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Abstract

While Synthetic Aperture Radar (SAR) images have sev-
eral advantages including robustness to weather conditions
and independence from sunlight, they are much harder to
interpret by human annotators leading to less and smaller
training datasets than for optical imagery. This is in par-
ticular true for tasks such as building footprint extraction,
where the side-looking nature of SAR complicates the per-
ception of the object of interest. This work aims to lever-
age the availability of the large amount of labeled optical
remote sensing images along with unlabeled paired Pol-
SAR data for semantic segmentation of SAR images through
cross-modal knowledge distillation. A network trained on
optical images acts as a teacher model to train a student
model by providing pseudo-labels for aligned images of
both modalities. We test the proposed framework with mul-
tiple architectures and observe significantly increased per-
formance after fine-tuning the student, i.e. an increase of
5-20% IoU score compared to training a network based on
SAR imagery from scratch.

1. Introduction

Semantic segmentation of remote sensing images plays a
crucial role in a wide range of applications such as land-
cover classification, crop yield forecasting, urban planning,
disaster response, mapping, and monitoring progress to-
wards the sustainable development goals [22].

Building footprint extraction is a particularly challenging
field within semantic segmentation of remote sensing im-
ages. Being a binary problem (i.e. there are only two classes
of interest: building and non-building) might make it ap-
pear simpler as general land cover classification which can
easily result in dozens of categories. However, buildings
have a very high variation of appearance regarding shape,
geometry, and radiometric properties while sharing strong
similarities with other objects (roads, parking lots, etc.).

An accurate extraction of building footprints is of rele-

Figure 1. Workflow of the proposed framework: A teacher model
is trained fully-supervised on an optical training dataset (blue ar-
rows). The learned representations, i.e. layer activations, of the
trained teacher model are subsequently used to provide pseudo-
labels for the student model (red arrows) based on aligned optical
and SAR imagery. The SAR network can finally be further fine-
tuned on SAR training datasets yet achieve better performance
compared to training it on these data alone.

vance for mapping and monitoring urban growth, detection
of informal settlements, population estimation, and dam-
age assessment and disaster response during natural hazards
such as floods, storms, and earthquakes. There is a lot of
prior work addressing building footprint detection via deep
learning mostly leveraging high-resolution optical imagery
[2, 17] relying on multi-scale image features [20, 30, 34].

Optical images are rich in information for the task of
building detection. Furthermore, they are readily avail-
able for example via open data programs of data providers.
Given data availability and the fact that most humans are
easily able to recognize buildings in overhead imagery led
to the construction of large training datasets for building
footprints (e.g. the SpaceNet1 benchmark datasets).

Optical images, however, have the disadvantage that they
are dependent on daylight and cloud cover. This becomes
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Figure 2. An example from the SpaceNet 6 data [26] showing the
effect of layover, i.e. elevated objects such as high-rise buildings
are projected towards the sensor (i.e. towards the bottom of the
image in this example) rendering building footprint detection ex-
tremely challenging.

critical in time-sensitive applications such as disaster re-
sponse where one might not have the luxury to wait for
a cloudless day. Synthetic Aperture Radar (SAR), on the
other hand, does not have these limitations. As an active
sensor it can acquire images at any time during day and
night and the used microwaves penetrate clouds, dust, and
smoke, making it an extremely useful image source during
natural disasters such as wildfires and floods where optical
images are of limited use.

SAR data has been used for general semantic segmenta-
tion tasks (e.g. [7, 23, 31]) as well as for building detection
(e.g. [4, 14]) e.g. for the use-case of damage assessment
after earthquakes [18].

However, SAR images in particular of urban areas are
much harder to interpret for human annotators as well as
automatic procedures [33]. While access to SAR imagery
improved in recent years, e.g. due to the European Coper-
nicus program and open data programs of corresponding
companies [21], it is still not at the level of optical imagery.
Furthermore, building footprint detection from SAR is more
challenging than from (nadir-looking) optical imagery, due
to imaging effects such as layover and sensor shadow. Most
of the visible building area in SAR imagery is actually from
the building facade (see Figure 2 for an illustrative exam-
ple) which is strongly overlaid with the roof structure, i.e. a
point on the rood and a point at the facade having the same
distance to the sensor are projected to the same image pixel.

Due to all of these aspects, the number of training
datasets for building footprint detection from SAR imagery
is much smaller and available datasets are smaller than for

their optical counterparts [25]. This raises the question of
whether annotated optical data can be used to aid the seman-
tic segmentation of SAR data, in particular if (potentially
unlabelled) aligned data of both modalities is available.

We frame this question in the context of knowledge dis-
tillation [11] in particular as cross-modal knowledge distil-
lation for pretraining [9]. A model trained on optical data
acts as a teacher to create pseudo-labels for a student model
that is using SAR imagery as input. This allows the teacher
model to be trained on large training datasets that are avail-
able for optical imagery and only requires aligned images
of both modalities to train the student model.

In contrast to previous work that leverage optical and
SAR data in the context of building detection based on data
fusion (e.g. [19, 29]), we use optical data only during the
training phase but not during inference time. Gupta et al. [9]
proposed the general framework for cross-modal knowl-
edge distillation and applied it to close-range optical and
depth images while Gao et al. [8] and applied it to Earth
observation data, i.e. optical and SAR images. In both
cases, the main motivation is that only a limited amount
of training data is available for the target domain. We show
that cross-modal pretraining is beneficial even if based on
the same amount of data for pre-training and training from
scratch. Furthermore, while they limit the reconstruction to
a single layer, we match the activations of multiple layers
(similar to Huang et al. [13] but with a simpler regression
loss instead of GANs). A similar approach is proposed by
Kang et al. [15] who leverages the early layers of an optical-
trained encoder and a dual-branch decoder to extract SAR-
and optical-based features. Another example of leveraging
aligned optical and SAR data to construct a pretext task is
transcoding [16], i.e. pretraining the network on transform-
ing one modality into the other. The learned features of
the used encoder are then used in a classification network
which for the use case of land cover classification is shown
to perform far superior compared to training from scratch,
in particular in the case of very limited training data. How-
ever, if there is no strong relationship between features that
are efficient for transcoding and those for classification, the
method will fail. In the proposed framework, the pretext
task is directly related to the target task as both teacher and
student models are solving the same problem only based on
different input data.

In summary, the key points of our contribution are
• We propose using cross-modal feature reconstruction in

a knowledge distillation framework as a pretext task for
building footprint extraction from SAR imagery.

• We evaluate the potential of reconstructing activations of
different layers within the network.

• We show that the observed effects of the proposed pre-
training are mostly consistent across different network ar-
chitectures.
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2. Methodology

Knowledge distillation [11] is a framework originally in-
tended to compress large models into simpler networks to
achieve similar results with greatly reduced computational
load. It uses a teacher-student architecture in which the stu-
dent learns from both the reference labels and the pseudo-
labels predicted by the teacher. In this work we lift the ba-
sic idea of knowledge distillation in the context of modality
alignment [9] to create a pretext task for semantic segmen-
tation, i.e. building footprint extraction from SAR data.

Compared to SAR images, optical images often offer a
higher resolution, a lower noise level (due to speckle in
SAR imagery), clearer building outlines, as well as larger
spectral differences between a building and its surrounding.
Effects such as layover (see Figure 2) and sensor-shadow
that complicate building extraction from SAR data, are not
present in optical imagery. Furthermore, optical data are
often easier to access and to annotate than SAR imagery
which leads to larger training sets for the former. Another
aspect is that footprint extraction is easier for nadir-looking
imagery since roof outlines are usually well correlated with
the footprint than for side-looking imagery (such as SAR
data) where the building footprint (in particular for high-rise
buildings) is a rather small part of the visible building struc-
ture that mostly consists of the facade. While this results in
optical-based models being usually superior to SAR-based
models regarding accuracy (see also Section 3), the acqui-
sition of optical imagery requires daylight and low cloud
cover while SAR imagery depends on neither.

While optical and SAR data have clear and obvious dif-
ferences, in particular in the context of building detection,
the solutions to this task for both modalities can be expected
to share similarities, e.g. using some form of edge detection
even if building boundaries have very different appearance
in both modalities. Thus, we aim to leverage a network
trained on optical data (the teacher) to support the training
of a SAR network (the student).

The overall workflow is shown in Figure 3 and consists
of three phases: Training of the teacher model on optical
data, training the student model via feature reconstruction
on aligned optical and SAR data, and fine-tuning the student
model on SAR imagery. Formally, there are three datasets
containing samples of two modalities MS (SAR) and MO

(optical):
• The dataset to train the teacher in Phase 1,
DT = {xO

i , yi}i∈[1,NT ], consisting of NT samples
of modality MO with corresponding reference data, i.e.
optical images and matching building footprints.

• The dataset to pretrain the student via feature reconstruc-
tion in Phase 2, DR = {xO

i , x
S
i }i∈[1,NR], consisting of

NR tuples of aligned images from both modalities.
• The dataset to finetune the student in Phase 3,

(a) Phase 1: The teacher network fT is trained fully-supervised on optical
training data DT .

(b) Phase 2: Feature maps chosen from intermediate layers of the teacher
serve as pseudo-labels for training the student network on a dataset DR

of aligned optical and SAR images without the need of semantic reference
data.

(c) Phase 3: The pretrained student model fS is finetuned on SAR training
data DF .

Figure 3. An overview of the proposed framework for cross modal
knowledge distillation to leverage a teacher model trained on op-
tical data to facilitate building footprint extraction from SAR im-
agery.

DF = {xS
i , yi}i∈[1,NF ], consisting of NF samples of

modality MS with corresponding reference data, i.e.
SAR images and matching building footprints.

In general, cross-modal knowledge distillation assumes
NR > NT > NF , i.e. there is much more unlabeled but
aligned data available than labeled data and that the avail-
able training dataset for the teacher model is larger than that
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of the student. This, however, is not a strict requirement and
it is possible to use the same dataset during all phases, i.e.
D = {xO

i , x
S
i , yi}i∈[1,N ] with N samples.

Phase 1: The teacher model fT is trained in a fully-
supervised manner on the available optical training data DT

(illustrated in Figure 3a). As loss we use the binary cross-
entropy between the softmax predictions fT (xO

i ) and the
reference maps yi. Once converged, the network can be
leveraged to create pseudo-labels for the student network.

Phase 2: In general, the proposed approach can be ap-
plied to different network architectures (indeed, we evaluate
various networks with different backbones in Section 3) as
long as they have some layers with the same dimensions in
common. Otherwise, inter-network layers can project fea-
tures of one network into the space of the other network [9]
and attention layers help to identify network layers that refer
to similar semantics [3]. We implement the reconstruction
model as a Siamese network architecture (shown in Fig-
ure 3b) which automatically fulfills this requirement since
the same model architecture is used for both student and
teacher networks.

The reconstruction phase uses aligned SAR xS and op-
tical xO images from DR but does not require reference
maps (i.e. building footprints). Since we use the same ar-
chitectures (apart from the number of input layers) for both
models, we initialize the weights of the student with the
trained weights of the teacher which was found to lead to
faster convergence.

Given an image tuple (xO
i , x

S
i ) ∈ DR, let

ΦT (xO
i ) = {ϕT

l }l∈[1...L] and ΦS(xS
i ) = {ϕS

l }l∈[1...L]

be the derived internal representations, i.e. layer outputs,
of the teacher fT and student fS model, respectively. The
reconstruction aims to achieve ΦS(xS

i ) = ΦT (xO
i ) at least

for a (small) subset of layers L̃, i.e.

∀l̃ ∈ L̃ ⊂ [1, ..., L] : ϕS
l̃
≈ ϕT

l̃
. (1)

This is achieved by fixing the weights of the teacher model
and optimize the weights of the student by minimizing the
cosine loss

Lcos

(
xO, xS

)
= 1− 1

|L̃|

∑
l∈L̃

cos
(
ϕS
l̃
, ϕT

l̃

)
. (2)

Phase 3: After training the lower layers of the stu-
dent model via feature reconstruction, they can be combined
with the remaining layers of the teacher model. In princi-
ple, this provides a full network that is ready for inference
without ever being trained on the task of building footprint
extraction from SAR data. This renders this last phase op-
tional.

However, given the significant differences between opti-
cal and SAR imagery, it can be expected that the feature
reconstruction is only partially successful. Furthermore,

Figure 4. Three samples of the SpaceNet 6 dataset (rows). From
left to right: Polarimetric SAR intensity, RGB, reference data.

the use of skip connections will introduce features into the
higher levels that have not been optimized to match the
characteristics of SAR data. Both aspects cause a distri-
bution shift between the features the higher layers of the
teacher model was trained on in Phase 1 and features these
layers receive as input when used as part of the final network
during prediction leading to suboptimal performance. Thus,
it is advisable to finalize training by a fine-tuning phase that
uses SAR images as training data, i.e. DF (Figure 3c. Sim-
ilar to Phase 1, we use the binary cross-entropy between the
softmax predictions fS(xS

i ) of the network and the refer-
ence maps yi.

3. Experiments
3.1. Data

For the following experiments we use the SpaceNet 6 [26]
dataset which consists of over 120 km2 of both high res-
olution SAR data and optical imagery of Rotterdam, The
Netherlands, with about 48,000 building footprint annota-
tions. The SAR data comes from Capella Space’s X-band
quad-pol sensor mounted on an aircraft and provides im-
age strips featuring four polarizations. These are prepro-
cessed to obtain the geocoded backscatter intensity in deci-
bel at half-meter spatial resolution. The optical data is col-
lected by Maxar’s WorldView 2 satellite and provides im-
ages spanning about 92 km2 at 0.5 m spatial resolution.
Reference data was created by careful manual annotation.

A total of 3,401 triplets of pan-sharpened RGB images,
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SAR intensity images, and reference maps each with a size
of 900×900 pixels are provided. Training masks are created
from geojson-formatted labels using solaris python API.
Figure 4 shows several samples of pre-processed images,
i.e. optical and SAR intensity images along with their ref-
erence mask of building footprints.

Since the reference data of the SN6 testset is not pub-
lic, we randomly split the available SN6 training set into
three subsets for training (90%), validation (5%), and test-
ing (5%). As proposed by the SpaceNet 6 Challenge, we
use the intersection over union computed over the test set as
the performance measure.

The corresponding parts of this dataset are used for all
three phases described in Section 2, i.e. optical images and
footprint maps of the training part as DT for Phase 1, opti-
cal and SAR images of the training part as DR for Phase 2,
SAR images and footprint maps of the training part as DF

for Phase 3, and optical and SAR images as well as foot-
print maps of the test part for final evaluation of the teacher
and student models, respectively.

3.2. Models

In order to allow drawing general conclusions about
the proposed pretraining strategy, we evaluate sev-
eral standard ConvNet architectures that are summa-
rized in Table 1, i.e. UNet [24], PSPNet [32], Seg-
Net [1], and DeepLabV3+ [5] with different backbone en-
coders including MobileNetV2 [12], XceptionNet [6], and
ResNet50 [10]3.

3.3. Results and Discussion

In a first step we train two models fully-supervised using
the available reference data, one using only the optical im-
agery and one using only the SAR data. On the one hand,
we aim to establish a baseline to observe improvements in
performance if knowledge-distillation based pretraining is
used. On the other hand, the model trained on optical data
serves as the teacher network in the following experiments.

The weights of the optical model are initialized via stan-
dard pre-training on ImageNet which showed to be benefi-
cial, i.e. leads to an performance increase of about 2% com-
pared to training models completely from scratch. Since
ImageNet weights are not applicable to SAR imagery, the
SAR network is initialized with random weights. Models
are then trained for 300 epochs with a batch size of 32 im-
ages using a SGD optimizer with a learning rate of 0.1 and
momentum of 0.9.

3A UNet with VGG16 [27] let to very similar results as the VGG19
backbone. A UNet with an EfficientNet [28] backbone, as well as an
XceptionNet backbone in both PSPNet and SegNet led to very weak per-
formance even for the baselines of training the network from scratch based
on SAR or optical images. Thus, we excluded them from further experi-
ments.

All optical models clearly outperform the corresponding
SAR models by a large margin. They achieve IoU scores
from 42.07 (DeepLabV3 with XceptionNet backbone) to
76.39 (PSPNet) while the performance of the SAR model
lies between 25.09 (UNet with MobileNetV2) and 48.61
(UNet with XceptionNet). Noteworthy, this model ranked
second for the optical data indicating that this particular ar-
chitecture is beneficial for the given task for both modali-
ties.

After the optical network is trained and achieves a suffi-
cient performance, it acts as teacher to train a SAR model as
student. As different layers across a ConvNet capture dif-
ferent features of the input data, we conduct multiple exper-
iments to reconstruct features from lower as well as higher
levels of a model, i.e. only the middle layer (Mid), only the
final layer (Fin), middle and final layers (M&F), and multi-
ple intermediate layers (Int).

Again we use an SGD optimizer with a learning rate of
0.1 and momentum of 0.9. All models are trained for 150
epochs with a batch size of 32.

For the mid-level reconstruction, we select the output
layer of the encoder. Table 2 shows that this leads to
very poor performance with the highest IoU score of 14.79
(DeepLabV3 with ResNet50) reaching not even half of the
accuracy of the baseline SAR model. This is to be expected
since tasking the student to only reconstruct the teacher’s
encoder output puts too weak constraints on the early en-
coder layers which will remain highly sensor-specific, i.e.
differ significantly from the early layers of the teacher.
However, the skip-connections are directly connecting them
to the decoder which is thus confronted with very different
data characteristics for most of the inputs (i.e. only the first
layer of the decoder that processes the encoder output is not
affected).

Finetuning the decoder (Mid+Ft-D) for 30 epochs
remedies this effect to a large degree leading to a
significant performance increase for all models and to
IoU scores that are roughly on-par with the base-
line SAR model (i.e. mostly slightly lower with 2-
6%, one time identical, and one time 3.5% better).
Finetuning the whole model (Mid+Ft-A) leads to fur-
ther performance gains leading to superior IoU scores
for UNet+MobileNetV2 (+3%), DeepLabV3+XceptionNet
(+3%), and DeepLabV3+ResNet50 (+9%), while remain-
ing inferior for UNet+XceptionNet (-5%) and PSPNet (-
4%). The performance of UNet and SegNet with the
VGG19 backbone are too weak to begin with which is why
we forgo further experiments.

Reconstructing the final layer (Fin) is the original ap-
proach of knowledge distillation. It puts weak constraints
on all layers (since all layers contribute to the final layer)
but requires training the same amount of parameters as for
the baseline model. However, potentially more data can be
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Model Backbone Parameters Total Layers Encoder Output Layer

UNet

MobileNetV2 2.25M 191 149
VGG19 31.1M 54 21

XceptionNet 38.4M 121 263
EfficientNetB4 19M 153 293

PSPNet Vanilla Encoder2 800K 63 46

SegNet VGG19 29.5M 44 88

DeepLabV3+ XceptionNet 21.6M 120 154
ResNet50 11.8M 99 173

Table 1. Summary of the models used in the following experiments. The last column states the position of the last layer of the encoder
which is used in some of the experiments to reconstruct optical features from a SAR input image.

UNet UNet UNet PSPNet SegNet DeepLabV3 DeepLabV3
MobileNetV2 VGG19 XceptionNet Vanilla Encoder VGG19 XceptionNet ResNet50

Optical 54.2 66.51 73.59 76.39 62.03 42.07 59.69
SAR 32.83 25.09 48.61 35.43 31.37 28.92 34.33
Mid 12.17 8.67 11.79 5.41 8.88 12.78 14.79

Mid+Ft-D 36.3 - 42.39 30.26 - 26.66 34.32
Mid+Ft-A 36.07 - 43.85 31.86 - 32.2 43.04

Fin 21.06 27.5 39.67 25.88 17.54 19.86 30.38
Fin+Ft-D 31.98 37.69 48.16 35.62 - 22.96 38.77
Fin-Ft-A 33.96 40.72 50.23 37.76 - 28.72 40.34

M&F 29.14 22.72 42.54 34.46 24.97 18.45 32.39
M&F+Ft-D 38.44 32.99 48.72 36.44 - 26.3 32.39
M&F+Ft-A 37.72 42.66 53.27 37.56 - 31.95 42.33

Int 30.41 32.14 41.14 26.63 29.87 21.05 35.06
Int+Ft-D 34.58 33.33 53.45 32.51 35.85 24.74 40.69
Int+Ft-A 37.99 46.09 53.45 29.88 42.73 32.96 42.73

Table 2. Accuracy as Intersection of Union scores for different network architectures (columns). The first two rows show the accuracy of
the baseline models, i.e. training the network from scratch based on optical and SAR data, respectively. The following 3-row blocks show
results for reconstructing activations of the output layer of the encoder (”Mid”), the last layer of the network (”Fin”), both subsequently
(”M&F”), and multiple intermediate layers (”Int”). Each block reports accuracy directly after the pretraining and after finetuning either
only the decoder (”-D”) or the whole network (”-A”). If performance was too weak (less than 25%) for the pretrained model, finetuning
experiments have not been performed. Best results per model are shown in boldface, second best in italics.

leveraged since the teacher’s logits act as pseudo labels for
the student. Furthermore, for some tasks the logits seem to
be a more informative signal than class labels [11]. Table 2
shows that results are considerably better than reconstruct-
ing the mid-level layer (increasing accuracy by a factor of
2-3), but remain largely inferior to the baseline model. Only
for the UNet+VGG19 performance increased by roughly
2%. However, this is the weakest model with an accuracy
far below the performance of the other networks. Fine-
tuning the decoder brings model performance close to the
baseline, while finetuning the whole network leads to small
performance gains (about +2%) for most models (+4% for

DeepLabV3+ResNet50).

A combination of these two approaches is to reconstruct
mid- and final level features sequentially (M&F). This is
similar to M+Ft-D, i.e. pretraining by mid-level reconstruc-
tion and finetuning the decoder, with the only difference that
instead of actual reference data (as in the case of finetun-
ing), pseudo-labels in the form of teacher logits are used.
It should be stressed that at this point the model has not
been trained with reference data belonging to the SAR im-
ages but only with pseudo-labels generated by the teacher
network on aligned optical data. Nevertheless, the achieved
performance is - while still worse - close to the baseline
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model (-1 to -10%) that is trained exclusively on SAR im-
ages and the corresponding reference maps. Finetuning the
decoder increases performance further for all models (up
to +10%) apart from DeepLabV3+ResNet50 which remains
unchanged. If the whole network is finetuned, performance
surpasses the baseline by +2 to +18%. The gain in perfor-
mance is largest for UNet+VGG19 which increased from
being with 25.1% the weakest baseline model to being the
second strongest model with 42.7%.

The final experiment selects six target layers from en-
and decoder for a simultaneous reconstruction. This dis-
tributes constraints on the extracted features well over the
whole network instead only at specific single layers. The
UNet+VGG19 (+7%) and DeepLabV3+ResNet50 (+1%)
outperformed the baseline without any finetuning, while the
other models performed almost on-par with the baseline.
Finetuning improves performance of all models. As before,
finetuning the whole model leads to larger gains than only
finetuning the decoder (with the notable exception of PSP-
Net which shows a slight decrease).

In summary, all the UNet based models start to outper-
form the baseline starting from the final layer reconstruction
after finetuning all layers. In particular the UNet model with
an XceptionNet backbone shows a steady improvement in
its performance as the number of reconstruction layers in-
creases and achieves the highest performance when com-
pared to other models and baseline.

Nearly all models outperform the baseline after multi-
level feature reconstruction and finetuning, partially with
large gains, e.g. 21% for UNet+VGG19. An exception is
PSPNet that reaches top performance already for final level
reconstruction that only decreases if more levels are used
and DeepLabV3 which does not increase much in accuracy
after finetuning the mid-level reconstruction network.

Figure 5 shows a few qualitative results. The optical and
SAR input and reference data are shown in the last row. The
other rows show prediction results of the different model
architecture for the optical and SAR baselines as well as
reconstructing the multiple intermediate layer without and
with finetuning the whole network.

The optical baseline achieves very good and consistent
segmentation results across all models. Inline with the
quantitative results in Table 2, segmentation results vary
among the different architectures for the SAR baseline.
The UNet+VGG19 has strong omission errors and gener-
ally underestimates the building footprint area. PSPNet and
DeepLabV3 overestimate the building footprint area and
tend to fuse buildings in close proximity. Pretraining via
feature reconstruction of multiple intermediate layers re-
duces the number of false negatives for all networks but
SegNet where many previously detected buildings are now
missing. However, building footprint areas are generally
overestimated and precise footprint outlines are mostly lost.

Unet
VGG19

Unet
XceptionNet

PSPNet

SegNet
VGG19

DeepLabV3
ResNet50

Optical

Optical, SAR,
and reference

SAR Int Int+Ft-A

Figure 5. Qualitative results of the proposed approach of cross-
modal knowledge distillation. The bottom row shows optical and
SAR input images as well as the reference data. The other rows
show results for different network architectures. The columns
show from left to right the results of the optical and SAR baselines
and the results of the models pretrained with reconstructing mul-
tiple intermediate layers without and with finetuning of the com-
plete model, respectively.

This is corrected by finetuning the models leading to rather
precise segmentation maps that are visually consistent with
the results of the optical baseline as well as the reference
data.

4. Conclusion

This paper proposes a framework leveraging cross-modal
feature reconstruction as a pretext task for the semantic seg-
mentation of SAR images. It is a three-step approach in
which a model trained fully-supervised on optical images
acts as a teacher to supervise in a second step the training
of a student network on SAR data. The layer activations
of the teacher model serve as pseudo-labels for the student
network which only requires aligned input images but no
reference data. The last step involves finetuning the pre-
trained student model on SAR data with available reference
maps.

The proposed method is evaluated on several model
architectures including UNet, SegNet, PSPNet and
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DeepLabV3+ with different feature extractor networks as
backbone.

Experimental results show a strong dependence on
which layers are used during the feature reconstruction.
Worst results are achieved by only reconstructing a single
mid-level layer. Best results are achieved by reconstruct-
ing multiple intermediate layers. In that case, results are
close to the baseline of training a model on SAR images
only. This is an important outcome for scenarios were la-
bels are only available for optical images but not for SAR
data. Finetuning the decoder or the whole model improves
results considerably and consistently for virtually all mod-
els. The final results surpass the SAR baseline by a large
margin but (as expected) do not reach the performance of
the optical baseline.

Future work will focus on leveraging a larger dataset
of aligned images of the two modalities for the pre-
training step instead of using the same dataset for all
three phases and investigate the dependence of the per-
formance on the number of samples available for finetun-
ing.
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