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Abstract

In the field of remote sensing, the scarcity of stereo-

matched and particularly lack of accurate ground truth data

often hinders the training of deep neural networks. The

use of synthetically generated images as an alternative, al-

leviates this problem but suffers from the problem of do-

main generalization. Unifying the capabilities of image-

to-image translation and stereo-matching presents an ef-

fective solution to address the issue of domain generaliza-

tion. Current methods involve combining two networks—an

unpaired image-to-image translation network and a stereo-

matching network—while jointly optimizing them. We pro-

pose an edge-aware GAN-based network that effectively

tackles both tasks simultaneously. We obtain edge maps

of input images from the Sobel operator and use it as an

additional input to the encoder in the generator to enforce

geometric consistency during translation. We additionally

include a warping loss calculated from the translated im-

ages to maintain the stereo consistency. We demonstrate

that our model produces qualitatively and quantitatively su-

perior results than existing models, and its applicability ex-

tends to diverse domains, including autonomous driving.

1. Introduction

The challenges in obtaining ground truth images in the re-

mote sensing domain stem from the difficulty in capturing

matching images due to temporal changes, sparse measure-

ments and a significantly large baseline. The correspon-

dence tasks like disparity estimation or stereo reconstruc-

tion for these images, can be both cumbersome and expen-

sive. The concept of using synthetic data for training deep
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(a) Original

(b) Translated

Figure 1. Examples of aerial scene translated by SyntStereo2Real.

Our model can produce semantic-consistent realistic translations.

neural networks arises from the persistent challenges posed

by data scarcity, privacy concerns, and the overall difficulty

in acquiring authentic data. Synthetic data provides essen-

tial ground truth such as accurate labels and stereo dispar-

ity maps information for training machine learning models.

While the synthetic data is obtained from a simulation of

real-world scenario, it may not perfectly represent the com-

plexities and variations in real-world data. This can result

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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in domain shift, where the model struggles to generalize to

real world data. Unpaired image-to-image translation algo-

rithms have been used to address the problem of domain

shift [6, 14, 18]. They provide promising results to reduce

the domain gap between the domains. However they can

alter the structural information of the image as shown in

Fig. 2. This can pose as a serious challenge when training

for downstream tasks as the translated images do not align

with their corresponding labels.

Our approach focuses on the specific task of translating

synthetic images to realistic domain while maintaining the

stereo constraints, which means that pixels do not move

within or to another epipolar line and we particularly ad-

dress the two-view image case. Some of the existing meth-

ods such as StereoGAN [15] have addressed this task for

autonomous driving datasets with joint optimization of im-

age translation and disparity estimation networks. Images

from remote sensing domain are rich with diverse content.

Existing methods suffer from the problem of an increased

likelihood of hallucinations and discrepancies in disparity.

We address this problem using a lightweight edge-

aware GAN network, that performs unpaired image-to-

image translation while maintaining the disparity values. At

first, the edge maps of input images are obtained from Sobel

operator and are provided as an additional input along with

image pairs from both domains to the generator. The en-

coder of the generator computes the content and edge code

separately from the input image and its edge map and is

added together as content edge code. The content edge code

is provided to the decoder along with a random style code

to generate images of different domain as shown in Fig. 3.

The use of edge maps ensures that the structure of the im-

age is retained and not lost in translation and thus prevents

the matching algorithm fail due to blurred boundaries. Ad-

ditionally, we use a warping loss, where we warp the left

translated image with its respective disparity map and com-

pare it to the right translated image to enforce stereo con-

sistency. Extensive experiments across multiple datasets

demonstrate our method outperforms the existing methods

quantitatively and qualitatively. Moreover, we use a single

lightweight network to perform optimization on two tasks

without the use of any pre-trained networks. To sum up,

our main contributions are:

• Developing a lightweight framework for image-to-image

translation of stereo pairs considering a consistent trans-

lation of left and right images that preserves the matching.

By including edge maps and a warping loss, we improve

the matching features of the generated pairs.

• Results show that the quality of the translated images

leads to a better disparity prediction than other state-of-

the-art translation methods.

• By testing on data of remote sensing and autonomous

driving tasks, we demonstrate that our approach works

(a) Original

(b) Translated

Figure 2. Aerial images translated using CUT [18]. The model

tends to hallucinate when translating images with diverse scenes,

where the target distribution is more likely to be unbalanced.

with a variety of datasets.

2. Related work

2.1. Stereo matching

Semi-global matching [3], a classical stereo method uses

pixel-wise matching cost for computing the disparities be-

tween two images. It produces an approximate global opti-

mal solution and is still one of the best performing tech-

niques for disparity estimation in certain domains. MC-

CNN [25] introduced deep learning based techniques to es-

timate disparity using a deep siamese network where match-

ing cost for cost volume is computed from the network and

cost aggregation is carried out through average pooling, fol-

lowed by additional refinement. GANet [26] has optimized

the cost aggregation by introducing semi-global aggregation

(SGA - guided) layer which aggregates matching cost in

multiple directions and local guided aggregation (LGA) to

recover disparities at thin structures and object edges. The

use of warping operation as a constraint for stereo matching

has proven to be useful. It ensures that the estimated dispar-

ities produce geometrically consistent results. Nonetheless,

all of these methods suffer from a significant domain gap

when applied to data from a different acquisition nature.

Other disparity algorithms focus on tackling the domain

gap while learning the matching. CFNet [21] proposes

a fused cost volume representation in a cascade design

for a more robust learning that can be applied to differ-

ent domains. DSMNet [27] applies a domain normaliza-

tion to the input images leading to sharper disparity maps.

GrafNet [13] transforms the features with a U-shape net-

work before inputting them to the cost volume, improving

the domain adaptation. AdaStereo [22] transforms the color

distribution into the target domain while training. In other

cases, networks are designed to have a robust domain gener-

alization on unseen data such as RAFT-Stereo [12], which is

based on convolutional gated recurrent units (GRUs) or the
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Figure 3. Illustration of the generator architecture in an autoencoder with edge map integration. The image along with its corresponding

edge map is encoded and added together as content edge code before applying it as an input to the decoder. The decoder merges the

content-edge code with style code from every domain to generate content that is contextually fitting. xca, xcb represents the input images

from both domains (content), xea, xeb represents the corresponding edge maps. ca, cb, ea, eb represents the content and edge code from

encoder for both domains. sa, sb are the randomly initialized style code before the training. xaa, xab, xba, xbb represents the respective

output images from the decoder.

(a) (b) (c) (d)

Figure 4. Pairs of translated images. For the translated left-view images 4a and 4c, the corresponding right-view images 4b and 4d are also

displayed. As can be seen from the images, a semantic-consistent translation is applied to both the left and right-view images.

case of IGEV-Stereo [23], where geometry encoding im-

proves the results in both stereo and multi-view networks.

FC-stereo [28] computes two losses (selective whitening

and contrastive feature) to preserve the stereo consistency

between images and helped existing networks to general-

ize better while training only on synthetic data. Still, we

consider that an offline adaptation of the dataset might lead

to a good domain generalization without compromising the

capabilities of the matching algorithms themselves.

2.2. Unpaired image­to­image translation

Unpaired image-to-image translation translation aims to

learn the mapping from a source image domain to a target

image domain without paired training data. CycleGAN [29]

has been a pioneer in solving this task by identifying the

key mappings in unpaired data from two different domains.

The authors introduced cycle consistency loss to constrain

the one-to-one mapping space by reconstructing the orig-

inal image back from the translated image. This loss, in

conjunction with adversarial loss and identity loss, plays
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a pivotal role in image-to-image translation, leading to re-

markable visual results. The CUT [18] model extends this

concept for one-sided image translation with a contrastive

loss. It is calculated using negative samples obtained from

the same input, thus enabling faster training. UNIT [14]

carries out unsupervised image-to-image translation under

the assumption that images from both domains consist of a

shared latent space. The model uses weight sharing between

the layers of generators and discriminators to learn the joint

distribution of data. MUNIT [6] extends this architecture

to handle multiple styles using the disentanglement princi-

ple to obtain content and style code separately. The content

code from the image is combined with a random style code

from cross-domains to obtain diverse styled images. How-

ever, these GAN-based methods produce visually appealing

image translations but sometimes fail to maintain semantic

consistency between source and translated image especially

given large number of features. In certain domains such as

remote sensing as shown in Fig. 2, CUT [18] still suffers

from the problem of hallucination.

2.3. Synthetic­to­real translation

The task of translating synthetic images to realistic while

preserving semantic consistency has been an active research

topic with multiple applications such as semantic segmenta-

tion, stereo matching and pseudo label learning. A straight-

forward approach relies on auxiliary information which is

extracted from a task network to track changes in the source

and target domains. CyCADA [4] leverages a method that

preserves semantic consistency by constraining on a cycle

consistent task-loss. It uses an additional loss which tracks

the discrepancy between segmentation maps predicted by a

pre-trained segmentation network from the generated im-

ages and the ground truth maps. Chen et al. [2] extend

the method further by incorporating depth maps. Semantic-

aware Grad-GAN [10] introduces a soft gradient-sensitive

objective and a semantic aware discriminator for domain

adaptation of virtual to real urban scenarios. To address al-

terations affecting object boundaries in generated images,

their method involves applying the Sobel filter to both

the image and its corresponding semantic map for devia-

tion tracking. StereoGAN [15] is specifically designed for

the task of translating synthetic images to realistic domain

while maintaining the stereo constraints. It utilizes a Cycle-

GAN for image translation and a DispNet [16] for disparity

estimation. SDA [11] utilizes the spatial feature transform

to fuse features of edge maps with source images. Differ-

ent than the previous works, Secogan [8] utilized content

disentanglement architecture from MUNIT for translating

synthetic images of autonomous driving datasets to realistic

domain. Instead of relying on a task network, it performs

content disentanglement by employing fixed style codes in

the generator, making the model computationally effective

Da Db

Warp
Lwarp

E

G

xd

Generator Output

Sobel

I = {(xl, xr, xd)d, xb, sa, sb}

{(xl, xr, xd)a, (xel, xer)a, xb, xeb, sa, sb}

Figure 5. Illustration of the GAN-based model architecture featur-

ing multiple loss functions. The design incorporates a combination

of adversarial, reconstruction, cycle and warping losses. Adversar-

ial loss promotes realistic image generation, while reconstruction

loss ensures faithful reproduction of input data, cycle loss enforces

the correct mapping between domains and warping loss enforces

geometrical stereo constraints.

while preserving semantic consistency.

The task of translating images to a realistic style while

maintaining the content structure for stereo matching is a

dual optimization task. Although the existing networks ad-

dress this issue, they suffer when applied to remote sensing

images due to large baselines (which implies more occlu-

sion), different acquisition times for left and right images,

and city growing. The models developed are predominantly

applied in the field of autonomous driving and struggle with

achieving domain generalisation. Another challenge is the

training of existing models tends to become computation-

ally expensive, as it is a combination of two deep learning

networks, one for image translation and the latter for stereo

matching. The number of parameters required for training

is high and can slow the training process. We address both

of the above concerns in our work by employing a single

edge-aware image translation GAN model trained addition-

ally with warping loss to enforce the stereo constraints.

3. Method

We carry out the translation of synthetic to realistic domain

images under the assumption that both domains share uni-

versal features that describe the elements in the scene (such

as buildings, roads, vegetation), as well as distinctive fea-

tures specific to the particular domain, focusing on visual

attributes like appearance or style.

Given a synthetic left-right-disparity tuple
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(a) Driving to KITTI2015 (b) SyntCities to US3D

Figure 6. Comparison of image translations: The first row showcases original synthetic images, the second row presents images translated

using StereoGAN, and the third row exhibits images translated using our SyntStereo2Real.

(xl, xr, xd)a ∈ Xa denoting the stereo pair of left

and right image with its corresponding disparity for source

domain, a real image xb ∈ Xb representing the target

domain, and two randomly sampled style codes sa, sb
for each domain, our model synthesizes a realistic stereo

matched pair of the synthetic image.

Our work draws inspiration from MUNIT [6] and Seco-

gan [8] to learn disentangled representations from two do-

mains without supervision. Similar to [6], our translation

model consists of an autoencoder (encoder E and decoder

G) as a generator for both domains. The encoder factor-

izes each input into latent content code ci(i = a, b), where

ci = E(xi). Style code is initialized before the training

using normal distribution as si = (γi, βi) [8], for each do-

main and remains constant during the training. Here γi and

βi represents the mean and standard deviation of the normal

distribution. Edge maps of the corresponding input images

are obtained from the Sobel operator xei = SO(xi) and are

given as additional input to preserve structural information.

The encoder generates the latent edge code ei = E(xei)
from the edge maps. The edge code is added to the content

code as content-edge code cei = ci + ei and is provided as

an input to the decoder as shown in Fig. 3. The decoder gen-

erates the output image by swapping the content and style

codes. The discriminator distinguishes the original image to

the generated image by adversarial training. Since we have

a real and synthetic domain, we have two discriminators DA

and DB .

Multiple losses help in constraining and generating im-

ages in a meaningful manner in GAN based networks. Fig-

ure 5 shows an overview of the losses used in the training

of the model. A reconstruction loss:

Laa
rec(E,G) = Exa∼Xa

∥G(E(xa), sa)− xa∥1, (1)

ensures that the model generates accurate reconstruction of

images after content disentanglement.

In image-to-image translation, it is essential that the gen-

erated images in the target domain are not only realistic but

also faithfully represent the original content. Cycle consis-

tency loss [29]:

Laba
cycle(E,G) = Exa∼Xa

∥G(E(xab), sa)− xa∥1, (2)

enforces this constraint by calculating the loss between

original image and the transformation of original image to

another domain (xab), and transform it back again to origi-

nal domain (xaba).

Since we use a GAN based approach to train the model,

we use an adversarial loss:

La
adv(E,G,Da) =Exa∼Xa

logDa(p(xa)) +

Exb∼Xb
log(1−Da(p(xba)),

(3)

which matches the data distribution of translated images to

the distribution of target domain. The adversarial loss is

employed by both the discriminator and generator, whereas

the other mentioned loss exclusively guides the training of

the generator. Since we use a patch based discriminator, the

p in Eq. (3) refers to random patches of image.
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Considering the images from one domain are syntheti-

cally generated, we assume to have access to additional in-

formation like ground truth labels, disparity maps, and seg-

mentation masks. Warping loss as an additional constraint

can be a useful addition, especially in tasks where the im-

ages are later used for training disparity estimation models.

We compute the warping loss as

Lwarp = λ1 · L1(G(E(xra), sb)

−W (G(E(xla), sb), xd)

+ λ2 · (1− SSIM(G(E(xra), sb)

−W (G(E(xla), sb), xd))),

(4)

which compares the warped left image W (xlab
, xd), which

has undergone translation, and the right image after transla-

tion xrab
. We use a combination of L1 loss and SSIM loss

for calculating the warping loss.

The corresponding losses from other domain Lbb
rec,

Lbab
cycle and Lb

adv are calculated in a similar manner. There-

fore, the overall loss function for the generator is given by

min
E,G

max
Da,Db

L(E,G,Da, Db) =λ3 · (L
aa
rec + Lbb

rec) +

λ4 · (L
aba
cyc + Lbab

cyc) +

λ5 · (L
a
adv + Lb

adv) +

Lwarp.

(5)

4. Experiments

4.1. Network Architecture and Training

The autoencoder with a pair of encoder and decoder for gen-

erator is based on MUNIT architecture [6]. The discrim-

inators are implemented using PatchGAN [7] architecture.

The input to the network consists of images from both the

domains and their corresponding edge maps and the output

consists of translated images of both domains with the style

and content interchanged. We recommend the use of So-

bel operator to obtain edge maps due to its simplicity and

effectiveness, which was compared in [11] with other exist-

ing edge detectors. The Sobel operator employs two 3 × 3

convolution masks: one for estimating the gradient in the

x-direction and the other for the y-direction. This design

aligns effectively with CUDA architecture, allowing indi-

vidual threads to apply the 3 × 3 convolution masks to their

assigned pixel and its neighboring pixels in the image.

The network model is implemented using PyTorch [19]

and the training is carried out for 100 epochs with a batch

size of 4. The hyperparameter values for λ1, λ2, λ3, λ4

and λ5 in Eq. (4) and Eq. (5) are set to 1, 1, 0.8, 10 and 10
respectively. We use stochastic mini batch gradient descent

with Adam optimizer [9]. Beta coefficients of Adam are set

to 0.5 and 0.999 respectively.

(a) Reference

(b) Ground Truth

(c) Baseline

(d) StereoGAN

(e) SyntStereo2Real(ours)

Figure 7. Results of disparity estimation from the AANet for the

KITTI 2015 dataset. Three models are computed for the image

shown in (a) RGB reference image, (b) Ground truth, (c) Model

trained on Driving (baseline), (d) Model trained on Driving trans-

lated using StereoGAN (e) Model trained on Driving translated

using SyntStereo2Real (ours).

4.2. Datasets

We use two sets of datasets from different application areas

to study the generalization capabilities of SyntStereo2Real

architecture. For remote sensing data, we use SyntCi-

ties dataset [20] for synthetic data and Urban semantic 3D

dataset [1] for real domain data. SyntCities is a large dataset

set consisting of synthetically generated images of aerial

imagery. It is specially developed to train deep learning net-

works for disparity estimation, providing accurate disparity
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Datasets Metrics Baseline StereoGAN SyntStereo2Real(ours)

SyntCities MAD ↓ 1.801 1.520 1.319

to US3D 3px-acc% ↑ 63.097 66.765 69.906

1px-acc% ↑ 30.790 33.619 35.928

Driving MAD ↓ 0.721 0.626 0.575

to KITTI 3px-acc% ↑ 88.871 89.646 91.373

1px-acc% ↑ 61.832 64.271 65.892

Table 1. Comparison of metrics for SyntCities to US3D and Driving to KITTI. The table illustrates the performance across datasets,

showcasing results for the SyntCities (baseline), StereoGAN, and SyntStereo2Real (ours). Bold values highlight superior performance in

MAD reduction and accuracy enhancement.

(a) Reference (b) GT (c) Baseline (d) StereoGAN (e) SyntStereo2Real(ours)

Figure 8. Results of disparity estimation from the AANet for the US3D dataset. Three models are computed for the image shown in

(a) RGB reference image, (b) Ground truth, (c) Model trained on SyntCities (Baseline), (d) Model trained on SyntCities translated using

StereoGAN (e) Model trained on SyntCities translated using SyntStereo2Real (ours).

Model nparams

StereoGAN 54M

SyntStereo2Real(ours) 11M

Table 2. Comparison of the number of learnable parameters to

train model between StereoGAN and SyntStereo2real models.

ground truth and different baselines. It consists of 8800

pairs of images resembling architectures of three cities:

New York, Paris and Venice, with size of each image being

1024 × 1024. We use 1000 tuples of images taken evenly

from all the three cities for training. The Urban3D (US3D)

dataset consists of satellite images taken from WorldView3

mission and ground truth disparities are derived from aerial

LiDAR data. In this dataset, a significant portion of the

images primarily consists of vegetation with limited urban

content. To address this, we filtered images based on label

data, retaining only those images that contain a minimum of

15% building-related content. We randomly selected 1000
samples each of size 1024× 1024 for training.

For autonomous driving data, we use the Driving

dataset from SceneFlow [16] for synthetic domain and

KITTI2015 [17] dataset in real domain. We use the com-

plete dataset from Driving consisting of 4400 images of

size 540 × 960 and the 160 training images each of size

385 × 1242 provided by KITTI2015 benchmark. We re-

size the images to 512× 512 for remote sensing dataset and

256 × 512 for autonomous driving dataset during training

due to memory and time constraints.

4.3. Evaluation metrics

We compare the two models based on performance of stereo

matching and number of learnable parameters (compactness

of the model architecture) required to train the model.

We acquire translated images and assess their perfor-

mance on disparity estimation by training them on a dis-

parity network. Specifically, we employ AANet [24] for the

training and evaluation of estimation. In case of SyntCities

to US3D we trained the model for 400 epochs and Driving

to KITTI 2015 for 120 epochs, as this is a larger dataset. In

both the cases we used a batch size of 20 and the maximum

disparity was set to 192. To evaluate the predicted disparity

maps, we removed the areas where the ground truth is not

defined. 60 samples from US3D were used for testing and

40 for KITTI 2015 (no overlapping with the training sam-

ples). The cases where the original data (before translation)

is taken as input is named as baseline.

Given the scarcity of models specializing in synthetic-to-

real domain adaptation with stereo constraints, we conduct

a comparative analysis of our model against StereoGAN.

The results are given in Tab. 1. We use MAD (Median Ab-
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Metrics No Edge With Edge With Disp With Edge

and No Disp and Disp

MAD ↓ 1.779 1.755 1.646 1.319

3px-acc% ↑ 62.670 62.887 63.847 69.906

1px-acc% ↑ 31.503 31.853 32.600 35.929

Table 3. Ablation studies. Here the Edge refers to the addition of edge information along with input image and Disp refers to the additional

use of warping loss to enforce disparity constraints.

solute Deviation) [5], 3px accuracy percentage and 1px ac-

curacy percentage for evaluation of stereo matching. MAD

is a robust statistic, being resilient to outliers in a dataset

compared to standard deviation because it is calculated by

obtaining the median of the absolute difference of pixels

and not the squared mean as in standard deviation. 3px ac-

curacy represents the percentage of pixels in the disparity

map for which the estimated disparity is within a range of

±3 pixels from the ground truth disparity and 1px refers to

the same metric but for a 1 pixel range.

4.4. Quantitative Results

As indicated in Tab. 1, our approach demonstrates enhance-

ments, showcasing a notable improvement with respect to

StereoGAN of +3.14% in 3px accuracy and +2.30% in 1px

accuracy for remote sensing images. Besides, the model

exhibits improvements of +1.727% in 3px accuracy and

+1.621% in 1px accuracy for autonomous driving datasets.

Please note that the ground truth in the KITTI dataset is

sparse and can not be evaluated for all the pixels. Despite

that, we can visually compare the reconstruction capabili-

ties for not labelled pixels. The disparity maps illustrated

in Fig. 7 and Fig. 8 highlights a more complete prediction

without empty regions. Comparing the number of parame-

ters in Tab. 2, our model has a significantly smaller number

of learnable parameters for training, making it ideal for ap-

plications with limited storage and processing capabilities.

4.5. Qualitative Results

Figure 6 displays the results of translation of StereoGAN

and our network SyntStereo2Real. The main challenge in

translating in remote sensing images are maintaining the

structural information for all resolution of images. Stere-

oGAN, while proficient in certain aspects of disparity esti-

mation, fails in the translation of shadows by hallucinating

green patches instead of building shadows. Our model ef-

fectively captures and reproduces the content such as archi-

tectural details of building rooftops, bridges and roads, im-

proving shadow handling, and preserving epipolar geome-

try simultaneously. Our method shows consistent prediction

of disparity maps for complete objects without empty gaps

or unclear boundaries. We also demonstrate our approach

performs well in different application domains beyond au-

tonomous driving.

4.6. Ablation Studies

In the Tab. 3, various configurations of the model are eval-

uated based on the presence or absence of edge informa-

tion and warping loss for disparity. Firstly, the inclusion of

edge information results in a decrease in the Mean Absolute

Deviation (MAD), indicating improved results in predicting

deviations from the ground truth. This decrease, coupled

with a corresponding increase in both 3px accuracy and 1px

accuracy indicates the importance of addition of edge maps.

Similarly, addition of warping loss helps in improving the

accuracy and MAD of the model significantly. We also ex-

perimented incorporating edges using Spatial feature trans-

form (SFT), where the model learns the weight of edges

along with image. This network produced images with

strong focus on edges and lost other details making the data

unsuitable for training. Thus the the ablation study demon-

strates that incorporating both edge information and dispar-

ity significantly improves the model’s performance across

all evaluated metrics for the used datasets.

5. Conclusion

In this paper, we propose a light-weight edge based GAN

model designed for unpaired image-to-image translation of

synthetic-to-real data, while adhering to stereo constraints.

Our approach leverages the importance of edge maps along

with input images to retain the structural information while

translation. Additionally, we incorporate a warping loss to

maintain the accuracy of disparities on translated images.

The integration of these two crucial elements yields state-

of-the-art results in a single synthetic to real image transla-

tion network.
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