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1Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, France
2CNES, Toulouse, France

Abstract

Radiance fields have been a major breakthrough in the
field of inverse rendering, novel view synthesis and 3D mod-
eling of complex scenes from multi-view image collections.
Since their introduction, it was shown that they could be
extended to other modalities such as LiDAR, radio frequen-
cies, X-ray or ultrasound. In this paper, we show that, de-
spite the important difference between optical and synthetic
aperture radar (SAR) image formation models, it is possible
to extend radiance fields to radar images thus presenting the
first “radar fields”. This allows us to learn surface models
using only collections of radar images, similar to how regu-
lar radiance fields are learned and with the same computa-
tional complexity on average. Thanks to similarities in how
both fields are defined, this work also shows a potential for
hybrid methods combining both optical and SAR images.

1. Introduction
Many of the latest breakthroughs in the domain of 3D re-
construction have been inspired by Neural Radiance Fields
(NeRF) [37]. By definition, NeRFs are a variant of Neu-
ral Fields that learn a 3D representation of the scene based
on the measurement of radiance, given a set of optical im-
ages. In the past years, NeRFs have been reshaped, re-
worked and adapted to various use cases. In particular, their
application domain has been extended far beyond computer
vision [20, 55].

This diversity of application domains is largely due to
the flexibility of the Neural Fields paradigm. Neural Fields
represent a path forward for including physics into the Neu-
ral Network learning process, a longstanding aim in AI re-
search. The common goal of all of the Neural Field re-
search works cited in the following section is to learn a
high-dimensional representation (e.g. a 3D shape) from a
set of low-dimensional data (e.g. 2D images). From a phys-
ical point of view, the low-dimensional measurements can
be seen as boundary conditions for a set of partial differ-
ential equations (PDE) that describe the formation process
of the observations. In this setting learning amounts to an
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Figure 1. The difference between the integration process of a clas-
sic optical radiance field and the proposed radar field. While the
radiance field integrates along each rays (in black), radar fields
integrates across rays (in red) in a given azimuth plane (see Fig-
ure 2). Similarly to radiance fields, radar fields can be optimized
from multiple SAR images to recover the underlying surface of the
scene.

iterative optimization process to find a high-dimensional
representation that simultaneously satisfies both the PDE
and the boundary conditions. The learning process gener-
ally involves starting with a randomly (or arbitrarily) initial-
ized scene. A set of low-dimensional observations are then
computed using a forward “rendering” process, based on a
discretized form of the PDE. These observations are con-
fronted to the real measurements, yielding a loss. The loss
is back-propagated onto the representation to improve its
coherence with the observations. This process is repeated
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until convergence is reached.
In this work, we focus on using Synthetic Aperture

Radar (SAR) data instead of optical images to achieve 3D
reconstruction. We introduce Radar Fields, a new frame-
work for learning a volumetric model based on multiple
SAR measurements of a scene. Since the wavelengths used
in SAR experience minimal interactions with atmospheric
gases or aerosols, the propagation medium is virtually trans-
parent and non-absorbing. Thus, unlike optical sensors,
SAR has day-night cloud-penetrating imaging capacities.
Unlike interferometric SAR (InSAR), the proposed method-
ology does not prescribe the geometric configuration of the
acquisitions. It could therefore be used with opportunistic
acquisitions. We believe that the main impact of this re-
search will be for global 3D reconstruction, due to the wide-
scale availability and high quality of the latest SAR Earth
Observation data from missions such as TerraSAR-X [38]
or Capella [17, 49]. The methodology that we present is
general and could equally be applied to aerial SAR or to
other radar-based measurement systems.

To summarize, our contributions are the following:
1. The definition of radar fields, a differentiable rendering

framework adapted to radar image synthesis.
2. A new surface model model definition, inspired by digi-

tal surface models, that can easily be used in frameworks
like radar fields for remote sensing applications.

3. Adapting key training techniques, like NeRF random
depth sampling or being able to train despite noisy data,
to radar fields.

2. Related works
Our work is not the first to exploit SAR images to produce
3D models. In fact, space-borne SAR sensors are currently
used to produce large scale Digital Surface Models (DSM)
such as Copernicus DEM [1]. The TanDEM-X mission [61]
uses the principle of radar interferometry to estimate the
Earth’s surface topography. The derived Copernicus DEM
product describes the elevation of the terrain and built-up
land elements with an average error of 2-4 meters. The spa-
tial resolution of the product ranges from 10-30 meters.

An alternative technique to interferometry, known as
SAR tomography [44, 48], consists in using stacks of 2D
Synthetic Aperture Radar (SAR) images to estimate the sur-
face height with a finer spatial resolution (1-2m). This tech-
nique involves first estimating the covariance matrix in each
radar cell. In a second step, spectral analysis is used to in-
vert this covariance matrix, resulting in an approximation of
the surface height distribution. The resulting DSM achieves
a mean altitude error ranging from 1-2 meters in urban ar-
eas. However, SAR Tomography commonly suffers from
missing parts in urban surfaces, particularly in flat areas
such as ground or rooftops. Moreover, the spatial hetero-
geneity of the height distribution near abrupt altitude tran-

sitions can result in a blurry reconstruction [40].

Other works propose deep learning-based single-image
height estimation methods using a Convolutional Neural
Network encoder-decoder architecture [41, 42], taking a
SAR image as input and directly predicting depth maps.
These methods provide fast inference times, but the train-
ing requires large amounts of ground-truth 3D data syn-
chronized with multi-view SAR acquisitions to generalize
to different viewing angles or landscapes.

Neural fields have seen a number of applications in
optical-based satellite imagery, starting with the seminal
work S-NeRF [15] followed by Sat-NeRF [34], and re-
cently, EO-NeRF [35]. S-NeRF initially tackled the prob-
lem of varying lighting conditions; Sat-NeRF introduced a
latent transient vector to disentangle temporary objects such
as cars from the static scene, and EO-NeRF achieved state-
of-the-art 3D reconstruction quality by explicitly model-
ing the shadow effects and learning per-image color correc-
tions. Another recent work, SparseSat-NeRF [58], reduced
the need for a large number of input images using depth
priors based on stereo-photogrammetry. Season-NeRF [19]
models seasonal variations to enable temporal interpola-
tion between different acquisition dates. Sat-Mesh [39] re-
placed the NeRF model with an implicit surface represen-
tation, yielding impressive visual DSM quality, but not dis-
entangling the transient objects or generalizing to unseen
solar angles. RS-NeRF [54] and SatensoRF [59] have suc-
cessfully reduced the optimization time, but like Sat-Mesh
do not generalize to unseen solar angles. In the domain
of aerial images, issues such as large-scale data [51, 56]
and image co-registration [8] have also been addressed with
NeRF approaches.

Since the arrival of NeRFs, researchers in various fields
have also successfully applied the Neural Fields paradigm
to entirely different data than optical images. For example,
in the domain of radiative transfer and light modeling, these
include applications to LiDAR [23, 50], Time-of-flight cam-
eras [2] and non-line of sight cameras [47]. Impressive re-
sults have also been achieved using event based cameras,
which detect a difference in pixel intensity rather than the
absolute pixel intensity [24, 27, 33, 46]. In other regions
of the electromagnetic spectrum, applications have risen for
3D reconstruction based on X-rays [9, 10] and Radio Fre-
quency [60]. The equations of light propagation being sim-
ilar in nature to the equations of sound propagation, the
same paradigm can be adapted to the acoustic setting [7],
with applications in ultra-sound [31, 53] and sonar [43].
Finally, the principle of implicit learning has also yielded
exploratory works in geodesy [25] and gravitational lens-
ing [30].
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3. Introduction to radiance fields
NeRF [37] represents a static scene as a continuous volu-
metric function F . This function can, for example, be en-
coded by a fully-connected neural network (MLP) [37], a
voxel decomposition [26] or a tensor interpolation [6]. F
predicts the emitted RGB color c = (r, g, b) and a non-
negative scalar volume density σ at a 3D point x = (x, y, z)
of the scene seen from a viewing direction d = (dx, dy, dz),
i.e.

F : (x,d) 7→ (c, σ). (1)

Multi-view consistency is encouraged by restricting the net-
work to predict the volume density σ based only on the spa-
tial coordinates x, while allowing the color c to be predicted
as a function of both x and and other view-dependent fea-
tures, such as the viewing direction d.

Given a set of input views and their camera poses, F is
optimized by rendering the color of individual rays traced
across the scene and intersecting the known pixels. Each
ray r is defined by a point of origin o and a direction vector
d. The color c(r) of a ray r(t) = o+ td is computed as

c(r) =

N∑
i=1

Tiαici. (2)

The rendered color c(r) results from the weighted integra-
tion of the colors ci predicted at N different points sam-
pled along the ray r. Each point xi in r is obtained as
xi = o+ tid, where ti is the depth step.

The contribution of each point to the rendering equa-
tion (2) follows a light transmittance model based on the
opacity αi and transmittance Ti values, which follow the
geometry defined by the density σ

αi = 1− exp(−σi(ti+1 − ti)); Ti =

i−1∏
j=1

(1− αj) . (3)

The opacity αi increases with σi and is the probability that
a point belongs to a non-transparent surface. The transmit-
tance Ti is the probability that light arrives without hitting
previous opaque points in the ray r.

Given (3), the depth d(r) observed in the direction of a
ray r can be rendered in a similar manner to (2) [14, 45] as

d(r) =

N∑
i=1

Tiαiti. (4)

The radiance field is optimized by minimizing the mean
squared error (MSE) between the rendered color and the
actual color of the input views:∑

r∈R
∥c(r)− cGT(r)∥22, (5)

where cGT(r) is the observed color of the pixel intersected
by the ray r, and c(r) is the color predicted by the radiance
field using (2). R is the set of rays in each input batch.

Surface models. The concept of radiance fields has been
extended to surface models [13, 18, 32, 52, 57]. Instead
of considering the scene as continuous volumetric function
F , the scene is represented as a surface S. This surface is
characterized by an implicit function F such that

S =
{
x ∈ R3 | F(x) = 0

}
. (6)

Denoting d the minimum distance between x and S, F is
defined as a signed distance function (SDF) with

F(x) =

{
d(x,S) if x is outside S,
−d(x,S) if x is inside S.

(7)

This property is enforced using an additional loss term to
enforce the Eikonal property of the SDF

LEikonal =
∑
x∈Ω

(
∥∇F(x)∥22 − 1

)2
(8)

with Ω containing points sampled near the surface as well
as uniformly in the entire volume.

The optimization of a surface based model is similar to
that of a regular radiance field. The surface model is trans-
formed into a volumetric model using a function that pro-
duces a pseudo-density from the SDF value at a given point.
For example, in VolSDF [57], the transformation function Ψ
is defined with the cumulative distribution function of the
Laplace function

Ψ(d) =


1
2 exp

(
− d

β

)
for d ⩾ 0

1− 1
2 exp

(
d
β

)
for d < 0,

(9)

where α and β are optimized with the rest of the model. The
rendering operation remains unchanged, as (2) and (3) use
the pseudo-density

σi = Ψ(F (xi)) . (10)

Representing the geometry with an implicit function F
opens the door to exploit additional information, such as the
normal of the surface, i.e. n(x) = ∇F(x) when ∇F(x) ̸=
0, which is prevented by the Eikonal constraint.

4. Radar fields

The models presented in Section 3 have been proposed for
optical images. We propose here to extend the concept of
radiance fields to SAR images.
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Introduction to the SAR image formation model. A
SAR imaging device is an active system. It is usually
composed of an antenna mounted on a moving spaceborne
or airborne platform that emits electromagnetic pulses in
a side-looking geometry and then receives echoes that are
backscattered by the ground surface. The satellite flight di-
rection is called along-track or azimuth, while the direction
of the beam is called across-track or range. For each az-
imuth pulse emitted, the satellite receives the echoes, de-
modulates and samples them by range, ordered by acquisi-
tion time, and stores them as complex numbers separating
the amplitude and phase components of the signal. The am-
plitude is related to the ground reflectivity and angle, while
the phase contains information about the satellite-target dis-
tance or path delay (modulo the wavelength). The resulting
image is said to be the raw format. Because of the large
footprint of the electromagnetic beam and the length of the
pulse, in this format, the response from a single scatterer
(i.e. a ground reflective element) on the ground is spread
over many pixels and the spatial resolution is very low. The
resolution is largely improved through a process known as
focusing [11], which yields a complex-valued image equiv-
alent to employing short pulses (for range) and a narrow
beam perpendicular to the motion of the satellite known as
zero-doppler plane (corresponding to azimuth). Unlike op-
tical images, SAR images represent the distance to reflec-
tors in the range direction. The SAR acquisition process
is illustrated in Figure 2. If two reflectors are at the same
distance from the satellite (in the same azimuth plane, e.g.
the red plane in Fig. 2), the response will be the sum of
both, resulting in foreshortening, layover and shadow ef-
fects. Luckily, this range image can be analogously inter-
preted as a projected view of the scene from a direction
perpendicular to the incidence angle and illuminated by the
radar pulse (as illustrated in Figure 1). Note however that
this perpendicular projection should not account for occlu-
sions.

Definition of radar fields. Using the notations from Sec-
tion 3, we want to learn the function F corresponding to
the surface model of the scene using a collection of SAR
images. In this section, we derive the model for a given
azimuth plane. This is not a limitation since the image is
equivalent to a zero-doppler acquisition for each azimuth
plane as mentioned in the previous paragraph, except in the
case of double or multiple bounces, which we discuss in
Section 6.

Consider a set of rays (rj), with respective origin and di-
rection (oj ,vj), in the given azimuth plane and (di)i∈J1,NK
the distance sampling associated to these rays. Let srj (di)
be the sensed signal associated to rj at distance di. Follow-
ing Section 3, this yields

srj
(di) = −Ti,jαi,j ⟨vj |ni,j⟩θ , (11)

Range

Azimuth

A B

C

Range diagram

A

C

B

Figure 2. Acquisition process of a SAR image: At each azimuth
position an electromagnetic pulse is sent from the antenna. The red
plane illustrates the azimuth plane associated to a pulse. Points A
and C, which are at the same distance from the sensor, are pro-
jected to the same point while B is projected on a different point
(as seen in the range diagram).

where the definition of Ti,j and αi,j , for a fixed j, is the
same as in (3), nij = ∇F(oj + divj), and where the co-
efficient θ is used to model the specularity of the reflec-
tion [3, 4]. Indeed, in the case of SAR images, there is no
color: the intensity of the reflected signal is characterized
by the surface. Traditionally in SAR simulation [3, 4], the
reflected signal s is given by

s = −⟨v|n⟩θ (12)

with v the incidence direction and n the normal to the sur-
face. Often a purely Lambertian model, corresponding to
θ = 1, is assumed. Larger values of θ are used to represent
specular surfaces. The parameter θ can be learned at the
same time as the location of the surface.

As described in the previous paragraph and represented
in Figure 1, the integration is performed across rays for
SAR images and not along rays as in optical images: for
a given azimuth, reflectors that are at the same distance are
projected into the same pixel. To satisfy this condition, the
rendering operation (2) must be replaced by

s(di) =
∑
rj

srj
(di) = −

∑
rj

Ti,jσi,j ⟨vj |ni,j⟩θ . (13)

Note how the role of indices i and j are inverted between
Eq. (2) and Eq. (13) and how c depends on the ray while
s depends only the distance. While the position of rays is
well defined by the sensor configuration in the optical case
(see Sec. 3), this is not the case for SAR. Conversely, the
sampling of the xi,j is perfectly defined in the SAR case –
following the range sampling – but is flexible in the opti-

567



cal case. Finally, computing the results for all the azimuth
planes gives the complete SAR image.

Differences between radiance and radar fields. While
radiance and radar fields are conceptually similar, we list
some important differences here. They are also summarized
in Table 1. The first difference is that to generate a single
SAR pixel, it is necessary to compute all rays corresponding
to its azimuth plane. Thankfully, computing a single pixel
provides the result for the entire range line at the same time.
This means that while rendering a single pixel requires more
computations, the overall amount of computations neces-
sary to learn a radar field remains the same, on average, as
the one needed to learn a radiance field. In practice the only
difference is how rays are batched. While there is no re-
quirement on how to batch rays in the radiance field case,
it is necessary to batch all rays of a given azimuth plane to-
gether during computation for radar fields. Note that with
additional assumptions on the scene, it is possible to slightly
relax this requirement. Indeed, if an approximate position
of the surface is known a priori, then it would be possible
to split the distance sampling into multiple smaller batches
that can be computed separately. Note that no such assump-
tion is made for the experiments presented in Section 5.

A key technique to improve the performance in
NeRF [37] is to introduce some noise when sampling along
rays instead of using a fixed uniform sampling. This is not
possible with a radar field because the sampling step along
rays is defined by the range sampling. It is however possi-
ble to transpose this idea to ray sampling since, as shown
in Eq. (13), the final signal does not require a specific ray
position. as long as oj stays in its corresponding azimuth
plane and that it does not impact the range sampling. If we
denote by wj the vector orthogonal to vj inside the azimuth
plane, then the perturbed ray origin is defined by

õj = oj + nwj with n ∼ N (0, 1). (14)

While optical images have a good SNR in normal illu-
mination conditions, SAR images are fundamentally noisy.
They exhibit speckle noise, which has been studied and
shown to follow a complex Wishart distribution [21, 22].
The distribution p of the noisy sample covariance matrix C
of dimension d corresponding to the noise-free covariance
Σ in a L looks configuration is

p(C) =
LLd|C|L−d

Γd(L)|Σ|L
exp

(
−LTr

(
Σ−1C

))
, (15)

with Γd(L) = πd(d−1)/2
∏d

k=1 Γ(L − k + 1) and Γ
the gamma function. When working with single-channel
single-look intensity images, the sample covariance matrix
reduces to an intensity I and this model can be simplified
into a multiplicative speckle noise with regard to the noise-
free reflectance R, such that

I = n×R with n ∼ Γ(1, 1). (16)

Radiance field Radar Field

Complexity
height × width
× samples

azimuth × range
× samples (on average)

Integration Along the ray Across the ray

Distance
sampling

Variable
(along a ray)

Fixed
(defined by data)

Ray
sampling

Fixed
(defined by data)

Variable
(in a given azimuth plane)

Noise Noise-free Follows Eq. 16

Table 1. Main differences between regular radiance fields and the
proposed radar fields.

Learning the surface despite the noise is not a problem
in practice. Indeed, comparing the noiseless generated
view to the noisy samples is sufficient. This is similar
to Noise2Noise [29] that shows that it is possible to learn
a denoising network despite having only noisy samples.
SAR2SAR [12] showed that this idea can also be applied
to SAR data and [16] that it is possible to learn the noise-
less images of a scene using a single burst of images, even
when the noise has a bias.

Surface model implementation. In remote sensing,
ground surfaces are usually represented by a DSM, i.e.
a 2D map of the altitude of the ground at each position.
For our experiments we propose to use the same formal-
ism to define the surface in the proposed radar field. From
dsm : R2 → R, we define

F(x) = z − dsm(x, y) (17)

with x = (x, y, z) ∈ [0, 1]3. While this function is not
exactly an SDF since its value might not necessarily cor-
respond to the exact distance to the surface, it nonetheless
defines a surface similarly to Eq. 6 and therefore the learn-
ing process presented in Section 3 can be used to learn the
surface. The results shown in Sec. 5 were computed us-
ing a rasterized DSM that can be assimilated to an image
whose pixel represent the height value of the surface. It
is the value of each pixel that is then directly optimized.
Subpixel heights are estimated using a bilinear interpola-
tion of the nearest values and normals to the defined surface
are computed accordingly. One of the advantage is that the
Eikonal loss (8) is not necessary and it is possible define
simple surface regulation terms like∑

x

∑
y∈N (x)

∥dsm(x)− dsm(y)∥22, (18)

with N (x) the set of neighbors of x, that we use for the
experiments. Note that the presented concept should re-
main compatible with the more classic definitions of radi-
ance fields.
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Figure 3. Results of surface learning using five SAR images on two toy examples. The first represents a pyramid (first row is the ground
truth and second row the learned model) and the second a round pile (ground truth in the third row and learned model in the last row). From
left to right: visualization of the surface model, DSM corresponding to the surface model, and two images corresponding to two views
used during training.

5. Experiments
We apply the proposed radar field model to synthetic exam-
ples generated from toy surfaces and real DSMs to demon-
strate its potential.

Synthetic data generation. We generate the synthetic
SAR acquisitions, using the same image formation model
described in Section 4. Indeed, given that the ground truth
is also represented by a DSM, the radar field synthesis equa-
tions can be used to simulate the images corresponding to
the query views. The main difference is that noise needs to
be added during the process. For this, following Eq. (16),
we use instead s̃(d) = n× s(d) with n ∼ Γ(1, 1) and s(d)

defined by Eq. (13). The optimization process requires only
the generated noisy images and the geometric parameters
associated to each view.
Parameters. All the experiments presented in this sec-
tion were done using the same parameters and the images
generated corresponds to the same five camera positions.
The models were trained during 10000 steps with an ini-
tial learning rate of 1. We reduced the learning rate to 0.1
at epoch 5000 and to 10−2 at step 8000. Azimuth planes
were sampled uniformly from all images and grouped into
batches of size 64, and we sampled 256 rays per azimuth
plane. Except when specified otherwise, we consider Lam-
bertian surfaces with θ = 1.
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Figure 4. Results of surface learning using five SAR images on simulated data from two real DSMs. The first represents mount Fuji (first
row is the ground truth and second row the learned model) and the second the Piton de la Fournaise (ground truth in the third row and
learned model in the last row). From left to right: visualization of the surface model, DSM corresponding to the surface model, and two
images corresponding to two views used during training.

Results. Figures 3 and 4 show results both with toy ex-
amples (a pyramid and a circular pile) as well as simula-
tions using real DSMs (of the mount Fuji and the Piton de
la Fournaise). These results show that it is indeed possible
to learn the ground surface from a few opportunistic SAR
acquisitions using the proposed radar fields. By quantify-
ing the altitude reconstruction errors relative to the ground
pixel resolution, we observe errors in the order of 10−2 pix-
els. Lastly, Figure 5 shows an example of reconstruction of
a non Lambertian surface, where the specularity map and
geometry are both estimated during the optimization. In all
these examples, the learned surfaces are very accurate de-
spite the presence of a strong noise in the training data. Ad-

ditional results are available in the supplementary material.

6. Discussion and conclusion
In this section, we discuss the limitations and possible im-
provements of the model presented in Section 4.

Multi bounce. Depending on the surface configuration,
the SAR signal may be subject to multiple bounces. This
phenomena occurs when the signal received by the sensor
is not the one directly reflected by an ideal Lambertian sur-
face, but one coming from a second or further reflection.
Corners are a common source of double bounces. We dis-
tinguish between two cases: the first is when bounces occur
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Figure 5. Example showing that it is possible to learn the θ coeffi-
cient (see Eq.(12)) characterizing the surface property (bottom) at
the same time as the surface model (top). Left is the ground truth
while right is the learned model. The learned model was initialized
with θ = 1 everywhere.

A

B

C

Figure 6. Example of multiple bounces for SAR signal. The signal
is partially reflected in A but also bounces and is reflected a second
time in B. This second bounce is sensed as a virtual reflection in
C.

in a given azimuth plane, while the second is a more generic
case where bounces are not restricted to that plane.

Figure 6 illustrates the case of double bounce in a given
azimuth plane. Part of the signal is reflected at the first con-
tact with the surface – as modeled so far – but also bounces
to another part of the surface before being reflected back to
the sensor. This process could be simulated by continuing
rays after the first surface intersection, similar to how addi-
tional rays are computed in [35] to predict shadows. This in-
creases the complexity of the model by a factor equal to the
maximum number of bounces considered. It is important to
note that the apparent position of the reflection associated to
the double bounce is not the same as the true reflection posi-

tion. Indeed, the acquisition system measures the traveling
time of the impulse signal from emission to reception and as
such assumes that the reflection happened at half the travel-
ing time. For example, in Figure 6, the signal that bounced
from A to B and back to the receiver appears at the same
position as if it were reflected by point C.

The generic case is more complex than the latter because
the zero-doppler assumption is not true anymore. This
means that a ray corresponding to a given azimuth plane
can impact the signal of another azimuth plane. Such a
generic multi-bounce scenario would require batching mul-
tiple azimuth planes together to render each pixel, making
the method highly unfeasible unless strong priors or other
constraints are exploited in future work.

Phase and polarimetric information. One additional at-
tribute of SAR data that could be incorporated is the phase
information. Indeed, SAR images are made of complex
numbers containing the intensity and the phase of the sig-
nal. While phase is already used during for the focusing
preprocessing step, it can also be used in the model. SAR
Interferometry (InSAR) exploits the phase of multiple im-
ages with adequate acquisition configurations. Multitempo-
ral InSAR images can be used to measure small terrain de-
formation [36], and across-track InSAR [5] can be used to
build digital surface models (DSM) using a pair of images
acquired from two antennas (e.g., SRTM), as mentioned in
Section 2. Therefore, we see potential in the phase informa-
tion to improve altitude accuracy in future work. Similarly,
polarimetric information could also be modeled. Polarimet-
ric information is widely used to determine the scattering
mechanism [28] and as such can be useful when estimating
the surface model. It can also be useful when estimating
additional scene properties, such as semantic classification.

Conclusion. We presented radar fields, an extension of ra-
diance fields to SAR imagery. While the model presented in
this paper is a proof of concept tested on simulated synthetic
data, we believe that it opens up new exciting opportuni-
ties, especially in remote sensing where high-quality SAR
images are becoming increasingly common and the gener-
ation of surface models from satellite images is a major re-
search topic. Moreover, it also shows a potential to inspire
future hybrid models combining both opportunistic optical
and SAR acquisitions in a joint framework.

Acknowledgment. This work was performed using
HPC resources from GENCI-IDRIS (grants 2023-
AD011011801R3, 2023-AD011012453R2, 2023-
AD011012458R2). Centre Borelli is also with Université
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