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Figure 1. Satellite images synthesized by GeoSynth using OpenStreetMap for layout control and textual prompts for style control.

Abstract

We present GeoSynth, a model for synthesizing satel-
lite images with global style and image-driven layout con-
trol. The global style control is via textual prompts or geo-
graphic location. These enable the specification of scene
semantics or regional appearance respectively, and can
be used together. We train our model on a large dataset
of paired satellite imagery, with automatically generated
captions, and OpenStreetMap data. We evaluate various
combinations of control inputs, including different types of
layout controls. Results demonstrate that our model can
generate diverse, high-quality images and exhibits excel-
lent zero-shot generalization. The code and model check-
points are available at https://github.com/mvrl/
GeoSynth.

1. Introduction
Imagine a scenario where you describe a scene and a layout
and a realistic satellite image blooms into existence. Such
kind of applications could assist in various remote sensing
pipelines like urban planning, data augmentation, pseudo
label generation for weakly supervised learning, etc. How-

ever, a single satellite image usually binds several spatial
concepts into a unique image depicting complex and mean-
ingful layouts. A scene on the ground, for example, may
contain buildings, roads, intersections, crosswalks, trees,
etc all placed together in a specific arrangement. This makes
the problem of synthesizing realistic satellite images very
challenging.

Recently, text-to-image models have rapidly redefined
the realms of creativity and expression. When trained on
vast datasets, they become capable of generating everything
from photorealistic landscapes to fantastical creatures. In
this regard, diffusion models [18, 35, 40] have shown im-
pressive performance in a variety of tasks such as image
generation [32, 38], image editing [2, 16, 21], video gener-
ation [3, 14], etc.

Similarly, the field of remote sensing has witnessed
remarkable progress in various aspects, including imag-
ing technology, accessibility of high-resolution data, and
global-scale applications. Thanks to the development of
large-scale foundational models [8, 20, 33, 42, 55], many re-
mote sensing challenges have been tackled recently. The de-
sirable properties of such foundational models have enabled
domain-specific solutions in fields such as language [39,
53], sound [22], natural images [9, 45], etc. However, the
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majority of these machine learning-based methods fall short
of utilizing the full potential of the satellite image modal-
ity [34]. Along the same direction, less attention has been
given to satellite image synthesis in remote sensing. Ex-
isting approaches to this problem are either application-
specific [15] or lack personalization capabilities [23].

A fundamental difficulty in using the already existing
diffusion models for synthesis is that diverse and high-
resolution satellite images are unseen during their large-
scale training. Furthermore, despite their general abili-
ties, they fail to synthesize multiple specific concepts in
an image [26]. Recent lines of work addressing this chal-
lenge use a variety of techniques such as fine-tuning textual
prompts [12], end-to-end training [36], manipulating the
generation process [1], etc. ControlNet [54] has emerged
as a promising architecture that learns to utilize information
from an existing large-scale diffusion model while allowing
it to condition it with a variety of controls. In this study,
we use ControlNet to fine-tune Stable Diffusion (SD) [35]
to synthesize satellite images.

As shown in Figure 1, this work aims to be able to
synthesize realistic-looking satellite images, whose layout
could be controlled via a reference image (for example
OpenStreetMap (OSM) images), while style could be con-
trolled using textual prompts. We additionally condition
our models on geographic location using features extracted
from SatCLIP [25], a model trained contrastively on satel-
lite images and geographic location. By doing so, our model
exhibits synthesis capability conditioned on the geography
of a region. In addition to the OSM control, we test two
other conditioning controls: Canny edge and Segment Any-
thing (SAM) [24] mask, which can be directly obtained
from raw satellite images. In the end, we have a suite of
models namely, GeoSynth, which is capable of synthesiz-
ing satellite images that are optionally conditioned on lay-
out, textual prompt and/or geographic location. The contri-
butions of this work are threefold:
1. We use features extracted from ControlNet and SatCLIP

for high-resolution satellite image synthesis.
2. We test the performance of three conditioning controls

for synthesis: OSM image, Canny edge image, and Seg-
ment Anything mask.

3. We demonstrate excellent zero-shot capabilities of our
models.

2. Related Works

2.1. Diffusion Models

Sohl-Dickstein et al. [40] first proposed physics-inspired
generative models called diffusion probabilistic models
to learn data distribution through parameterized Markov
chains. Inspired by this, Ho et al. [18] demonstrated
that diffusion models can generate high-quality images.

In the following years, Stable Diffusion [35] was intro-
duced which proposed training in the latent space of pre-
trained autoencoders leading to low computation cost and
high-quality conditional image synthesis. Another compet-
itive model, Imagen [38] utilizes a powerful large language
model (LLM) to yield photorealistic images conditioned on
text while training the diffusion model in pixel space. Mo-
tivated by the impressive results of these works, there has
been an explosion of numerous diffusion models for con-
trolled image synthesis [10, 32] leading to diverse capabili-
ties such as image editing [2, 16, 21, 49], image stylization
[13, 19, 41, 43], and video generation [3, 11, 14].

2.2. Customization of Diffusion Models

Leveraging the power of existing diffusion models pre-
trained on large-scale datasets, two lines of work have
emerged. The first focuses on developing methods to per-
sonalize the pre-trained diffusion model to encapsulate cus-
tom concepts and domains [7, 26, 27, 29, 30, 36, 37]. For in-
stance, Dreambooth [36] proposes personalization by learn-
ing from a small set of subject-specific images while pre-
serving the prior of the pre-trained diffusion model. Other
notable works propose techniques such as hypernetwork
learning [37], modifying the cross-attention layers [26],
apprenticeship learning from a large number of concept-
specific experts [7], and utilizing the knowledge of exist-
ing multimodal representation space [27, 29]. The second
line of work focuses on developing training-free or effi-
cient methods to incorporate different types of conditions
into powerful diffusion models [5, 48, 51, 54, 56]. Con-
trolNet [54] proposes zero-convolution-based modules to
incorporate additional conditions such as Canny edge [4],
sketch, pose, etc. Uni-ControlNet [56] proposes to train
separate adapters for two sets of controls: local controls
(e.g., segmentation masks) and global controls (e.g., CLIP
embeddings). Apart from these, a few recent works have
focused on spatial layout-controlled image synthesis [5, 48,
51]. Inspired by these works, we utilize the spatial layout
present in OSM images as one of our conditions while em-
ploying the flexible approach of ControlNet for our condi-
tional image synthesis.

2.3. Satellite Image Synthesis

The literature on conditional satellite image synthesis is
limited. Most of the previous works are focused on task-
specific satellite image synthesis. For example, a recent
work, EDiffSR [47] proposes to utilize diffusion models
for the task of super-resolution of remote sensing images.
Chen et al. [6] demonstrate the utility of features from dif-
fusion model trained on hyperspectral remote sensing im-
agery, for the task of pixel-wise semantic segmentation. For
the task of text-to-satellite image synthesis, [50] proposes a
two-stage framework. First, a VQVAE-like framework [44]
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is trained to learn a codebook of visual representations for
satellite imagery. Second, text-conditioned prototypes are
learned to be utilized by VQVAE decoder to synthesize an
image from text. A parallel work, DiffusionSat [23] learns
satellite image generation conditioned on freely available
metadata and sparsely available textual description. They
demonstrate the impressive performance of their model on
various downstream tasks such as super-resolution and in-
painting. Different from their work, we use detailed textual
descriptions along with spatial layouts for satellite image
synthesis. We propose to incorporate all the conditioning
modalities through ControlNet, hence preserving the exist-
ing knowledge base of stable diffusion. Additionally, we
use a foundational location encoder model: SatCLIP, to in-
corporate geographic location for the synthesis process.

3. Background
Diffusion Models. Diffusion Models [18, 40] are a class of
probabilistic models that learn to sample from a data distri-
bution (D) given numerous samples from that distribution.
This is done by learning to denoise a variable sampled from
a known prior noise distribution in a markov chain process.
A popular choice for this noise distribution is the standard
normal distribution. During training, given a noisy image
xt at timestep t, the objective of the diffusion model (ϵθ) is
to predict the noise added at timestep t − 1 to obtain that
image. The criterion is given by:

Ex,c,t,ϵ

[
||ϵ− ϵθ(xt, c, t)||22

]
(1)

where x ∼ D, c is a conditioning modality, t ∈ {T, T −
1, . . . , δ} and ϵ ∼ N (0, I). c can be text, raw image, seg-
mentation map, etc.
Latent Diffusion Models (LDMs). Since the dimension
of the original data distribution in the case of images is
high, the diffusion process is computationally expensive.
LDMs [35] proposed to first encode the original samples
into a low dimensional latent space and then perform the
diffusion on the latent representations of the original sam-
ples. After a series of denoising steps, a decoder is used to
reconstruct the original image from its latent representation.
ControlNet. ControlNet [54] is used to add additional con-
ditioning controls to an existing neural network without
having to fine-tune the original network. This is done by
transforming the feature maps extracted from the existing
neural network, into a feature that is conditioned on a given
control. Each block of the ControlNet is connected to a
zero-initialized layer, which ensures no noise is added dur-
ing training.

4. Dataset
We built a dataset consisting of paired high-resolution satel-
lite imagery and OSM images. We use a static representa-

Figure 2. Each dataset sample consists of a satellite image, an
OSM image, and an automatically generated textual description.
Additionally, the dataset includes SAM masks for each satellite
image.

tion of OSM in the form of images. The pairs were sampled
randomly near ten major US cities, as shown in Appendix
B. To improve coverage and reduce spatial bias, each sam-
pling location is spaced at least 1 kilometer apart from one
another. All the images downloaded are of size 512x512
pixels at an approximate ground sampling distance of 0.6m.
We downloaded 90,305 image pairs and filtered pairs con-
sisting entirely of bare Earth, water, or forest. After filter-
ing, the dataset contained 44,848 pairs.

We extended the dataset by captioning each satellite im-
age using LLaVA [28], a recently released multimodal large
language model (Figure 2). The prompt used for captioning
was: “Describe the contents of the image”. The captioning
pipeline took 40 GPU hours to run on 2 NVIDIA A6000
GPUs. Lastly, we extracted the Canny edge image and the
Segment Anything mask corresponding to each satellite im-
age.

5. Method

Our goal is to train a suite of models that are capable of syn-
thesizing satellite images (x) given a text prompt (τ ), geo-
graphic location (l), and a control image (c). This is done
by training diffusion models to learn the conditional dis-
tribution p(x|τ, l, c). To this end, we use Latent Diffusion
Models (LDM), which have shown state-of-the-art perfor-
mance in conditional image synthesis. Below, we describe
the model architecture used and the implementation details
of the training pipeline.

5.1. Architecture

We utilize a pre-trained LDM that comprises four primary
architectural components. Firstly, an encoder that trans-
forms raw images into a low-dimensional latent space. Sec-
ondly, a pre-trained CLIP text encoder [31] processes the
raw text prompts and generates latent text vectors. Thirdly,
the diffusion model has a U-Net based architecture con-
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Figure 3. A high-level architecture overview of GeoSynth, which consists of a pre-trained LDM, ControlNet and CoordNet.

sisting of cross-attention blocks. Finally, a decoder recon-
structs images given their corresponding latent vectors. The
encoder and decoder of th LDM have a Variational Autoen-
coder (VAE) style architecture. During training, the dif-
fusion process is used in the latent representation space of
the raw images. The diffusion model learns to denoise a
noisy latent vector at a given timestep conditioned on the
text prompt.

As shown in Figure 3, we use ControlNet to incorporate
a control image and fine-tune the pre-trained LDM. Con-
trolNet is a zero-initialized neural network attached on top
of an LDM, which transforms the feature maps of the LDM
at each stage. The ControlNet architecture consists of 13
residual cross-attention blocks which take as input the con-
trol image, text prompt, and the diffusion timestep.

To incorporate geographic location as a condition, we
first use SatCLIP [25] to extract location-based features.
SatCLIP is a spherical harmonics-based location encoder
that provides general-purpose location embeddings. It is
trained using a contrastive learning framework with a CLIP-
style satellite image encoder. We design a ControlNet-
style cross-attention-based transformer, namely CoordNet,
which processes the location embeddings. CoordNet con-
sists of 13 layer multi-head cross-attention blocks which
take as input the SatCLIP location-based embeddings and
the diffusion timestep. Each cross-attention block in the
CoordNet consists of a zero-initialized feed-forward layer.
The features extracted from each of its blocks are added
to the features extracted from the corresponding blocks of
the ControlNet. These features are then added to the corre-
sponding residual blocks of the LDM. During training, all
the LDM components and the SatCLIP location encoder are
frozen, as shown in Figure 3.

During inference, a noisy latent vector is sampled from
a standard normal distribution. The diffusion model is then
used to progressively denoise the latent vector over a series
of T timesteps. The inputs from the CLIP text encoder, the
ControlNet, and the CoordNet are used to guide the denois-
ing process at each timestep.

5.2. Implementation Details

We use Stable Diffusion (SD) v2.1 as the pre-trained LDM.
We use the same base architecture of ControlNet as used
by authors of [54]. CoordNet consists of stacked 13 cross-
attention blocks with an inner dimension of 256 and 4
heads. To improve training speeds, we precomputed the
location-based embeddings of SatCLIP for each of the im-
ages and saved them on disk.

In total, we trained 14 variants of the model, including
and excluding the conditioning modalities. Each variant of
the model is trained on 2 NVIDIA RTX 4090 for a total of
100 GPU hours. We train the models using the Distributed-
DataParellel routine in PyTorch. We use the Adam opti-
mizer with a learning rate of 1e−5, gradient accumulation
over 16 batches, and a batch size of 4 on each GPU. Follow-
ing [54], we randomly mask out the textual prompts with
a probability of 0.5 during training. This ensures that the
model learns the semantic information present in the con-
trol images independent of the textual prompts.

We use three distinct metrics to evaluate the perfor-
mance of the models. The first metric is the Frechet In-
ception Distance (FID) [17], which indicates the distance
between the synthesized and ground-truth data distribution
at the feature level. The second metric is SSIM [46], which
measures the similarity between synthesized images and
ground-truth samples at the pixel level. Lastly, we use the
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Figure 4. Geo-aware generation. We show four example generations of satellite images using six different geographic locations. We use
the same OSM control and random seed without specifying any textual prompt.

Method Control Location FID ↓ SSIM ↑ CLIP-Score ↑
GeoSynth - - 13.55 0.237 0.287
GeoSynth - ! 12.01 (+1.54) 0.264 (+0.027) 0.288 (+0.001)

GeoSynth Canny Edge - 15.35 0.350 0.291
GeoSynth Canny Edge ! 13.92 (+1.43) 0.361 (+0.011) 0.289 (-0.002)

GeoSynth SAM Mask - 12.29 0.335 0.297
GeoSynth SAM Mask ! 12.04 (+0.25) 0.346 (+0.011) 0.290 (-0.007)

GeoSynth OSM - 12.97 0.274 0.298
GeoSynth OSM ! 11.90 (+1.07) 0.291 (+0.017) 0.303 (+0.005)

Table 1. Incorporating geographic location as an additional condition results in higher FID and SSIM scores. For each of these experiments,
we incorporated text prompts during the training.

CLIP-score [31] to measure the similarity between synthe-
sized images and corresponding text prompts.

6. Results and Discussion
Geo-aware synthesis. In Figure 4, we demonstrate four
example syntheses from varying geographic locations. We
use the same control OSM image and random seed for
each example. Additionally, no prompt was provided for

synthesizing the images. It is observed that our models
have learned high-level semantics of various geographic
locations across the USA. This is confirmed by qualita-
tively examining the synthesized images, where Iowa is
characterized by more greenery while California has more
desert-like features. Geographic locations in and around
New York tend to produce satellite images with heavy ur-
ban development. Table 1 presents a quantitative evaluation
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Figure 5. Synthesis performance of GeoSynth when using various layout controls and text prompts.

Method Control Text FID ↓ SSIM ↑ CLIP-Score ↑
GeoSynth - - 16.11 0.199 0.207
GeoSynth - ! 13.55 (+2.56) 0.237 (+0.038) 0.287 (+0.080)

GeoSynth Canny Edge - 16.74 0.200 0.274
GeoSynth Canny Edge ! 15.35 (+1.39) 0.350 (+0.15) 0.291 (+0.017)

GeoSynth SAM Mask - 13.48 0.268 0.262
GeoSynth SAM Mask ! 12.29 (+1.19) 0.335 (+0.067) 0.297 (+0.035)

GeoSynth OSM - 12.70 0.273 0.269
GeoSynth OSM ! 12.97 (-0.27) 0.274 (+0.001) 0.298 (+0.029)

Table 2. Text-guided training improves the quality and diversity of synthesis.

of the models when incorporating geographic location as an
additional condition. Adding geographic location improves
the ability of the models to create satellite images that look
more realistic, as confirmed by better FID and SSIM scores.
However, the CLIP-score shows little to no improvement,
which is expected since this score measures the similarity
between image and the corresponding text prompt. Text-
only GeoSynth achieves a high FID and CLIP-score while
receiving a poor SSIM score. This indicates that the model
can produce semantically meaningful images that differ
from the original ground-truth distribution at the pixel level.

Control Images. In Figure 5, we show satellite images

synthesized using three controls: Canny edge image, SAM
mask, and OSM image. We show result synthesis when
using various challenging prompts. It is noticed that the
model using Canny edge as a control generates the most
realistic-looking satellite images, as confirmed by the high
SSIM score. However, it is incapable of regulating the style
of the satellite image as given in the prompt. Although
SAM mask achieves the highest scores on average over all
the metrics, it fails to produce visually aesthetic-looking
satellite images. This happens due to the over-segmented
masks produced by SAM when applied to satellite images.
As proven by the highest FID and CLIP-score, OSM im-
agery as control produces the most semantically meaningful
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Figure 6. Editing. We show three example generations of satellite
images using edited versions of a control OSM image. We use the
same random seed without specifying any textual prompt.

Figure 7. Example synthesis of GeoSynth using out-of-domain
control image.

satellite images. Furthermore, the model shows a good
zero-shot synthesis capability. It can effectively control the
style of satellite images according to the prompt. As de-
picted in Figure 6, our model can be utilized to edit satellite
images by providing edited copies of OSM imagery. This is
possible by using the same textual prompt and random seed.

Importance of text. We experimented to determine the
significance of text guidance in satellite image synthesis, as
shown in Table 2. The models were trained both with and
without text prompts, disregarding geographic location. In
instances where we trained models without text guidance,
we provided an empty string as the text prompt. Our
findings indicate that the performance of GeoSynth is poor
when it is trained without including any text. When text
is not incorporated, the model is incapable of generating
diverse images. However, by including text, GeoSynth can
produce realistic-looking satellite images. Similar observa-
tions are made when models are additionally trained with
control images. Across all the metrics, a significant gain is
seen in the CLIP-score. This is expected since CLIP-score
reflects the similarity between a textual prompt and the
corresponding synthesized image.

Zero-shot capabilites. We evaluated zero-shot gener-
alization of our models. Firstly, we show the synthesis
performance of our model when using out-of-domain
control images. In Figure 7, our model was provided with

Class CLIP-Confidence ↑
airport 55.41
amusement park 57.90
beach 92.74
botanical garden 56.94
factory 78.78
farmland 91.81
golf course 87.35
harbor 52.27
parking lot 92.46
railway station 70.94

Table 3. CLIP zero-shot classification performance on the synthe-
sized samples generated using GeoSynth with a fixed OSM image
as control.

a control image in the form SAM mask. Visually, the
model has synthesized realistic-looking satellite images.
Similar behavior is observed when the model is provided
out-of-domain OSM or Canny edge image. Next, we
assessed the performance of our model in generating a
variety of concepts while using a fixed control image. We
selected ten land-use categories and synthesized 50 images
for each category, using fixed OSM imagery. We provided
the names of these categories in the textual prompt and
maintained a consistent random seed throughout the gener-
ation process. We employed CLIP’s zero-shot classification
pipeline to classify each synthesized image into a set of
binary classes. For each category, we determined whether
the generated images belonged to that category or not. In
Table 3, we report the average confidence value of CLIP for
each category. A higher score indicates that CLIP classified
a synthesized image into a given land-use category with
high confidence. Our results indicate that the generated im-
ages effectively represent the specified land-use categories.
Across all the land-use categories, our model was able
to achieve an average CLIP-confidence of 73.66, which
indicated an image generated using our model depicted
the correct land-use category 73.66% times on average.
Lastly, we evaluated the model’s performance in synthe-
sizing images of categories specified in the UCMerced
dataset [52]. UCMerced contains satellite images at 0.3m
resolution across 21 land-use categories. Figure 8 depicts
the zero-shot synthesis capability of text-only GeoSynth
model. Table 4 demonstrates the class-wise performance
of our models on the UCMerced dataset. Overall, the
models perform well in certain categories such as beaches,
buildings, etc. On the other hand, they perform poorly in
categories such as storage tanks, airplanes, etc. We observe
that the performance of GeoSynth with Canny Edge image
or SAM mask as layout control on UCMerced depends
highly on the quality of the layout image itself. Most often,
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Figure 8. Generated samples from our GeoSynth model, without layout control, on UCMerced classes.

Class GeoSynth (No Control) GeoSynth (Canny Edge) GeoSynth (SAM Mask)
FID ↓ CLIP-Score ↑ FID ↓ SSIM ↑ CLIP-Score ↑ FID ↓ SSIM ↑ CLIP-Score ↑

agricultural 33.95 0.261 29.56 0.056 0.245 38.17 0.013 0.246
airplane 32.44 0.245 50.57 0.090 0.227 70.19 0.087 0.222
baseballdiamond 22.57 0.307 42.97 0.089 0.276 48 .81 0.185 0.280
beach 32.94 0.237 39.07 0.271 0.214 43.73 0.200 0.216
buildings 26.97 0.245 33.63 0.120 0.253 56.23 0.084 0.247
chaparral 55.46 0.222 46.04 0.123 0.216 51.72 0.088 0.206
denseresidential 26.80 0.267 26.15 0.113 0.261 51.39 0.058 0.252
forest 18.48 0.265 32.35 0.091 0.245 37.24 0.045 0.241
freeway 22.86 0.258 36.61 0.086 0.265 65.60 0.071 0.243
golfcourse 23.88 0.274 39.66 0.209 0.261 44.18 0.177 0.262
harbor 69.26 0.203 29.32 0.137 0.224 38.90 0.074 0.230
intersection 27.25 0.271 22.78 0.152 0.272 37.73 0.101 0.275
mediumresidential 20.13 0.254 35.98 0.109 0.252 69.79 0.055 0.238
mobilehomepark 35.22 0.287 50.79 0.109 0.257 61.74 0.048 0.243
overpass 21.61 0.262 47.40 0.078 0.263 65.61 0.080 0.247
parkinglot 36.37 0.278 34.70 0.097 0.256 49.66 0.060 0.243
river 21.63 0.237 53.68 0.119 0.223 62.66 0.083 0.219
runway 45.78 0.230 53.64 0.100 0.214 57.38 0.084 0.214
sparseresidential 36.49 0.262 36.95 0.125 0.240 48.16 0.104 0.238
storagetanks 33.12 0.285 55.71 0.125 0.233 64.89 0.103 0.243
tenniscourt 23.37 0.296 57.01 0.101 0.238 50.90 0.097 0.257

Table 4. The performance of zero-shot synthesis of our models on UCMerced categories.

SAM produces undersegmented images when applied
on UCMerced. On the other hand, the Canny algorithm
produces a lot of false edges. In the future, it is possible to
improve the overall performance by finetuning the models
on additional datasets.

7. Conclusions
Text-to-image models have exhibited impressive perfor-
mance and have been widely used in various end-user ap-
plications. However, there has been little to no research
conducted on this topic in the field of remote sensing. This
lack of adoption of such models in remote sensing repre-
sents a missed opportunity for building innovative appli-
cations. Therefore, we aim to inspire the remote sensing

community and promote future research directions in con-
ditional satellite image synthesis through this work. While
we leave potential applications of our framework as future
work, we believe that urban planners will benefit the most
from it. One could imagine using our framework for au-
tomatic digital twin generation, urban growth simulation,
and city planning. To encapsulate, we proposed GeoSynth,
a suite of models capable of synthesizing realistic-looking
satellite images while allowing personalization through text
prompts. It uses spatial layout from input control images
to guide the synthesis process. Additionally, our model in-
corporates geographic location as a condition that improves
the synthesis quality by considering a region’s geograph-
ical features. We hope GeoSynth represents the first step
towards a global geography-aware synthesis model.
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Martins. Large language models for captioning and retriev-
ing remote sensing images, 2024. 1

[40] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
1, 2, 3

[41] Kihyuk Sohn, Lu Jiang, Jarred Barber, Kimin Lee, Nataniel
Ruiz, Dilip Krishnan, Huiwen Chang, Yuanzhen Li, Irfan
Essa, Michael Rubinstein, et al. Styledrop: Text-to-image
synthesis of any style. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 2

[42] Gabriel Tseng, Ruben Cartuyvels, Ivan Zvonkov, Mirali
Purohit, David Rolnick, and Hannah Kerner. Lightweight,
pre-trained transformers for remote sensing timeseries, 2024.
1

[43] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-play diffusion features for text-driven
image-to-image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1921–1930, 2023. 2

[44] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 2

[45] Vicente Vivanco, Gaurav Kumar Nayak, and Mubarak Shah.
Geoclip: Clip-inspired alignment between locations and im-
ages for effective worldwide geo-localization. 2023. 1

[46] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 4

[47] Yi Xiao, Qiangqiang Yuan, Kui Jiang, Jiang He, Xianyu Jin,
and Liangpei Zhang. Ediffsr: An efficient diffusion prob-
abilistic model for remote sensing image super-resolution.
IEEE Transactions on Geoscience and Remote Sensing,
2023. 2

[48] Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wen-
tian Zhang, Yefeng Zheng, and Mike Zheng Shou. Boxdiff:
Text-to-image synthesis with training-free box-constrained
diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7452–7461, 2023. 2

[49] Jianjin Xu, Saman Motamed, Praneetha Vaddamanu,
Chen Henry Wu, Christian Haene, Jean-Charles Bazin, and
Fernando De la Torre. Personalized face inpainting with dif-
fusion models by parallel visual attention. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 5432–5442, 2024. 2

[50] Yonghao Xu, Weikang Yu, Pedram Ghamisi, Michael Kopp,
and Sepp Hochreiter. Txt2img-mhn: Remote sensing image

469



generation from text using modern hopfield networks. IEEE
Transactions on Image Processing, 2023. 2

[51] Han Xue, Zhiwu Huang, Qianru Sun, Li Song, and Wenjun
Zhang. Freestyle layout-to-image synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14256–14266, 2023. 2

[52] Yi Yang and Shawn Newsam. Bag-of-visual-words and spa-
tial extensions for land-use classification. In Proceedings of
the 18th SIGSPATIAL international conference on advances
in geographic information systems, pages 270–279, 2010. 7

[53] Angelos Zavras, Dimitrios Michail, Begüm Demir, and Ioan-
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