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Abstract

With the advent of deep learning methods, performance
and efficiency of optical flow estimation has significantly
increased, especially for supervised models. However, they
do not generalize well to more specific data involving small
moving objects in large images, such as high-resolution
aerial or satellite sequences. In addition, annotation and
realistic simulation are difficult for these contents, which
calls for unsupervised alternatives. Yet, the latter are still
less accurate than their supervised counterparts. In this
paper, we introduce an unsupervised local optical flow es-
timation method adapted to small moving objects in large-
size images by involving no downsampling of the feature
maps. We adopt a local correlation search and implement it
in an original way with a per-shift computation, which min-
imizes memory consumption and speed up inference compu-
tation for large-scale images. We also design a loss function
combining similarity, smoothness and sparsity constraints.
We demonstrate the performance of our SMOFlow method
on real stabilized aerial videos fully representative of fu-
ture satellite conditions. SMOFlow favorably compares to
other methods. Our SMOFlow method is able to accurately
capture the motion of small objects in large images, while
efficiently reducing memory consumption.

1. Introduction

In the last years, satellite systems for remote sensing have
been developed able to acquire sequences from space at
metric resolution [16]. New systems capable of video cap-
ture at a given aiming point are coming with resolution
around 50cm. Then, characterizing the instantaneous move-
ments of objects of small size (a few pixels) is attainable. A
reliable estimation of the motion of small objects will be

an essential prerequisite for downstream tasks. The high
frame-rate video acquisition allows for optical flow estima-
tion. Optical flow provides a complete and dense informa-
tion on the motion between two frames of a video [9]. It
corresponds to the displacement field formed by the vec-
tors originating from each pixel in the source image and
pointing to its next position in the target image. A recent
overview of optical flow methods applied to satellite image
sequences shows that there is room for improvement in that
context. The authors focused on the case of coupling optical
flow with stereovision [28].

Nowadays, state-of-the-art optical flow methods lever-
age the deep learning paradigm. The best performing ones
involve supervised models [27], which requires available
ground truth on optical flow throughout many videos. They
rely on heavy correlation computation, especially when
similarity costs are computed for all possible correspon-
dences between every pixel of the source and target images,
leading to the global cost volume. For the sake of memory
consumption, learned feature maps need to be drastically
downsampled compared to the input image size. However,
these requirements cause serious problems for some impor-
tant categories of image sequences.

Indeed, there are configurations where objects of interest
are small moving objects in large images, typically, vehicles
in aerial or satellite imagery. In that case, the existing meth-
ods generalize poorly. They are not able to estimate the
motion of the small moving objects in these large images
due to the significant downsampling in the learned feature
maps. The pyramidal framework associated to a coarse-to-
fine process, may be another reason. In addition, optical-
flow ground truth is generally not available for these image
sequences, and realistic simulations not easy to generate, so
that even fine-tuning is not accessible for supervised meth-
ods. This calls in addition for unsupervised models.

In this paper, we present an original and efficient un-
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supervised model for accurately estimating optical flow in
case of small moving objects within large images that in-
volves no downsampling of the feature maps. By leverag-
ing the fact that their displacement is limited between two
consecutive images, we adopt a local correlation volume
(LCV) that we implement in an original and efficient way
with a per-shift computation, which avoids memory peaks
and speeds up inference computation when applied to large
images. In addition, we have designed an original unsu-
pervised model whose loss function combines three terms:
similarity, smoothness and also sparsity. Experimental re-
sults are reported on sequences of large aerial images.

The rest of the paper is organized as follows. Related
work on optical flow estimation is described in Section 2.
Section 3 presents our unsupersived model SMOFlow, and
highlights our contributions on the local correlation block
and the loss function. In Section 4, we report experimental
results on real aerial image sequences, including compari-
son with state-of-the-art methods. Finally, Section 5 con-
tains concluding remarks.

2. Related work

We focus on recent optical flow methods based on deep
learning. For a survey of the many earlier variational
optical-flow methods derived from the pioneering one [10],
we refer the reader to [9, 27]. The general framework of
most existing optical flow methods based on deep learning
can be summarized in four fundamental steps: (i) feature
maps of both images at different resolutions are learned; (ii)
feature correlation is then computed in order to find corre-
spondences between the two images; (iii) intermediate op-
tical flow is predicted based on the correlation volume and
the previous optical flow estimation; (iv) finally, the previ-
ous step (or two previous steps depending on the method)
is repeated in an iterative loop. The iterative refinement
is either performed within the coarse-to-fine warping-based
framework [24] or with a single high-resolution flow update
technique as in [13, 26, 30].

Most methods are supervised ones. FlowNet2.0 [12] pro-
posed to stack multiple encoder-decoder networks into a
large model, each taking the source image and the target
image warped with the previously estimated flow. How-
ever, the model is huge (160M parameters), and therefore,
prone to overfitting. SpyNet [22] and PWC-Net [24] em-
bedded the classical coarse-to-fine approach [3] into the
learning framework. SpyNet is a light-weight architecture
with only 1.2M parameters, leveraging the classical princi-
ples of pyramidal processing and warping. Instead of con-
structing a fixed image pyramid like SpyNet, PWC-Net de-
signed a learnable feature pyramid. In addition to the two
principles aforementioned, PWCNet incorporated the use
of cost volumes [6]. A cost volume stores the costs for all
the possible correspondences of each pixel in the next im-

age. Feature pyramids from both images are built prior to
the cost volume computation.

The coarse-to-fine approach fails to address the well-
known challenge of small, fast-moving objects. Indeed,
when building the feature pyramid using successive down-
samplings, moving objects of small size tend to disappear
at the level where their flow can be estimated [4]. Fur-
thermore, the warping process used by both PWC-Net and
SpyNet can propagate early errors from higher levels, mak-
ing the final optical flow estimate unreliable. RAFT [26]
overcomes these limitations by operating at a single resolu-
tion flow field. An additional context encoder is generally
used to extract the features from the source image. RAFT
showed that injecting the context into the update block im-
proves optical flow results. The intuition behind this is that
it aggregates spatial information with motion boundaries.

Instead of directly operating on the 4D correlation vol-
ume as in RAFT, FlowFormer [11] uses the attention mech-
anism to encode the entire correlation volume into a com-
pact memory that better captures information across pixels.
The authors of [13] adopt a sparse global correlation strat-
egy to reduce the memory consumption, while maintaining
a global search for correspondences. The Sparse Correla-
tion Volume (SCV) is constructed by computing the k near-
est matches in the target feature map for each feature vector
in the source feature map. This strategy results in signif-
icant memory saving, since the complexity of correlation
computation is reduced to O(Nk). Yet, it fails in blurry
and featureless regions where top-k correlations might not
be sufficient to encompass the correct match. In contrast,
DIP [30] introduces a PatchMatch-based correlation vol-
ume. The initial PatchMatch method [2] leverages the fact
that neighboring pixels usually have coherent matches. DIP
consists of two modules: an inverse propagation module
and a local search module.

In general, it is difficult to get ground truth for dense op-
tical flow. Therefore, supervised methods usually rely on
simulated realistic data for training such as [5, 20]. Un-
supervised methods are then appealing alternatives for bet-
ter generalization to unseen data or specific types of im-
ages [15], but generally at the cost of lower accuracy. Un-
Flow [23] introduces an unsupervised version of FlowNet-
Corr. ARFlow [17] follows the PWC-Net pipeline, while
reducing its number of parameters. It integrates self-
supervision from data augmentation (including spatial, oc-
clusion and appearance transformations) to generate chal-
lenging scenes. SMURF [1] leverages RAFT architecture
and performs self-supervision in a sequence-aware manner.

A few recent papers paid specific attention to the dis-
placement range and to local information. The authors of
[14] introduce dilated cost volumes to tackle both small
and large displacements. Their paradigm does not require
a sequential estimation strategy to compute optical flow. In
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[19], a Gaussian attention mechanism can be added to op-
tical flow models to take into account and enforce local
properties both in the representation learning stage and in
the matching process. It follows a preceding work of the
same authors introducing kernel patch attention to account
for spatial local affinity. In [7], the objective is to dissociate
global motion learning and local flow estimation by consid-
ering global matching and local refinement as distinct steps.
In [25], the aim was rather to handle occlusion areas.

3. Our unsupervised local method

3.1. Overall framework

Our SMOFlow model consists of three main components as
summarized in Fig.1: a feature and context encoder, a local
correlation block, an iterative update. In contrast to exist-
ing methods, we do not introduce any downsampling in the
feature encoder. This choice stems from the objective of
handling small moving objects in large images. The feature
encoder consists of a 7⇥7 convolutional layers followed by
six residual blocks, each of which has two 3 ⇥ 3 convolu-
tional layers. Since the displacement range of the moving
objects is limited, we consider a local cost volume (LCV). It
computes the similarity between each pixel p in the source
image I0 and the pixels within a radius R in the target image
I1. In addition, we have designed an efficient implementa-
tion to reduce the memory consumption and computational
cost of correlation computation.

We also construct a correlation pyramid by pooling the
last two dimensions of the correlation volume, but without
any coarse-to-fine mechanism. The first level of this pyra-
mid captures the smallest displacements, while the highest
level gives information about larger displacements. The
number of layers depends on the displacement range that
characterizes the data. Finally, similarly to RAFT, the iter-
ative update stage comprises correlation lookup and GRU-
based residual flow estimation. However, our method does
not need any upsampling step.

3.2. Loss function

For our unsupervised SMOFlow method, we have defined a
loss function composed of three terms, one similarity term
and two regularization terms, the first one enforces smooth-
ness of the estimated flow, the other one sparsity of the flow:

L(D, ✓) = Lm(D, ✓)+�1Lsm(D, ✓)+�2Lsp(D, ✓), (1)

where D denotes the set of data and ✓ the parameters of the
model. In the experiments, we set �1 = 1 and �2 = 0.5.

The loss term Lm is based on the Structural Similar-
ity Index Measure (SSIM) fSSIM [29], computed over the
three R, G and B channels of the input images I0 and I1:

Lm(D, ✓) =
1

|⌦|
X

p2⌦

fSSIM (I0(p), I1(p
0)), (2)

where ⌦ is the image grid and p0 = p + w(p), w(p) de-
noting the flow vector at p. The loss term Lsm is a classical
edge-aware smoothness term (with ↵sm = 20):

Lsm =
1

|⌦|
X

p2⌦

��rw(p)
��
1
.e�↵smkrI0(p)k1 . (3)

We introduce an original sparsity term defined by:

Lsp =
1

|⌦|
X

p2⌦

kw(p)k2.e�↵sp| @I
@t (p)|, (4)

with |@I
@t

(p)| ⇡ 1

|V(p)|
X

q2V(p)

|I1(q, t)� I0(q, t)|,

where V(p) is a local neighborhood of p. By adding the
sparsity loss term, we leverage the fact that moving objects
are scarce and small in the images. In addition, the im-
ages of our dataset are stabilized and thus the background
should be static. This is expressed by the weighting func-
tion parametrized by ↵sp (with ↵sp = 10). ↵sp quantifies
the extent to which the time derivative of image intensity
affects the flow magnitude. We enforce that high flow mag-
nitude is consistent with small moving objects and that the
prediction of non-zero background flow is penalized.

3.3. Local correlation block

We describe the contributions necessary to make the local
correlation block efficient when dealing with large images
without any downsampling, which is a key challenge.

In order to reduce the memory consumption induced by
the correlation block and to improve its performance, we
propose an efficient way to compute the local cost volume
and the gradient of the loss with respect to the feature maps.
The expression of the local cost volume (LCV) is given by:

LCV =
�
F0(p) · F1(p + w) | (p,w) 2 ⌦⇥�

 
(5)

=

⇢
1p
C

C�1X

c=0

F c

0 (p)F
c

1 (p + w) | (p,w) 2 ⌦⇥�

�
,

where C is the number of channels in the feature maps F0

and F1, and � the square local search area of size D2. To
effectively build the cost volume, we consider a per-shift
computation instead of the usual per-pixel computation as
in [26]. In the per-pixel computation, for each p in I0, we
extract and store the feature values of its neighbors in I1 be-
fore computing their dot product. This approach considers
the 4D local correlation volume LCV 2 RD

2⇥H⇥W as a
stack of H ⇥W correlation maps of dimension D2.

In contrast, in the per-shift computation, for each tested
displacement d in D = [�D/2, D/2]2 \ Z2, we com-
pute the correlation between pixels p in I0 and their cor-
responding pixels at position p+ d in I1. The latter are
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Figure 1. Overall architecture of our SMOFlow model. For the sake of clarity, we did not draw the channels of the feature maps F0 and
F1. LCV is the local correlation volume. D2 is the size of the search area for local correlation. S(F1) denotes the shifted version of F1.

recovered by shifting the target feature map by d. This ap-
proach allows us to formulate the 4D correlation volume
LCV as a stack of D2 correlation maps LCVd0 of dimen-
sions H ⇥W , each one representing the correlation be-
tween the source feature map and the d-shifted target fea-
ture map. The integer d0 refers to a pointer that scans the
grid D in lexicographic order.

In the following, each shift value d will be mapped by
gmap to its corresponding integer value d0:

gmap : D �! {0, . . . , D2 � 1}
d = (dx, dy) �! d0 (6)

This mapping is designed such that the first cost volume
LCV0 stores the similarity costs between pixels p in I0 and
their top-left corresponding point p + d = (x � R, y �
R) in I1, with D = 2R + 1, while the last cost volume
LCVD2�1 stores the correlations between pixels p in I0 and
their bottom-right corresponding point p+d = (x+R, y+
R) in I1. Also, when computing the similarity between a
pixel p in I0 and its corresponding pixel at the same position
in I1, there is no need to shift the target feature map, which
implies in that case that d0 = D

2�1
2 and d = (0, 0).

3.4. Analytical backward

The graph structure of our local correlation block can slow
down the computations performed by the autograd engine.
Preliminary experiments on the correlation volume also
showed that its backward is very slow. In order to improve
performance during training, we implement our own cus-
tom backpropagation function. This manual (or analytical)
backward requires us to express the derivatives of the local
correlation volume w.r.t. its input, namely the source and
target feature maps. Therefore, given the output gradient
rLCVL, we compute the input gradients rF0L and rF1L.

Figure 2 illustrates the principle of the backward pass.
In the backward pass, we receive a tensor containing the
gradient of the loss with respect to the output, and we need

to compute the gradient of the loss with respect to the input.
Let us note that the latter have dimensions C ⇥ H ⇥ W ,
while the former has dimensions D2 ⇥H ⇥W .

Given a pixel location p = (x, y) in the source image,
let us first compute the gradient of the loss w.r.t. F0 and F1.
Following Fig.2, we have for k 2 {0, 1}:

@L
@Fp

k

=
D

2�1X

d=0

X

q

@L
@LCVq

d

@LCVq
d

@Fp
k

, (7)

where Fp
k

stands for Fk(p), and @LCVq
d

@F
p
k

are defined below.
Any element of LCV can also be expressed as LCVq

d
=

F0(q) · F1(q + ⌧ d), where ⌧ d = g�1
map

(d) denotes the shift
coordinates that correspond to integer d. Regarding the gra-
dient of the loss w.r.t the source feature maps F0, we have,
for a given shift d, @LCVq

d

@F
p

0
= F1(q+ ⌧d) if q = p, equal to

0 otherwise. Using eq.(7), we get:

@L
@F p

0

=
D

2�1X

d=0

@L
@LCVp

d

F p+⌧d
1 . (8)

Similarly, for the gradient of the loss w.r.t the target feature
map F1, we have, for a given shift d, @LCVq

d

@F
p

1
= F0(q) if

q = p � ⌧ d, equal to 0 otherwise. Still using eq.(7):

@L
@F p

1

=
D

2�1X

d=0

@L
@LCVp�⌧d

d

F p�⌧d
0 . (9)

Like the architecture itself, the backward pass is imple-
mented in Pytorch. Besides, we detail, in the supplementary
material, how we have implemented an efficient memory
management during inference, both for the feature encoder
and the update block.

3.5. Training

Our training dataset consists of large-size image sequences.
Among the sequences we process, some have a size up to
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Figure 2. Principle of the backward pass. For the sake of clarity, we represent it for a single channel of the feature maps. S(.) denotes the
shift, and S�1(.) the reverse shift. L is the loss function.

2700 ⇥ 1400. Compared to RAFT [26], where the feature
maps are downsampled by 1

8 (which would result in a size
of 337 ⇥ 175 for our data), our model, as it stands, would
be very expensive to run at training time. That is why we
divide the large-size images into sub-parts for training (but
not at inference time). This sub-division can also be seen
as data augmentation. Each image in a given sequence is
divided into 16 patches. The training process is split into
two main steps. First, we train the model on one sequence
in order to see whether it converges or not. Then, to check
if our model generalizes well to unseen data, we gradually
increase the complexity of the training dataset by including
challenging scenes. These scenes contain motion parallax
or changes in the appearance of moving objects.

4. Experimental results

4.1. Implementation details

In all experiments, we set the number L of levels in the cor-
relation pyramid to L = 4, the exponential weighting in the
iterative refinement to � = 0.8, the number of updates dur-
ing training to 12, the radius used in the correlation lookup
to 4, the maximum displacement range in the local corre-
lation volume to R = 12. The latter was set to 12 by ob-
serving the vehicle displacements in the image sequences,
as explained in the supplementary material. Training and
inference were both performed on NVIDIA A100 - 40GB.

4.2. Dataset description

The stabilized aerial videos were provided by our industrial
partner, a major player in the satellite industry. They an-
ticipate the short videos that soon-to-be-launched satellites
will be able to produce at a given aiming point. They are

fully representative of the satellite conditions, in particular
in terms of resolution. The resolution is the surface covered
by a pixel on ground, here between 17cm and 50cm. This
determines the size in pixels of a vehicle and its displace-
ment magnitude (detailed in the supplementary material),
whatever the image size. The videos are stabilized to reflect
the satellite operating mode. The stabilization used the atti-
tude sensors (like gyro) and a global image registration was
performed. The dataset of aerial images contains large-size
stabilized sequences involving diverse contents and com-
prising between 50 and 100 frames. The dataset can be di-
vided into two categories: sequences depicting cities and
sequences containing highways. A detailed description of
the dataset is given in the supplementary material, along
with a video. We use six sequences for training.

4.3. Downsampling impact analysis

We first carried out two experiments that we call Mosaic and
Patch, to find why a poular and efficient optical flow method
as RAFT [26] fails to capture the optical flow of small mov-
ing objects in large images, as illustrated in Fig.3. The Mo-
saic experiment consists in building a video whose every
frame concatenates images of the DAVIS2016 dataset1 [21],
taken at the same time instant, this frame being then down-
sampled. The optical flow computed on the resulting mo-
saic video is then compared to the mosaic of the flows com-
puted on each individual video forming the mosaic. The
Crop experiment is in a way the reverse one. We crop a
subimage of a large aerial image and upscaled it, making
the small objects bigger. The two experiments are detailed
in the supplementary material with associated results.

1https://davischallenge.org/index.html
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The first intuition would be to attribute this failure to the
lack of satellite image sequences in the dataset used to train
RAFT. Actually, it is not the case. The reason is the absolute
(small) size of moving objects in the image, associated with
the downsampling performed on the feature maps by RAFT.
This assessment can be extended to unsupervised methods
involving the downsampling stage like SMURF [1].

Figure 3. Flow computed with RAFT on the Placa-Tarraco se-
quence (images of size 1800 ⇥ 950). Top: sample image of the
sequence. Bottom: estimated flow. Flows are represented using
the usual HSV color code (see the supplementary material) with
a post-processing for a better visibility. The flow on the vehicles
moving along several streets or in the roundabout is mostly absent.

4.4. Comparative results on aerial sequences

We compare our SMOFlow method with the DIP [30] and
SCV [13] methods. We chose these two methods, even
if they are supervised and involve a feature downsampling
stage, because they tried to mitigate the downsampling and
cost volume impact as described in Section 2. DIP and SCV,
being supervised, have a competitive advantage, but this is
counterbalanced by the fact that we cannot fine-tune them
on the satellite sequences due to the lack of ground truth.

4.4.1 Visual results

We first report visual results obtained on the Placa-Tarraco
sequence of Fig.3. In Fig.4, we compare flows computed on
this sequence with our SMOFlow method and by the DIP
and SCV methods. The visual comparison between the re-
sults provided by the three methods confirms that SMOFlow
is able to correctly deal with small moving objects and to
provide accurate enough flow subfields on these objects. We
observe that SCV omits a large majority of small moving
vehicles. DIP achieves more satisfying results in areas con-
taining fine structures. However, it tends to blend the flows
of adjacent vehicles, as shown in the red circled area. In

contrast, our method discriminates close vehicles and cap-
tures more vehicles, as observed in the blue-framed areas.
Visual results obtained by our SMOFlow method on other
sequences are provided in the supplementary material.

(a) DIP

(b) SCV

(c) SMOFlow

Figure 4. Sample flow computed with DIP, SCV and SMOFlow
on the Placa-Tarraco test sequence one image of which is shown
in Fig.3. Red-circled and blue-framed areas commented in the
main text. Best viewed in color and by zooming in the pdf.

In addition, we present in Fig.5 zoomed-in visual results
for a better understanding of the performance achieved. The
displayed flows correspond to a part of the large image
for each of the three sequences. We can observe that our
SMOFlow method is able to estimate the motion of almost
every small vehicles, whereas DIP misses some of them and
often blends the flows corresponding to different vehicles.
SCV fails in getting the flow in most cases.

4.4.2 Quantitative evaluation

Since no optical-flow ground truth is available for the aerial
image sequences, we have carried out an indirect objective
evaluation. It is based on the classical displaced frame dif-
ference (DFD). In other words, it evaluates the accuracy of
the warping provided by each compared method. Even if
the DFD cannot assess the quality of any estimated flow
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Figure 5. Zoomed-in display of subflows computed on a part of the image for three sequences from top to bottom. From left to right, part
of the large image of the video sequence, sub-flows computed respectively with our SMOFlow, DIP [30], and SCV [13] methods. The
green-framed areas highlight configurations for which, among others, our SMOFlow performs significantly better than DIP and SCV.

in areas of purely uniform intensity, we believe that it is
a good way to get around the absence of ground truth on
optical flow for this type of sequences, especially when re-
stricted to the vehicle bounding boxes. It actually provides
a convincing quantitative evaluation to compare methods.

We compute the difference between the source image
and its displaced (or warped) version, referred to as its re-
constructed version in the following. Then, we take its ab-
solute value. For the reconstruction process, we use the
flow w estimated at every pixel betwen the source image
I0 and the target image I1. Since pixels representing the
small moving objects of interest are very sparse in satel-
lite images, averaging DFD on the entire image will not be
representative enough of the model performance. There-
fore, we also introduce a sparse DFD score by masking out
background pixels, since vehicle annotations (in the form
of bounding boxes) are available for part of the aerial image
sequences. Our sparse DFD score is expressed by:

DFDsp =
1

3|⌦|

3X

=1

X

p2⌦

|Î0 (p)� I0 (p)|.O(p), (10)

where ⌦ denotes the image grid, Î0 (p) = I1 (p + w(p)) is
the reconstructed source image for each color channel  of
the RGB image, O is the binary mask that occludes back-
ground pixels. The lowest the DFD score, the better the
model performance in estimating the flow.

Figure 6 illustrates the DFD map and the DFD score for
a selected local area in the source image. The more bright
pixels in the DFD map, the poorer the model performance.
The motion of the middle car has not been estimated by DIP,
as highlighted by high error values in the DFD map. The
same holds for SCV regarding the left car, and SCV also
merges the motion of the two other cars. The warped image

that appears the most similar to the source image is the one
given by our model SMOFlow, which is confirmed both by
the DFD map with almost no bright values and by its sparse
DFD score on the selected area. The smallest DFD score
equal to 0.0112 is provided by our SMOFlow method, ver-
sus 0.0160 for DIP and 0.0164 for SCV, knowing that inten-
sity values are normalized within [0, 1].

In Table 1, we report DFD scores over test sequences.
Compared to DIP and SCV methods, our SMOFlow
achieves good generalization on the aerial image sequences
of the test set. If we restrict the computation of the DFD
score to pixels corresponding to the moving vehicles, what
we call the sparse DFD score, the performance gap is even
more striking. Our method achieves a DFDsp score of 1.20
on the test dataset, which is a 39% lower error than for DIP.

4.5. Performance of our local correlation block

We have also evaluated the performance of the SMOFlow
local correlation block with respect to GPU memory con-
sumption and computation time, and compared it to the un-
fold method of Pytorch and a shifting method using the au-

Methods / Scores DFDall (⇥10�2) DFDsp (⇥10�2)
DIP [30] 1.22 1.98
SCV [13] 1.24 2.14
Ours SMOFlow 1.00 1.20

Table 1. Quantitative evaluation on the test dataset with DFD
scores for DIP, SCV and our SMOFlow. DFDall refers to the
DFD averaged on the entire image, while DFDsp is the sparse
DFD score computed over the pixels representing vehicles.
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Figure 6. DFD maps computed within a local area for one instant
of the Placa-Tarraco sequence for DIP, SCV and our SMOFlow.
First block, top: the entire source image with the red-framed se-
lected local area, bottom: zoom on the local area in the source (I0)
and target (I1) images. Second block, from top to bottom: (a) Es-
timated flow overlaid on the selected area of I0 (HSV color code).
(b) Reconstructed source image Î0. (c) DFD map on the local area.
DFDsp scores for the local area are given at the very bottom.

tomatic differentiation provided by Pytorch. Unfold2 is a
PyTorch function that extracts sliding local blocks from a
batched input tensor. Once one of the image is unfolded,
we can compute the local correlation using a matrix product
with the other image. It is an efficient operation but causes
a large memory overhead as it copies the input data. There-
fore, is is not really usable on large input such as aerial or
satellite images. Comparative results are plotted in Fig.7 for
different values of radius R of the search area related to the
local correlation volume. The unfold Pytorch function fails
for a too large image size; the bigger the radius area, the
sooner the computation fails. Our direct gradient computa-
tion performs better than the automatic differentiation when
the search radius increases, especially for the computation

2https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html

Figure 7. Performance measure of the local correlation block w.r.t.
the image size for different values of the search area radius. From
left to right: unfold method (which refers to the Pytorch unfold
function), shifting method using the automatic differentiation pro-
vided by Pytorch, shifting method using our direct gradient com-
putation. Top row: GPU memory consumption during the forward
pass. Bottom row: computation time of the backward pass.

time of the backward step, crucial for training efficiency.
Let us add that the efficient version of RAFT [26] for

large-scale images performs the correlation computation at
every iteration. In contrast, we compute the correlations
only once for a local neighborhood. Moreover, the efficient
RAFT still involves feature downsampling, which means
that it suffers from the same limitations than RAFT. Other
existing methods involve a LCV. FlowNet [8] limits the
correlation computation to a given search area, but imple-
mented in C++. PWC-Net [24] includes a LCV in the pyra-
midal framework, but with a coarse-to-fine approach. In
contrast, our LCV introduces a per-shift computation that is
essential along with our analytical backpropagation to meet
the requirements of our objective, as demonstrated in Fig.7.

5. Conclusion

We have defined an optical flow method able to reliably and
accurately estimate the flow field of small moving objects
in large-size images. The three key characteristics of our
SMOFlow model are no downsampling of the feature
maps, a loss function comprising a sparsity term, and an
analytical backward pass with an efficient per-shift compu-
tation of the local correlation volume. Our implementation
avoids memory peaks and minimizes computation time.
Our SMOFlow method compares favorably on diverse
challenging aerial image sequences to RAFT, DIP and SCV
methods, while being unsupervised. Our local correlation
block could be also leveraged for other remote sensing
tasks where such a local computation is involved.
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