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Type Category N=5 N=10 N=30 Type Category N=5 N=10 N=30
car 5 11 32 ship 5 10 33
c helicopter 5 10 30 harbor 5 11 32
base long-vehicle 5 9 29 baseballfield 5 10 30
boat 6 10 33 c groundtrackfield 5 10 30
truck 5 10 30 base tenniscourt 5 10 31
van 5 11 33 storagetank 5 10 32
bus 5 10 31 airplane 5 10 30
airliner 8 11 36 basketballcourt 5 10 31
c propeller-aircraft 5 10 28 chimney 5 10 30
novel - trainer-aircraft 6 10 30 vehicle 5 11 31
charted-aircraft 5 10 30 airport 5 10 30
fighter-aircraft 5 11 30 golffield 5 10 30
stair-truck 5 10 34 overpass 5 10 30
pushback-truck 5 10 30 c bridge 5 10 30
novel  oxpress-toll-station 5 10 30
Table 5. Number of instances per class N for each of the used stadium 5 10 30
subsets of the SIMD dataset, i.e. N = {5,10,30}. Classes are trainstation 5 10 30
divided between base classes €pqse and novel classes €novel- express-service-area 5 10 30
windmill 5 10 31
dam 5 10 30

A. Datasets

As mentioned in the main text, satellite images are com-
monly imbalanced and contain several objects in a single
image. This hinders the process of randomly selecting
a subset with an equal number of instances per category.
Hence, some classes of our subsets have a few examples
more or less than N. We report the exact number of in-
stances per category in Table 5 and Table 6, for datasets
SIMD and DIOR, respectively. In addition, we clarify in the
tables which categories belong to novel classes and which
ones are base classes. The class others of the SIMD dataset
is removed from all evaluations, as it is highly underrepre-
sented in the dataset and selecting a subset of approximately
N samples per class which includes the others category is
not trivial. The data splits will be publicly released, con-
taining the images and annotations of each of the subsets.

B. Implementation details

In this section, we provide further implementation details
concerning our evaluation.

Ours. We train our model using Adam optimizer [14] over
200 epochs and a learning rate of 2e~%. We reduce the
learning rate by a factor of 0.1 at epochs 10 and 100. As
mentioned in the main text, we apply spatial and radiomet-
ric transformations, which involve horizontal and vertical
flips with 0.5 probability each, random 90-degree rotation
with 0.5 probability, color jitter with brightness = 0.2,

Table 6. Number of instances per class N for each of the used
subsets of the DIOR dataset, i.e. N = {5,10,30}. Classes are
divided between base classes ¢4 s and novel classes €y ovei-

contrast = 0.2, saturation = 0.2, and hue = 0.1,
padding with 0.5 probability, and random crops at a scale
of 0.5 to 1. Lastly, crops are resized to 602 x 602.

YOLO. We use the source code of YOLOVS by Ultralytics
to pre-train a yolov5s model on the entire DOTA dataset. We
use 200 epochs with a batch size of 64, using the Ultralytics
pre-defined hyper-parameters. The best model was kept and
used from there on. Subsequently, we fine-tuned the learned
model on the different subsets in two ways. First, we re-
train the model on each few-shot subset over 200 epochs
with a batch size of 128. Then, we repeat the process but
freeze the model’s backbone and fine-tune only the heads,
thus avoiding overfitting the pre-trained image representa-
tions on the small amount of available data. In both setups,
we report the results of the best models after the few-shot
training.

DE-ViT. We use the official implementation of DE-ViT as
by their authors. We create masks using the annotations of
each subset and generate prototypes with their code. Sub-
sequently, we use their pre-trained model for evaluation of
the target datasets with the default values suggested in their
publication.
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(a) Prototypes without fine-tuning
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(b) Prototypes after fine-tuning
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Figure 5. T-SNE visualization of the learned prototypes for the SIMD dataset using N = 10, before and after fine-tuning. Plane or aircraft
types are shown with a star marker, while types of terrestrial vehicles are shown with a cross marker. The boat class is shown as a diamond.
As depicted, class separation increases after fine-tuning, e.g. stair-truck and pushback-truck are more separable after training. In addition,
each cluster representing a group of transportation exhibits close proximity yet remains distinguishable, whereas the separation between

other groups is more pronounced.

FSRW. We use the official implementation of the FSRW
as by their authors. We perform the model’s full training on
our end, i.e. training the model in original data and few-shot
fine-tuning using the SIMD and DIOR subsets. The hyper-
parameters are kept by default as provided by the authors.

C. Visualization of learned prototypes

Figure 5 provides the T-SNE visualization of the learned
prototypes before and after fine-tuning, for the SIMD
dataset. We can observe a large separation between groups
of classes that represent different types of transportation,
i.e. types of planes or aircraft, types of vehicles, and boat.
Furthermore, the comparison shows that class separabil-
ity increases after prototype fine-tuning. For example, the
class boat is quite close to long-vehicle and bus before fine-
tuning, and the distance increases afterward. Similarly, the
separability of stair-truck and pushback-truck increases af-
ter learning the prototypes.



