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Abstract

Due to its cloud-penetrating capability and indepen-
dence from solar illumination, satellite Synthetic Aperture
Radar (SAR) is the preferred data source for large-scale
flood mapping, providing global coverage and including
various land cover classes. However, most studies on large-
scale SAR-derived flood mapping using deep learning algo-
rithms have primarily focused on flooded open areas, uti-
lizing available open-access datasets (e.g., Sen1Floods11)
and with limited attention to urban floods. To address this
gap, we introduce UrbanSARFloods, a floodwater dataset
featuring pre-processed Sentinel-1 intensity data and inter-
ferometric coherence imagery acquired before and during
flood events. It contains 8,879 512 × 512 chips covering
807,500 km2 across 20 land cover classes and 5 conti-
nents, spanning 18 flood events. We used UrbanSARFloods
to benchmark existing state-of-the-art convolutional neural
networks (CNNs) for segmenting open and urban flood ar-
eas. Our findings indicate that prevalent approaches, in-
cluding the Weighted Cross-Entropy (WCE) loss and the
application of transfer learning with pretrained models,
fall short in overcoming the obstacles posed by imbal-
anced data and the constraints of a small training dataset.
Urban flood detection remains challenging. Future re-
search should explore strategies for addressing imbalanced
data challenges and investigate transfer learning’s poten-
tial for SAR-based large-scale flood mapping. Besides,
expanding this dataset to include additional flood events
holds promise for enhancing its utility and contributing
to advancements in flood mapping techniques. The Ur-
banSARFloods dataset, including training, validation data,
and raw data, can be found at https://github.com/
jie666-6/UrbanSARFloods.

1. Introduction

As one of the most devastating natural disasters worldwide,
floods have impacted billions of people [41]. Addition-
ally, it has been reported that the frequency and severity of
flooding have increased due to intensified heavy precipita-
tion patterns [9]. Thus, there is a growing demand for flood
mapping, monitoring, and forecasting on a global scale, not
only for high-profile catastrophic flooding events but also
for those unreported floods. Within this context, Earth Ob-
servation (EO) data, particularly satellite EO data, plays a
critical role in understanding and quantifying the extent and
depths of flooding events on a large scale, thus presenting a
significant opportunity for global flood mapping and moni-
toring. Currently, a variety of satellite optical data sources
such as MODIS, VIIRS, Landsat constellations, Sentinel-
2, and PlanetScope, as well as satellite synthetic aperture
radar (SAR) data including Sentinel-1, COSMO-SkyMed,
Radarsat Constellation, TerraSAR-X, and GaoFen-3, are
widely employed for flood mapping. However, satellite op-
tical data can be easily contaminated by clouds although
they offer longer temporal coverage and are easier to inter-
pret. Therefore, satellite SAR data is preferred due to its
ability to be acquired regardless of weather conditions (i.e.,
clouds) and solar illumination. Furthermore, it is worth
noting that the biggest difference between large-scale flood
mapping and region-scale flood mapping is that the meth-
ods should identify floodwater in various land cover classes,
including bare soils, sparsely vegetated areas, urban areas,
agricultural fields, etc. However, to the best of our knowl-
edge, most large-scale SAR-derived flood mapping stud-
ies mainly focus on flooded open areas, i.e., bare soils and
sparsely vegetated areas [e.g., 4, 21, 26, 48, 52], while large-
scale SAR-derived flood mapping considering both open ar-
eas and urban areas has not been well investigated yet. To
clarify, in this study, the term ”large-scale urban flood map-
ping” is used to denote flood mapping that covers both open
areas and urban areas.

Recently, a growing number of studies [e.g. 2, 14, 17, 19]
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Figure 1. Overview of the UrbanSARFloods dataset.

have utilized SAR data, showing its efficacy in identifying
floodwater in urban areas. It has been found that both SAR
intensity and Interferometric SAR (InSAR) coherence are
critical in urban flood mapping [28, 53]. Specifically, in
SAR data, the totally submerged areas (such as bare soils
and buildings) typically exhibit lower backscatter than the
background because the SAR signal has been reflected away
from the sensor due to the specular reflection in the calm
open water surface. Partially submerged buildings, on the
other hand, often show relatively higher backscatter due to
the double-bounce effects between the water surface and the
buildings’ facades. Additionally, the coherence of flooded
buildings experiences a sharp drop with the appearance of
floodwater, serving as a useful indicator in flood detection,
particularly when changes in the intensity of flooded build-
ings are too small to be detected. Furthermore, it is es-
sential to consider different polarizations simultaneously, as
the backscatter is influenced by both the orientation of the
buildings and the line-of-sight (LOS) of the sensor [37, 53].
However, since most existing methods have not been tested
on large datasets in both temporal and spatial dimensions,
their generalizability and robustness in large-scale urban
flood mapping remain unknown.

Although deep learning (DL) techniques have a transfor-
mative impact on the remote sensing field, their integration

into SAR-based large-scale urban flood mapping applica-
tions remains limited. Only a handful of studies [28, 49, 53]
have ventured into this domain so far. Comparing their
generalizability and robustness is challenging due to vari-
ations in data, flood events, and data preprocessing method-
ologies employed across studies. Meanwhile, we have
observed that a growing number of DL-based large-scale
flood mapping studies [e.g. 16, 23, 24, 27, 33, 47] were
carried out thanks to the publication of the georeferenced
Sen1Floods11 dataset [5]. This phenomenon of public
datasets driving advances across various research fields has
also been demonstrated in different domains. For instance,
in the field of image classification and object detection in
computer vision, ImageNet has provided researchers world-
wide with access to vast amounts of data, while its test
dataset has served to document the enhancements in com-
puter vision capabilities [5]. Therefore, it is believed that
one of the bottlenecks hindering the advancement of DL-
based methodologies in the field of SAR-based large-scale
urban flood mapping is the absence of a benchmark dataset.

To bridge this gap and engage more AI researchers in
advancing large-scale urban flood mapping with SAR data,
we developed a georeferenced flood dataset named Ur-
banSARFloods. The dataset comprises flooded urban and
open areas, with SAR intensity and InSAR coherence data

420



obtained pre- and post-event in VV and VH polarizations
using Sentinel-1 SLC data(Fig. 1). It offers global coverage,
consisting of 8,879 chips of 512×512 20m pixels across 18
flood events, spanning 807,500 km2. All 8,879 chips un-
derwent semi-automatic labeling via conventional remote
sensing methods. Moreover, three subsets from selected
events were manually annotated using high-resolution opti-
cal data (i.e., 3m PlanetScope and 10cm UAV optical RGB
orthophoto). Semi-automatic and manual labels are uti-
lized during testing. Further details are provided in Sec-
tion 3. Leveraging the UrbanSARFloods dataset, we eval-
uate flood detection performance of various semantic seg-
mentation models, including both pre-trained and scratch-
trained ones. Our findings highlight the persistent challenge
in urban flood detection, primarily due to data imbalance
and limited dataset availability.

2. Related Work

2.1. Flood-related benchmark datasets

According to several remote sensing data platforms, such as
EarthNet (https://earthnets.github.io/) [46],
the IEEE platform (https://eod-grss-ieee.com/
dataset-search), and SpaceML from Frontier Devel-
opment Lab (https://spaceml.org/repo), there
are several flood-related datasets available. As shown
in Tab. 1, it is evident that most flood-related datasets
currently focus on flooded open areas. However, only
three datasets (SpaceNet, Hurricane Harvey Floods, Flood-
Net) provide annotations related to flood-affected buildings.
However, the Hurricane Harvey Floods dataset is designed
for flood-damaged buildings instead of flooded buildings,
while the SpaceNet and FloodNet datasets provide anno-
tations for two flood classes (i.e., flooded buildings and
flooded roads) using high-resolution optical data. Besides,
another recent S1GFloods dataset, which reportedly in-
cludes wetlands, riverine areas, mountainous regions, urban
and rural areas, and vegetation [43], annotated flooded ar-
eas using Sentinel-1 intensity data only. Therefore, only
severely flooded buildings may be included, while most of
the flooded built-up areas cannot be effectively included,
as it has been established that InSAR coherence is impor-
tant complementary information with SAR intensity when
it comes to detecting flooded buildings using SAR data.

Indeed, there is currently no suitable SAR dataset specif-
ically designed for large-scale urban flood mapping. While
it is possible to gather flood labels from various studies,
as exemplified by [6] who shared their manually anno-
tated flood labels as a supplementary file, inconsistencies
in annotation granularity stemming from variations in spa-
tial resolution and labeling styles may compromise the re-
liability of conclusions drawn from such data. Addition-
ally, it has been observed that certain non-flooded areas,

such as tarmac and shrubland, exhibit characteristics sim-
ilar to flooded areas, potentially leading to overestimations
in large-scale flood mapping efforts [51]. In comparison to
existing datasets, UrbanSARFloods offers a distinctive ad-
vantage by encompassing two flooded classes (i.e., flooded
open areas and flooded urban areas) characterized by SAR
intensity and InSAR coherence data. This unique feature
renders UrbanSARFloods particularly suitable for large-
scale urban flood mapping applications.

2.2. Semantic Segmentation in flood mapping ap-
plication

Currently, numerous semantic segmentation methods have
recently been applied to flood mapping applications us-
ing SAR data. For instance, [35] evaluated the perfor-
mance of UNet [42], XNet [8] and UNet with ResNet as
the backbone on the UNOSAT Flood Dataset (https:
//unosat-rm.cern.ch/FloodAI/apps/MMR/),
stating that the performance of the models did not sig-
nificantly differ. However, the UNet with ResNet as the
backbone was reported as the most favorable due to its
greater flexibility in the choice of precision/recall tradeoff.
Subsequently, [23] indicated that UNet outperformed Seg-
Net [1] using the Sen1Floods11 dataset in flood mapping,
attributed to its skip connection architecture. Furthermore,
[31] proposed a modified DeepLabV3+ model employing
MobileNetv2 as the backbone for detecting flooded open
areas using a C-band commercial SAR satellite data Hisea-
1, which is surpassed SegNet, UNet, and DeepLabv3+ [12]
in both accuracy and inference time [31].

Recently, [20] introduced the Residual Wave Vision
U-Net (WVResU-Net), trained and tested on Sentinel-1
data, integrating advanced Vision Multi-Layer Perceptrons
(MLPs) and ResU-Net, exhibiting significant superiority
over several well-known CNN and ViT DL models. Be-
side the supervising learning, an unsupervised CNN model
has been introduced in SAR-based flood mapping [21],
where SAR images are pre-segmented using the graph-
based Felzenszwalb and Huttenlocher (Felz) segmentation
algorithm, followed by the CNN being employed to gen-
erate the final flood map. In recent research, [47] in-
troduced a lightweight unsupervised flood mapping DL
model, named Contrastive ConvLSTM Variational AutoEn-
coder (CLVAE), which employs fully self-supervised train-
ing with simplified contrastive learning techniques. How-
ever, it should be noted that all the above-mentioned studies
were developed for flooded open areas instead of flooded
urban areas using SAR data. To the best of our knowledge,
only a handful of studies [28, 49, 53] have been conducted
specifically focusing on SAR-based urban flood mapping
using DL techniques, where many popular semantic seg-
mentation models such as UNet++ and Deeplabv3+ have
not been investigated.
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Table 1. Summary of current publicly available flood-related datasets.

Dataset Platform Modality Resolution [m] Flood Labels
MM-Flood [34] Spaceborne SAR intensity, DEM, hydrography maps 10 Flooded open areas

Sen1Floods11 [5] Spaceborne SAR intensity, Multispectral 10 Flooded open areas
Sen12-Flood [40] Spaceborne SAR intensity, Multispectral 10 Flooded open areas

RAPID-NRT [48] Spaceborne
SAR intensity, topography,

10 Flooded open areaswater occurrence, land cover classification,
river width, hydrography, and water type

SpaceNet 6 [45] Spaceborne Optical data 0.3 - 0.8
Flooded building /

Flooded road

EU Flood Dataset [3]
Airborne /

Multispectral data - Flooding
Ground collected data

Hurricane Harvey Floods [36] Spaceborne SAR intensity, InSAR coherence, Optical data 1, 2, 10 Flood Damage building
Flood Area Segmentation [22] Airborne Optical data - Flood
Roadway flooding image [44] Ground collected data Optical data - Flood

ML4Floods [38] Spaceborne Optical data 10 - 30 Flooded open areas

FloodNet [39] Airborne Optical data -
Flooded building /

Flooded road
California flood dataset [30] Spaceborne SAR intensity, Multispectral - Flooded open areas

3. Datasets
Our dataset contains 18 Sentinel-1-covered urban flood
events, in which the changes caused by floodwater in open
areas and urban areas could be measured. The geographic
distribution of selected flood events is shown in Fig. 1,
while more detailed information is listed in Tab. 2. The im-
agery in our dataset has 8 bands, including 2 bands (VV and
VH) for Sentinel-1 intensity acquired pre-event, 2 bands
(VV and VH) for Sentinel-1 intensity acquired post-event, 2
bands (VV and VH) for Sentinel-1 coherence acquired pre-
event, and 2 bands (VV and VH) for Sentinel-1 intensity
acquired co-event.

3.1. Preprocessing

The Sentinel-1 Level-1 Interferometric Wide Swath SLC
data, downloaded from Alaska Satellite Facility (ASF),
were used to extract interferograms and then calibrated
and transformed into intensity (in dB). The multilooking (4
looks in the range and 1 looks in the azimuth) was carried
out in order to get the interferogram with the square pixels.
A Goldstein filter with a size of 9 × 9 pixels was applied to
the interferogram to reduce noise in the phase, and then the
interferometric coherence was estimated by a moving win-
dow of 9 × 9 pixels. All the intensity and coherence data
were geocoded to World Geodetic System (WGS) 1984 lon-
gitude and latitude with 20 m spatial resolution.

3.2. Label generation

3.2.1 Semi-automatic Labeling

In this study, generating annotations covering the entire
Sentinel-1 image frame can only be achieved through con-
ventional remote sensing approaches. This is because no
high-resolution optical images acquired on the same acqui-

sition dates as Sentinel-1 data are capable of covering the
entire image frame (∼43,000 km2). Three-step annotation
is needed: 1) the open flooded areas are extracted by ap-
plying a hierarchical Split-based change detection approach
(i.e., HSBA) [13] to SAR intensity imagery; 2) the urban
floods are extracted using a threshold (fixed at 0.3 based on
trial-and-error) on difference interferometric coherence im-
age (i.e., pre-event coherence - co-event coherence). The
built-up areas and non-built-up areas are distinguished us-
ing World Settlement Footprint 2019 (WSF2019) [32]; 3)
isolated objects with a small number of pixels are elimi-
nated, whose threshold for removal was determined on a
case-by-case basis by remote sensing analysts. It should be
noted that for both flood classes, once a pixel has been an-
notated as flooded in at least one polarization, it is annotated
as flooded.

In the annotation data, flooded open areas are designated
with a pixel value of 1, flood urban pixels are assigned a
value of 2, and non-flooded regions are represented by a
pixel value of 0.

3.2.2 Hand Labeling

For the areas where high-resolution optical data is avail-
able, trained remote sensing analysts annotated open floods
and urban floods using centimeter-level UAV-based RGB
imagery. All annotations were carried out using QGIS soft-
ware. Due to the spatial resolution difference between RGB
imagery and Sentinel-1 data, analysts need to remove some
small flooded areas that cannot be recognized in Sentinel-1
data due to its coarse resolution.

3.3. Training, Validation and Testing Data

We aim to achieve diversity in addressing real-world flood
issues, thereby advancing the development of effective
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Table 2. Detailed description of global flood events in UrbanSARFloods dataset. Events labeled with * signify the inclusion of optical
data.

Continent Location Event Date Image Size Absolute Orbit Path
Number of tiles

NF FO FU

North America
Houston, US 30 August 2017 14918 × 12981 7169 143 274 323 129

Lumberton, US 11 Oct 2016 9931 × 6465 13449 77 147 201 2
Sainte-Marthe-sur-le-Lac, Canada 02 May 2019 21638 × 11184 27055 33 279 431 2

Africa

Beledweyne, Somalia 08 May 2018 14293 × 11656 21807 35 495 73 4
Beira, Mozambique 20 March 2019 14904 × 12608 15432 6 133 89 14

Beledweyne, Somalia 14 Nov 2023 15457 × 12634 51207 35 455 56 20

Jubba, Somalia* 01 Dec 2023
15548 × 13078
15454 × 12710

50580
51455

108
108

400
460

59
65

13
10

Lokoja, Niger 13 Oct 2022 15500 × 12587 44902 30 427 107 1

Asia

Iwaki/Koriyama, Japan 12 Oct 2019 11751 × 10096 18447 46 353 158 19
Weihui, China* 27 July 2021 18927 × 12245 38962 40 293 221 135

Aqqala, Iran 29 March 2021 19549 × 12580 26554 57 333 351 25
Zhuozhou, China 05 August 2023 19906 × 12207 49739 142 332 204 137
Langfang, China 05 August 2023 19458 × 12220 49739 142 279 269 117

Oceania
Coraki, Australia 2 March 2022 18160 × 13358 42146 74 105 54 11
Sydney, Australia 24 March 2021 19495 × 13582 37144 147 468 95 6

Port Macquarie, Australia 19 March 2021 18774 × 13460 37071 74 124 89 26
Europe NovaKakhovka, Ukraine* 09 June 2023 22596 × 12226 48911 14 103 612 37

flood detection methodologies. Hence, we consider not
only the quantity of images but also their representative-
ness across various flood scenarios during data division.
Specifically, we aim for training and validation datasets that
encompass floods occurring in various land cover classes
and different environmental conditions, while the testing
datasets should feature floods from diverse locations, al-
lowing us to evaluate the robustness and transferability of
different flood detection methods. Therefore, three flood
events located in Africa, Asia, and Europe were selected as
testing cases due to the availability of high-resolution opti-
cal data, while the remaining 15 flood events were used for
model training and validation.

For the 15 flood events utilized for training and valida-
tion, all imagery was partitioned into 512×512 pixel non-
overlapping chips. In our dataset, we retained all chips
where no flood exists, as it is believed that the features
of non-flood pixels also contribute to the improved detec-
tion of flooded pixels. More specifically, concerning large-
scale flood mapping, many non-flooded areas exhibit flood-
lookalike characteristics, such as the sparse shrubland near
Beledeweyne, Somalia, which may lead to confusion for
flood detection models and result in over-detection [51] if
no reliable annotation data from those specific areas is in-
volved. Moreover, flood pixels typically constitute only a
small fraction of the entire scene, even during catastrophic
flood events, especially when dealing with 20m spatial res-
olution SAR data covering an area of 43,000 km2. Con-
sequently, flood datasets often exhibit an extreme data im-
balance ratio (ρ > 1000), especially in urban flood cases.
Therefore, the training and validation data division was car-
ried out using stratified sampling strategies based on flood

event cases.
Firstly, all tiles were classified into Non-flooded (NF )

tiles, Flooded open areas (FO) tiles, and Flooded urban
(FU ) tiles by examining the maximal value in the anno-
tation data generated in Sec. 3.2.1: if the maximal value in
the annotation data of a tile is 2, then the tile is classified
as an FU tile; if the maximal value is 1, then the tile is
classified as an FO tile; otherwise, the tile is classified as
an NF tile. Then, both the FO and FU tiles were further
divided into two subclasses separately: tiles with ρ > 1000
were assigned as subclass 1, while tiles with ρ < 1000 were
assigned as subclass 2. In other words, all tiles were clas-
sified into 5 categories: NF , FO1, FO2, FU1, and FU2.
For each category, 70% of the tiles were allocated to the
training dataset, while the remaining tiles were utilized for
the validation dataset.

Following this scheme, our dataset comprises 8,879 non-
overlapping chips covering 807,500 km2: 2,408 from three
selected study sites for testing only; 4,501 for training, and
1,970 for validation across the remaining 15 events.

3.4. Statistics of the UrbanSARFloods Dataset

To have a better understanding of the dataset, we also show
the statistics of the land cover classes distribution in train-
ing, validation, and testing dataset separately, where the
Copernicus Global Land cover map 2019 [7] was involved
for such analysis. Fig. 2 demonstrates that both the train-
ing set, validation set, and testing set contain different land
cover classes and the distribution of land cover classes is
similar. Also, we display the label distributions of the train-
ing set, validation set, and testing set, where the annotation
obeys clear long-tailed distributions and indicates the seri-
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ous data imbalance issue (Fig. 3).

Figure 2. Statistics of label distribution of UrbanSARFloods.

Figure 3. Statistics of semi-automatic label distribution of
UrbanSARFloods.

4. Experiment and results
In this dataset, we have explicitly provided the official splits
for the training, validation, and test subsets. Offering a well-
defined dataset and official split is crucial for ensuring re-
producibility. In addition, the different semantic segmenta-
tion models were trained on UrbanSARFloods dataset, in-
cluding Unet [42], Unet++ [54], MANet [15], Linknet [10],
FPN [29], PSPNet [50], PAN [25], DeepLabV3 [11] and
DeeplabV3+ [12].

4.1. Implementation details

All models were implemented using PyTorch and executed
on an NVIDIA A40 GPU. The public codebase provided
by Segmentation Models PyTorch [18] was employed for
this purpose. Given our aim to establish straightforward
baselines for the datasets rather than optimize for the best
possible models, we did not conduct an exhaustive hyper-
parameter search. Training for all models was conducted
for 100 epochs. The input images, initially sized 512×512,
were randomly cropped into 256×256 dimensions with ran-
dom horizontal and vertical flips, as well as random rota-
tions (i.e., 90◦, 180◦, 270◦), applied for data augmentation.
The batch sizes were set to 12, while we utilized the Adam
optimizer with an initial learning rate of 1e-5 and a weight
decay coefficient of 1e-4. The Weighted Cross-Entropy
(WCE) loss was employed to address the class imbalance
among the three classes. To evaluate the efficacy of trans-
fer learning in flood mapping, each model underwent two
training regimens: one in which the model’s weights were
initialized via Xavier initialization, and another in which the
model was pre-trained using the ImageNet dataset. For all
experiments, Precision, Recall, and F1 score of each class
were used as the evaluation metrics.

4.2. Evaluation of State-of-the-art semantic seg-
mentation models

We evaluated nine existing semantic segmentation models
available in Segmentation Models PyTorch [18]. The re-
sults of two flood classes are presented in Tab. 3 and Tab. 4,
separately. As is shown in Tab. 3, the F1 score for FO in
Weihui and Jubba ranges from 0.51 to 0.77 due to relatively
low precision, indicating overestimation of FO. An exam-
ple of Weihui is shown in Fig. 4, where FO is displayed in
blue and FU is displayed in red. Within the RGB combi-
nation of pre-event/post-event intensity, FO is cyan and FU
is red in Fig. 4 (2). Similarly, within the RGB combination
of pre-event and co-event coherence, FU is cyan in Fig. 4
(3). Thus, combining the label data in Fig. 4 (1) and SAR
data in Fig. 4 (2-3), it is clear that most overestimation of
FO mainly exists in the boundary of FO. However, the F1
source of FO is much lower in the NovaKakhovka with the
corresponding precision below 0.2. Compared with the 3m
Planetscope data acquired on the same date, there are two
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sources of those FO false alarms: non-flooded agriculture
fields and wind-affected permanent water surfaces having
similar characterises of FO.

When it comes to the quantitative results of FU, the F1
scores and their corresponding precision are lower than 0.1
(Tab. 4), indicating too many false alarms of FU exist. Be-
sides the difficulty in distinguishing flooded urban pixels
from other FU-lookalike pixels, some pixels that definitely
do not have FU-lookalike features have been wrongly clas-
sified as FU, as is shown in the yellow box in Fig. 4. In ad-
dition, there is a disparity in performance between FO and
FU, which can be attributed to the imbalanced data issue,
despite our efforts to address it using the Weighted Cross-
Entropy (WCE) loss.

Furthermore, we conducted an evaluation of all flood
maps using manually annotated data, and no significant dif-
ferences were observed. Therefore, it is inferred that the
relatively poor performance of all models is attributable to
the challenges inherent in large-scale flood mapping ap-
plications, rather than being solely attributed to the semi-
automatic label data itself.

4.3. Evaluation of transfer learning

Furthermore, all models pretrained on ImageNet were fine-
tuned and tested on our dataset. Results are presented in
Tables 5 and 6. Comparing with results in Tables 3 and 4,
no significant performance differences were observed. This
could be attributed to the substantial disparity between the
ImageNet dataset and our UrbanSARFloods dataset. Im-
ageNet comprises millions of RGB neutral images, while
UrbanSARFloods consists of 8-band SAR data, includ-
ing SAR intensity and InSAR coherence data. This dif-
ference in feature spaces between the input channels of
the source domain (ImageNet) and the target domain (Ur-
banSARFloods) may impede the models’ ability to extract
relevant features for flood classification in our study. Sim-
ilar results were obtained when using manually annotated
ground truth data for subsets of the entire Sentinel-1 im-
age frame. Hence, further exploration of advanced transfer
learning techniques, such as domain adaptation, is essential
to address challenges in large-scale urban flood mapping.

5. Conclusion
One of the bottlenecks in integrating DL techniques with
large-scale urban flood mapping is the lack of proper open-
access datasets. To address this gap, we constructed a pre-
processed Sentinel-1 dataset, known as UrbanSARFloods,
encompassing both urban and rural floods. This dataset en-
capsulates two significant challenges encountered in large-
scale remote sensing mapping: complex background sam-
ples and imbalanced data. We evaluated state-of-the-art
methods on the UrbanSARFloods dataset, uncovering the
specific challenges posed by UrbanSARFloods. Addition-

Figure 4. Example of one test site (Weihui): flood label data,
SAR data, and generated flood maps using different models

trained from scratch.

ally, we conducted transfer learning experiments to explore
alternative approaches for overcoming these challenges.

This work offers a free and open dataset to advance
large-scale urban flood mapping in the area of microwave
remote sensing. We also provide this benchmarked
task with two considerable challenges, allowing other re-
searchers to easily build on this work and create new and
enhanced capabilities. A potential positive societal impact
may arise from the development of generalizable models
that can produce large-scale flood maps considering urban
floods and rural floods accurately. This could help provide
global-scale flood maps using all achieved satellite data.
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Table 3. Evaluation of results using semi-supervised labels across the entire Sentinel-1 image frame for Flooded open areas (FO)

Weihui Jubba NovaKakhovka
Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

Unet 0.54 0.99 0.70 0.38 0.99 0.55 0.20 0.81 0.32
Unet++ 0.64 0.98 0.77 0.50 0.99 0.66 0.22 0.89 0.35
MANet 0.50 0.98 0.67 0.45 0.99 0.62 0.12 0.96 0.21
Linknet 0.46 0.99 0.63 0.46 0.99 0.63 0.11 0.93 0.20

FPN 0.56 0.97 0.71 0.46 0.99 0.63 0.19 0.86 0.31
PSPNet 0.40 0.97 0.57 0.34 0.99 0.51 0.12 0.90 0.22

PAN 0.46 0.98 0.62 0.37 0.99 0.54 0.14 0.95 0.24
Deeplab v3 0.49 0.98 0.65 0.34 0.99 0.51 0.15 0.95 0.26

Deeplab v3 + 0.56 0.98 0.72 0.42 0.99 0.59 0.18 0.88 0.30

Table 4. Evaluation of results using semi-supervised labels across the entire Sentinel-1 image frame for Flooded urban areas (FU)

Weihui Jubba NovaKakhovka
Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

Unet 0.06 0.32 0.10 0.37 0.79 0.50 0.02 0.41 0.04
Unet++ 0.01 0.97 0.02 0.12 0.95 0.21 0.01 0.86 0.02
MANet 0.02 0.93 0.04 0.19 0.83 0.31 0.01 0.61 0.02
Linknet 0.03 0.61 0.07 0.07 0.63 0.12 0.12 0.39 0.03

FPN 0.01 0.90 0.01 0.07 0.90 0.13 0.01 0.75 0.01
PSPNet 0.01 0.91 0.02 0.08 0.95 0.15 0.01 0.81 0.01

PAN 0.01 0.98 0.01 0.07 0.90 0.13 0.01 0.70 0.02
Deeplab v3 0.01 0.88 0.01 0.12 0.74 0.21 0.01 0.77 0.01

Deeplab v3 + 0.01 0.87 0.03 0.13 0.89 0.23 0.01 0.77 0.02

Table 5. Evaluation of results using semi-supervised labels across the entire Sentinel-1 image frame for Flooded open areas (FO) using
the pretrained models

Weihui Jubba NovaKakhovka
Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

Pretrained Unet 0.65 0.98 0.78 0.60 0.98 0.74 0.19 0.88 0.31
Pretrained Unet++ 0.50 0.99 0.66 0.43 0.99 0.60 0.16 0.88 0.27
Pretrained MANet 0.46 0.99 0.63 0.28 0.99 0.44 0.11 0.94 0.20
Pretrained Linknet 0.53 0.99 0.69 0.35 0.99 0.52 0.12 0.94 0.21

Pretrained FPN 0.52 0.99 0.69 0.44 0.99 0.61 0.14 0.96 0.25
Pretrained PSPNet 0.58 0.94 0.71 0.50 0.98 0.66 0.30 0.74 0.43

Pretrained PAN 0.44 0.98 0.61 0.47 0.99 0.64 0.21 0.84 0.34
Pretrained Deeplab v3 0.44 0.95 0.60 0.33 0.99 0.49 0.10 0.92 0.18

Pretrained Deeplab v3 + 0.40 0.99 0.57 0.29 0.99 0.45 0.09 0.94 0.17

Table 6. Evaluation of results using semi-supervised labels across the entire Sentinel-1 image frame for Flooded urban areas (FU) using
the pretrained models

Weihui Jubba NovaKakhovka
Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

Pretrained Unet 0.02 0.74 0.05 0.15 0.87 0.25 0.01 0.70 0.02
Pretrained Unet++ 0.04 0.57 0.07 0.20 0.79 0.32 0.03 0.63 0.05
Pretrained MANet 0.01 0.97 0.02 0.10 0.94 0.19 0.01 0.73 0.01
Pretrained Linknet 0.01 0.96 0.03 0.08 0.87 0.15 0.01 0.59 0.02

Pretrained FPN 0.02 0.85 0.04 0.15 0.72 0.25 0.01 0.50 0.02
Pretrained PSPNet 0.01 0.97 0.01 0.07 0.93 0.12 0.01 0.92 0.01

Pretrained PAN 0.01 0.83 0.02 0.11 0.92 0.20 0.01 0.61 0.03
Pretrained Deeplab v3 0.01 0.98 0.01 0.07 0.92 0.13 0.01 0.67 0.01

Pretrained Deeplab v3 + 0.02 0.69 0.04 0.07 0.70 0.13 0.02 0.51 0.04
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