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1. Efficient correlation computation
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Figure Al. Efficient correlation computation

Figure Ala introduces the straightforward ap-
proach of computing the local correlation volume.
For each pixel p in I, we extract the neighbour-
hood of its corresponding pixel p’ in I; and com-
pute the correlation between p and all the pixels
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within the local neighbourhood of p’. This com-
putation involves the torch.nn.Unfold class,
an operation that extracts sliding local blocks from
the batched input tensor fmap1l. For an input ten-
sor of size N x C x H x W, where H and W
are respectively the height and width of the image,
C' the number of channels and N the batch size,
and a D x D kernel, the operation outputs a ten-
sor of size N x (C'D?) x L, where D? is the total
number of values within each block and L is the to-
tal number of such blocks (HW in our case). The
main drawback of the Unfold operation is that
it extracts the values in the local blocks by copy-
ing them from the large input tensor. This con-
siderably increases the memory usage when deal-
ing with large-size images. An alternative to the
per_pixel computation is the per_shift computation
presented in Figure Alb.

A per-shift computation is less memory con-
suming, since it directly operates on the whole
feature maps, and does not require to store the
features of the neighbors for every pixel in the
source image. Also, instead of building the ten-
sor unfolded_fmapl of size N x C x (2R +
1)2 x (HW), with D = 2R + 1, we construct a
smaller tensor padded_ fmapl of shape N x C' x
(H +2R) x (W + 2R). Following this approach,
we need to pad the target feature on all sides, and
compute the matching costs for each shifting posi-
tion.

2. Efficient memory management dur-
ing inference

Once we have designed an optimized corre-
lation volume and prepared the training settings



(choice of hyperparameters, training set, etc.), the
next goal is to see whether or not it is possible
to perform inference on the entire satellite images
without the need to crop them. Unfortunately, un-
less we change the way some tasks are performed,
it is not possible to test the model on large full-
frame images. Indeed, the inference on these im-
ages lead to a “GPU out of memory” error, which
means that there is not enough memory available
on the chosen GPU to complete the task. To iden-
tify the source of this issue, we suggest isolating
the blocks of the architecture that are more prone
to generating memory leaks.

In the following observations, it is assumed
that the image size is equal to [N,C,H,W] =
[1,3,2400,1400] to get as close as possible to
the size of satellite images. Tests on both the
feature encoder and the update block are per-
formed after gradient computation is disabled (us-
ing forch.no_grad()).

2.1. Feature encoder

To demonstrate that there is no memory leak in
the feature encoder, we isolate this block and con-
struct M consecutive pairs of feature maps by call-
ing the feature encoder multiple times. We will
then show that the high memory consumption of
the encoder is due to its complexity, rather than
a misuse of GPU memory. Feeding the images
into the feature encoder multiple times does not in-
crease the memory, which demonstrates that GPU
memory is released after every iteration and that
there is no memory leak. Therefore, our intuition
is that the feature extraction block requires signifi-
cant memory due to its complexity. As we decrease
the number of output channels from 128 to 96, the
global free GPU memory after feature extraction
increases from 22.7% to 51.7%. We will see in the
following sections that such a design does not af-
fect the performance of our model on satellite im-
ages.

Once we have built the correlation pyramid, we
can remove the feature maps from the GPU as they
are not useful for future tasks. This significantly
increases the total memory available.

2.2. Update block

The correlation pyramid occupies 35% of the
GPU memory, which significantly reduces the
memory available for upcoming tasks. Before up-
dating the flow, we will therefore move this pyra-
mid to the CPU to save GPU memory and send
one correlation volume to CUDA only when it is
needed.

Each flow update is preceded by a correlation
lookup that concatenates the similarity costs at dif-
ferent pyramid levels to form the correlation fea-
ture map CF. There is no memory leak within the
pyramid indexing function, since the number of
stored variables does not increase as we move to
upper levels.

PyTorch uses a caching memory allocator to
speed up memory allocations and deallocations
(see memory management in Pytorch website). In
some cases, however, there is still a delay before
memory is released, creating a memory peak for
upcoming tasks. To optimize its use, we will man-
ually release local variables within the indexing
function using del variable.

Once we calculate the correlation fea-
tures and before outputting the result, we
will manually remove unnecessary local
variables, namely sampling_coords,
indexed_corr_volume,
centroids_coords and the last correla-
tion volume that is stored in the GPU.

If we do not remove local variables in the pyra-
mid indexing, the variables generated in the index
function occupies 25.24% of the memory. The re-
maining memory (27.40%) is not enough to com-
pute the next step, namely the flow update. Re-
moving these variables enable the process to go on,
as 52.08% of the memory is still free as shown in
Fig.A2.
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Figure A2. Global free GPU memory before and after
removing local variables

In order to avoid memory peak errors while
running inference on satellite images, the last
precaution that we must take concerns the
index_pyramid function. Instead of indexing
the restricted correlation volume all at once (for all



https://pytorch.org/docs/stable/notes/cuda.html#memory-management

the pixels in the source image), we compute this in-
dexing per chunks. The number of chunks depends
on the number of pixels contained in the source im-
age. The more pixels, the greater the number of
chunks (denoted nb_batches in the function.

Once we have optimized the memory within the
indexing function, we can focus our attention on
how the GPU memory behaves from one iteration
to the next. There is no memory leak within the up-
date function, since the number of stored variables
does not increase as we move from one iteration to
another.

Due to the memory consumption caused by the
gradient graph construction, training our model on
large-size satellite images is impossible in the ini-
tial setting. This section has shown that, when in-
troducing significant improvements, it is possible
to run inference on the entire images without hav-
ing to crop them.

3. Dataset Description

The dataset consists of sequences of aerial im-
ages that have been acquired in order to be rep-
resentative of future satellite video acquisitions at
sub-metric resolution. It contains stabilized se-
quences of 50 to 100 frames. This set can be di-
vided into two categories: sequences representing
cities (Table A1) and sequences representing high-
ways (Table A2). Let us add that there are several
image sequences acquired over the Placa Tarraco
in the test set.

In order to get a rough approximation of
the hyperparameter R, which represents the
search radius of the local correlation volume,
we need to quantify the displacement range
in both image categories. For this purpose,
we will compute the absolute difference be-
tween two consecutive frames after averaging
their three color channels. Figures A4 and AS
contain regions of interest in four different se-
quences, namely A7C4_Sagrada_50cm, PlacaTar-
raco_Lion_5hz, A002CO001ES8_CenterCo_50cm
and A4CI1R9_Peage_50cm.

We observe that the range of motion of vehicles
in cities is about 3 pixels. On highways, this range
is about 4 to 6 pixels. Therefore, the search radius
R must be of the same order as these quantitative
estimations. In order to have a search domain that
is large enough to capture all the possible motions,
this hyperparameter is set to 12. These regions of
interest also provide us with information about the
dimensions of moving vehicles: size of cars is be-
tween 4 and 10 pixels.
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Figure A3. Stabilized satellite images. Top row: one of
the two consecutive images. Bottow row: The temporal
image difference computed in the image crop delineated
in red above.

The difference between two consecutive images
also proves that the sequences are actually stabi-
lized. As shown in Figure A3, this difference is
indeed equal to zero in regions associated with the
background (gray regions). The non-zero pixels
generally correspond to occluded and disoccluded
regions, and more precisely to the front and rear
parts of vehicles. We can also see that some pix-
els corresponding to truck roofs are equal to zero.
In fact, if the size of an object of uniform inten-
sity or color is greater than its displacement, there
will be an overlap region. Therefore, the temporal
difference between two successive images in this
specific region is very close to zero.

This difference is obtained by averaging the
three color channels of each RGB image, calculat-
ing the difference between them, adding 255 to all
pixels and dividing the result by two so that their
values are bounded between 0 and 255 (128 cor-
responding to a difference value of 0, 0 to 127 to
negative values, 129 to 255 to positive values).

4. Mosaic and crop experiments regard-
ing RAFT

In order to have a manageable memory con-
sumption, RAFT constructs feature maps down-
sampled by a 1/8 factor. However, a low-size fea-
ture map cannot fully represent the fine structures
of an image, which makes the model unsuitable
for our application. In order to confirm our in-
tuition, we conducted two experiences with the
RAFT model. Flows are displayed using the usual
HSV color code as illustrated in Fig.A6.
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Figure A4. Displacement range in sequences representing cities

4.1. Mosaic experiment

The first experiment is intended to demon-
strate that small objects tend to disappear when
shrunk. The inference is performed first on a mo-
saic of DAVIS2016 images', and then on each
DAVIS2016 image individually. The mosaic con-
tains a total of 49 images arranged in 7 rows and
7 columns. The mosaic is the result of combin-
ing the DAVIS2016 images into one large image.
For a given position in the mosaic, the first frame
represents a DAVIS2016 image at time t(, while
the second frame represents the same DAVIS2016
image at time ¢y + 1. The mosaic is further down-
sampled so that objects become smaller. Figure A8
shows that small objects disappear, such as the man
parachuting in the image at position (4, 2) and the

Thttps://davischallenge.org/index.html

car in the image at position (7, 3). Some of the ob-
jects that are missing in the flow predicted on the
lower-resolution mosaic are circled in green. In or-
der to make a meaningful comparison with indi-
vidual flow predictions, the flow was normalized
per instance and not over the whole mosaic for the
color representation.

This experiment shows that objects that were
initially captured by RAFT (Fig.A8c) disappear
when shrunken (Fig.A8d). The downsampling in
the feature extraction module has certainly dis-
carded these objects.

4.2. Crop experiment

The goal of the second experiment is to demon-
strate that moving objects whose flow is initially
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Figure AS. Displacement range in sequences representing highways
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Figure A6. Usual flow field visualization using the HSV
color code
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Figure A7. Principle of the crop experiment (the term
"patch" used in the figure is equivalent here to "crop").

omitted by RAFT, may be detected if we increase
their size. To do so, large-size aerial images are
first cropped into small sub-images, each of which
is upscaled to an 800 x 800 frame (note that the
dimensions are divisible by 8). Flow estimates are
then calculated for each crop. In order to increase
the size of moving objects, we use bilinear upsam-
pling. We will compare flows obtained with dif-
ferent upscaling factors (denoted div in Fig.A7a).
Let us note that the size of the cropped images de-
termine the upscaling factor. The flow will be pre-
dicted using the same trained RAFT model as in
the previous experiments.

In Fig.A9a, we observe that combining the flow
of all crops leads to flow discontinuities in over-
lapping regions. To get rid of these sharp edges be-
tween crops, we have implemented the tiling tech-
nique described in FlowFormer?. For each pixel
that is covered by several tiles, we compute its
output flow w(p) by blending the predicted flows

2Z7. Huang et al. FlowFormer: A transformer architecture
for optical flow. In Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, 2022.




Table Al. Examples of sequences depicting cities

sequence

description

& \". > / K
PlacaTarraco_Lion_5hz
size: 1800 x 950

This sequence is centered on a roundabout. It mostly con-
tains cars. Their speed is about 3 pixels per frame. It cer-
tainly corresponds to the speed allowed for road vehicles
within towns.

A6C15_Glories_50cm
size: 1423 x 775

This sequence represents a large square in Barcelona. We can
see a skyscraper that undergoes an apparent motion due to its
height. This apparent displacement of objects when the cam-
era is moving is called motion parallax. This phenomenon
was not compensated by the stabilization algorithm. It could
affect the estimation of optical flow, since it is usually greater
than the motion of small moving vehicles.

A7C4_Sagrada_50cm
size: 1370 x 732

This sequence represents the surrounding of Sagrada Familia
in Barcelona. Similar to the previous sequence, motion par-
allax arises since the church tours are high. This is also an
example of image where the brightness constancy assump-
tion (BCA) attached to moving pixels is violated, since vehi-
cles move under the shadow cast by the church.

A7C5_Sants_50cm
size: 1381 x 754

This sequence depicts a neighbourhood in the southern part
of Barcelona. Like previous sequences, it mainly contains
cars that move at 3 pixels/frame.

w;(p) in the different tiles with weighted averag-
ing:

w(p) = Zigvi(p)’

the crop center:

x y
Aoy = (77 =05, 357 = 05) [l2,
(Al) dz
yY
and Wy, y = €XP (—F), (AZ)

with ¢ = 0.05. Then, we build K tensors wmy

where w; is the weight of the i-th tile for pixel p.
Here, tiles are the crops, and we explain below how
weights are determined.

We compute the H x W weight map according
to normalized distances d ,, of pixel p = (z,y) to

with dimensions H x W, each of them representing
the weight assigned to a pixel p = (z,y) in the k-
th crop. Mathematically, the weighting map wmy
of the k-th crop can be expressed as follows:

» wmy(z,y) = 0, if (x,y) does not belong to the




Table A2. Examples of sequences depicting highways

sequence

description

A001CO002YE_Gare_50cm

size: 2702 x 1406

This sequence depicts a train station. It therefore contains car-
riages that can be assimilated to large objects. It also contains
small moving vehicles (standard cars).

A002C001E8_CentreCo_50cm
size: 2761 x 1444

This sequence presents a parking area of a shopping center as
well as nearby highways. It comprises both small and larger
displacements as some drivers are parking their cars, while other
cars move on the road.

This sequence shows a toll system. Similar to the previous
sequence, it incorporates larger displacements (drivers that are
leaving the tollbooth) and smaller displacements (drivers that ar-

A4C1R9_Peage_50cm
size: 2708 x 1445

rive at the tollbooth and therefore need to decelerate).

A004C00201_Gare2_50cm
size: 2708 x 1391

This sequence depicts another train station.

kth crop,

o wmg(x,y) = 1, if (z, y) is only contained in the
Ekth crop,

o wmy(x,y) = wy,y, if (x,y) is covered by sev-
eral crops including the k*" crop.

The final weighting map corresponds to the sum of
the K maps previously built. Fig.A9b highlights
that using the weighting map leads to smoother
edges between overlapping crops.

In Figure A10, we show that increasing the up-
scaling factor improves the optical flow results on
satellite images. Indeed, as we increase the size

of objects in the patches, more motion is predicted
by RAFT. The flow is illustrated using smoothly
blended results. Fig.Al10a shows that the pre-
dicted flow between frames 32 and 33 of PlacaTar-
raco_Lion_5hz is better when upsampling each
crop by a factor of 2. The result is even better when
upsampling the crops by a factor of 4.

Cropping images has several drawbacks. First,
estimating a per-crop flow significantly increases
the inference time, because we feed the model one
crop at a time. Also, the crop process can degrade
the flow estimates, since it is impossible to predict
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Figure A8. Comparison of the flow of the mosaic and the mosaic of the flows
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Figure A9. Flow estimated between frames 2 and 3 of the cropped PlacaTarraco_Lion_5hz (upscaling factor = 4)

out-of-frame motion, i.e., objects that move out of
the crop between two consecutive frames (see Fig-
ure A11). The number of such objects increases as
we divide the image into smaller crops.

Both experiments confirm our intuition that the
downsampling task performed by the feature en-
coder reduces the accuracy of RAFT. They also
motivate our decision to develop a method that
achieves a good tradeoff between memory and ac-
curacy for satellite images, i.e., a method that is
able to predict the flow of small vehicles while us-
ing the available GPU memory in an efficient way.

5. Visual results
5.1. Visual results on the training set

Training was performed on six aerial image se-
quences. We illustrate this training set by showing
in Fig.A12 one sequence of this training set along
with flows computed with our SMOFlow method
and by the DIP and SCV methods. SCV fails to
correctly estimate the optical flow over the small
moving objects. DIP is prone to blur out the flows
and then to blend close vehicles, as highlighted in
the area cercled in red. Our SMOFlow method pro-
vides better defined and separated flows for vehi-
cles close to each other, and recovers more small
moving vehicles as in the area framed in blue.




(a) Scaling x2: predicted flow between frames 32 and 33 of
PlacaTarraco_Lion_5hz

(b) Scaling x2: predicted flow between frames 4 and 5 of
A6C15_Glories_50cm
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(c) Scaling x4: predicted flow between frames 32 and 33 of
PlacaTarraco_Lion_5hz

(d) Scaling x4: predicted flow between frames 4 and 5 of
A6C15_Glories_50cm

Figure A10. Impact of the size of moving objects on the accuracy of RAFT
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Figure A1l. Predicted flow between frames 79 and 80 in AO02C001E8_CentreCo_50cm

5.2. Visual results on the test set

In Figure A13, we provide a set of visual results
depicting flow fields computed with our SMOFlow
method on several image sequences of the test
set. We can observe that SMOFlow is able to cor-
rectly estimate the flow of very small vehicles (best
viewed by zooming in the pdf).

The first two examples at the top of Fig.A13
correspond to distant instants of the same se-
quence. There are vehicles moving on both sides
of the tollgate (tollgate of orange color, located in
the middle left of the image), as well as on the road
to the right of the tollgate. Our SMOFlow method
captures their motions in both directions (recog-
nizable by the two different main colors). The
two next examples depict cities. Again, SMOFlow
correctly estimates the flow of cars moving on

the straight avenues and around the roundabout.
In these four examples, close vehicles are well-
separated and clearly discernible.

In the last example at the bottom of the figure,
we can observe a failure case that nevertheless re-
mains moderate. On the access road to the toll-
gate (light gray tollgate in the center of the image),
there are trucks whose computed flows are some-
what fragmented. This problem is due to the fact
that these vehicles are elongated and uniform in
color. Consequently, there is an overlap between
the projections of these vehicles in the two succes-
sive images, with almost no temporal difference.
The model tends to favor zero flow over this over-
lap area, if the smoothing effect cannot spread as
far. One way of overcoming this problem would be
to compute flows corresponding to several time in-
tervals, and then, to combine them. A simpler and
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Figure A12. From top to bottom and from left to right: One image of the training sequence Sants. Sample flows
computed with DIP (b), SCV (c) and SMOFlow (d). Best viewed in color and by zooming in the pdf.

less time consuming alternative would be to com-
pute the optical flow between more distant frames,
for instance, between frames at time instants ¢ and
t+ 3.
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Figure A13. Sample results of our method SMOFlow on several aerial image sequences of the test set. Left: one image
of the sequence. Right: corresponding flow computed with SMOFlow. Flows are represented using the usual HSV
color code, with here a postprocessing for a better visibility as done in the main text. Best viewed in color and by
zooming in the pdf.
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