray [12], either loaded directly
into memory or read in parallel via dask [30]. This is es-
pecially critical for the in situ GESLA-3 records, which are
re-processed into a compact format as part of the prepro-
cessing pipeline and get released with this publication.

In contrast to weather forecasting models [3, 20, 26]
that process a global context window at proximately 30 km
resolution, the networks we consider are significantly less
resource-demanding and digest local patches of (256 px)2 at
a finer pixel-resolution of circa 3 km to capture local varia-
tions of surge. All data features are z-standardized via their
sufficient statistics calculated on the training split.

Training For training, 1 epoch is defined by iterating over
all train split gauges in a random order. At each gauge, a
Gaussian is drawn around it’s location to randomly sam-
ple what is treated as the local patches centroid c. The
target date & time t are drawn randomly from the current
gauge’s records. Next, a lead time L is drawn randomly
from {0, 1, 2, ..., 12}, as in [1]. The hourly input time se-
quence of length T is then given by the time interval of
[t − L − T, t − L]. Note that the random sampling of c,
t and L effectively acts as data augmentation. For auto-
regressive methods we evaluate the prediction at time t,
whereas single-forward-pass approaches based on FiLM are
conditioned on L to directly generate a forecast at time t.
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Table 1. Experimental evaluation. We benchmark forecasting skills for T = 12 and L = 8 on a global holdout set of previously unseen
gauges. Point-wise storm surge predictions at known gauges are evaluated in the hyperlocal setting (left), whereas the densification protocol
(right) tests predictions at unknown or ungauged sites. FiLM U-TAE is the most competitive approach, followed by MaxVIT U-Net.

Model Hyperlocal Densification

↓ MAE (std) ↓ MSE (std) ↑ NNSE ↓ MAE (std) ↓ MSE (std) ↑ NNSE

seasonal average 0.281 (0.313) 0.177 (0.539) 0.424 — — —
input average 0.267 (0.295) 0.158 (0.452) 0.452 — — —
input extrapolation 0.182 (0.239) 0.090 (0.342) 0.593 — — —
GTSM extrapolation [23] — — — 0.351 (0.643) 0.536 (4.744) 0.195

LSTM [11, 37] 0.166 (0.282) 0.107 (0.759) 0.595 — — —
ConvLSTM [33, 37] 0.162 (0.267) 0.098 (0.691) 0.618 — — —

FiLM U-TAE [7, 27] 0.158 (0.209) 0.069 (0.248) 0.655 0.190 (0.260) 0.104 (0.535) 0.556
MaxVIT U-Net [1, 38] 0.160 (0.212) 0.070 (0.263) 0.649 0.178 (0.273) 0.106 (0.587) 0.552

We use the ADAM optimizer [16] at a batch size of 16,
with initial learning rates tuned over magnitudes 10−1 to
10−4 for each model individually. All networks train for
50 epochs with an exponential learning rate decay of 0.9.
Models are evaluated on the validation split each epoch and
the checkpoint with best validation loss is used for testing.

5.2. Evaluation

All network predictions at target time are compared against
their respective test split in situ tide gauge values. Predic-
tion goodness is evaluated in terms of Mean Absolute Error
(MAE) as well as Mean Squared Error (MSE), reported in
units of meters and with error-wise standard deviations (std)
across the set of test split gauges denoted in brackets. Fi-
nally, we report each method’s Normalized Nash-Sutcliffe
Efficiency (NNSE) [24], which conceptually relates to the
coefficient of determination (R2) and takes values within
0 and 1. Similar to prior weather forecasting work [1] we
evaluate in two experimental setups. The concepts of both
setups are depicted in Fig. 4 and given as follows:

i. Hyperlocal evaluation In this experimental paradigm,
the time series of holdout gauges not trained upon are in-
cluded into the model’s inputs at test time. Therefore, the
challenge becomes to integrate previously unseen dynamics
at novel locations and to assimilate newly encountered tidal
gauges at inference time.

ii. Densification evaluation Predictions at previously un-
seen test split gauges are obtained via densification, i.e. a
model’s ability to predict at unknown locations is quantified
here. Importantly, test split gauges are not part of the input
time series and only used as targets. Note that this setup
can’t be accomplished via previous established approaches
for storm surge forecasting not implementing densification,
e.g. the conventional baselines and LSTM-based models.

6. Results
6.1. Main experiments

To demonstrate the feasibility of our problem statement and
the benefits of our curated dataset, we evaluate all con-
sidered approaches according to their applicability in the
hyperlocal and densification experimental schemes. Out-
comes are reported in Table 1. The results show that FiLM
U-TAE performs best in the hyperlocal setting, forecasting
surge at newly encountered gauges with a mean absolute ac-
curacy of circa 16 cm. The seasonal average and input av-
erage predictions are more erroneous, particularly in terms
of squared error—validating the presence of storm-driven
extremes in the test data. Overall, all neural networks out-
perform competing approaches in the hyperlocal setting.

In the densification experiment, FiLM U-TAE performs
best, closely followed by MaxVIT U-Net. Notably, both
densifying models denote a substantial improvement over
the GTSM baseline, whose prediction goodness exhibits el-
evated standard deviations across gauges.

Altogether, FiLM U-TAE tends to outperform MaxVIT
U-Net, implying that temporal self-attention is of greater
benefit than visual attention for our spatio-temporal fore-
casting task. To convey a better understanding of the spatial
dependency of errors, Fig. 5 analyzes our best model’s per-
formance across the globe. The analysis shows that fore-
casting in the tropics is particularly hard, confirming that
the curated benchmark provides a challenging problem.

6.2. Ablation experiments

In order to further investigate the challenges of short-term
storm surge forecasting and explore which design choices
determine the quality of predictions, we conduct a series
of ablation studies following the densification experimental
protocol. All ablations are run with the FiLM U-TAE net-
work, which the preceding main experiments identified as
the best performing backbone for our approach.
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Figure 5. Location of holdout gauges impacts prediction performance. Average absolute errors in meters are color-coded and binned
according to each sites’ longitude and latitude coordinates, with gauge counts overlayed for each spatial dimension. Particularly challenging
regions are the Gulf of Mexico, the Caribbean Sea and the Indian Ocean due to their extreme climate and resulting outsized surge dynamics.

Table 2. Repeated Measures. Evaluation of FiLM U-TAE with
varying numbers of input time points T , flexibly accommodated
for via temporal self-attention. Longer inputs tend to be beneficial.

input length T ↓ MAE (std) ↓ MSE (std) ↑ NNSE

6 0.194 (0.282) 0.115 (0.587) 0.551
12 0.190 (0.260) 0.104 (0.535) 0.556
18 0.180 (0.230) 0.085 (0.510) 0.573
24 0.180 (0.230) 0.085 (0.510) 0.571

Table 3. Lead Time. Evaluation of FiLM U-TAE with varying
lead time offset L, modifiable thanks to lead time conditioning.
Storm surge forecasts become more challenging the larger L gets.

lead time t ↓ MAE (std) ↓ MSE (std) ↑ NNSE

4 0.169 (0.254) 0.093 (0.543) 0.583
6 0.182 (0.269) 0.106 (0.551) 0.552
8 0.190 (0.260) 0.104 (0.535) 0.556
10 0.191 (0.273) 0.111 (0.553) 0.540
12 0.196 (0.273) 0.113 (0.539) 0.536

Table 4. Input ablations. Evaluation of our models with varying
inputs. The outcomes underline the relevance of each modality.

input ablation ↓ MAE (std) ↓ MSE (std) ↑ NNSE

full model 0.190 (0.260) 0.104 (0.535) 0.556
no GTSM input 0.207 (0.284) 0.124 (0.543) 0.513
no ERA5 input 0.189 (0.273) 0.110 (0.545) 0.542
no data dropout 0.217 (0.289) 0.130 (0.539) 0.500
no FiLM, L = 8 fixed 0.183 (0.273) 0.108 (0.567) 0.547

Accuracy vs. sequence length To evaluate the effect of
the number of input time points T on performances, we
run FiLM U-TAE on input time series of lengths T =
6, 12, 18, 24 hours. Table 2 shows that longer sequences
drive better forecasts, although gains saturate. This con-
firms the intuition that more context and data regarding mar-

Table 5. Output ablations. Evaluation of FiLM U-TAE with
varying output channels. Ablations show all outputs’ significance.

output ablation ↓ MAE (std) ↓ MSE (std) ↑ NNSE

full model 0.190 (0.260) 0.104 (0.535) 0.556
no GTSM supervision 0.194 (0.276) 0.114 (0.544) 0.534
GTSM, instead of densification 0.210 (0.246) 0.105 (0.536) 0.554

itime dynamics facilitates short-term forecasting, but that
observations further in the past become less informative.

Accuracy vs. lead time To evaluate the effect of the lead
time L on performances, we perform inference by varying
L = 4, 6, 8, 10, 12 hours ahead. Note that the lead time can
be systematically varied in a single forward pass thanks to
the network being directly conditioned on L. The outcomes
in Table 3 validate the intuition that longer lead times exac-
erbate the prediction problem, affirming its non-linear dy-
namics and the challenges of medium-term forecasting as
encountered by numerical weather prediction models.

Ablation studies We systematically ablate over input in-
formation and supervision extent to investigate each ele-
ment’s significance in driving the prediction goodness. The
results are reported in Tables 4 and 5, respectively. Input ab-
lations justify the provisioning of coarse GTSM plus ERA5
auxiliary inputs, and show that the network can effectively
translate atmospheric reanalysis to ocean states. Further-
more, data dropout is critical for enabling densification and
the introduction of flexible lead time conditioning is bene-
ficial. The output ablations confirm that coarse GTSM su-
pervision provides valuable guidance, yet there is additional
gains for the densified storm surge output. In sum, the out-
comes validate our overall approach as depicted in Fig. 1.
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(a) gauge locations. (b) GTSM prediction. (c) VIT U-Net densification. (d) U-TAE densification. (e) U-TAE coarse prediction.

Figure 6. Exemplary data and densified storm surge forecasts in the densification experimental setup. Rows: Four samples from the
test split. Columns: Sampled gauge locations. Dense surge forecasts of GTSM, MaxVit U-Net, FiLM U-TAE and coarse auxiliary FiLM
U-TAE predictions. All illustrated outputs are in the densification setup without the target gauge provided, at a lead time of L = 8 hours.

Qualitative results Complementary to the reported quan-
titative outcomes, Fig. 6 illustrates example data and the
different densification models’ forecasts. Notably, the net-
works’ densified predictions show substantial differences
from GTSM, as they are driven by the assimilation of in situ
tidal gauge data which GTSM does not incorporate. Specif-
ically, modifications are undertaken close to the shorelines
where gauges are present and surge forecasts are most rel-
evant. Furthermore, the densifications often differ from the
auxiliary coarse predictions, underlining the functional dif-
ferences across the two kinds of outputs and highlighting
once more the importance of integrating the sparse in situ
data. Finally, the appearance of gridding in the spatio-
temporal networks’ outputs evidences the impact of the
ERA5 atmospheric information, which is integrated in the
storm surge forecasts.

7. Conclusion
To tackle the aggravating hazard of coastal floods, we in-
troduce a novel dataset and framework forecasting storm
surges. Our curated data makes the posed challenge more
accessible to the remote sensing community and may serve
as a benchmark to fuel future research. Our approach is
influenced by recent progress in weather forecasting, and
shows that neural networks can implicitly assimilate sparse
in situ measurements with coarse weather and ocean state
reanalysis products to provide densified forecasts. In a
follow-up, we’ll explore the operational potential of our ap-
proach and replacing retrospective reanalysis products with
recently developed forecasting models. Further directions
may be the incorporation of satellite altimetry, the modeling
of impact at landfall and the translation from storm surges to
predicting flood maps. Data and code are given at https:
//github.com/PatrickESA/StormSurgeCastNet.
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