
Diagnostic Benchmark and Iterative Inpainting
for Layout-Guided Image Generation

Jaemin Cho1 Linjie Li2 Zhengyuan Yang2 Zhe Gan2 Lijuan Wang2 Mohit Bansal1

UNC Chapel Hill1 Microsoft Research2

{jmincho, mbansal}@cs.unc.edu {lindsey.li, zhengyang, zhe.gan, lijuanw}@microsoft.com
https://layoutbench.github.io

ReCo IterInpaint (Ours)

ID
Layouts

OOD
Layouts

Do they generalize well on OOD Layouts? (e.g., objects at boundary / uncommon combina?ons)🤔

Fail to Generalize☹ Generalize well 😄 Fail to Generalize☹ Generalize well 😄

ReCo IterInpaint (Ours)

Works well on ID Layouts😄

Figure 1. We propose LAYOUTBENCH (Sec. 3), a diagnostic benchmark for layout-guided image generation models with out-of-
distribution (OOD) layouts in four skills: number, position, size, and shape. Existing models such as ReCo [46] fail on OOD layouts by
misplacing objects. Next, we introduce ITERINPAINT (Sec. 4), a new baseline model with a better generalization on OOD layouts.

Abstract

Spatial control is a core capability in controllable image
generation. Advancements in layout-guided image genera-
tion have shown promising results on in-distribution (ID)
datasets with similar spatial configurations. However, it
is unclear how these models perform when facing out-of-
distribution (OOD) samples with arbitrary, unseen layouts.
In this paper, we propose LAYOUTBENCH, a diagnostic
benchmark for layout-guided image generation that exam-
ines four categories of spatial control skills: number, posi-
tion, size, and shape. We benchmark two recent representa-
tive layout-guided image generation methods and observe
that the good ID layout control may not generalize well
to arbitrary layouts in the wild (e.g., objects at the bound-
ary). Next, we propose ITERINPAINT, a new baseline that
generates foreground and background regions step-by-step
via inpainting, demonstrating stronger generalizability than
existing models on OOD layouts in LAYOUTBENCH. We
perform quantitative and qualitative evaluation and fine-

grained analysis on the four LAYOUTBENCH skills to pin-
point the weaknesses of existing models. We show compre-
hensive ablation studies on ITERINPAINT, including train-
ing task ratio, crop&paste vs. repaint, and generation or-
der. Lastly, we evaluate the zero-shot performance of dif-
ferent pretrained layout-guided image generation models
on LAYOUTBENCH-COCO, our new benchmark for OOD
layouts with real objects, where our ITERINPAINT consis-
tently outperforms SOTA baselines in all four splits.

1. Introduction
With the advance of image generation systems that can syn-
thesize diverse and realistic images, there is an increasing
demand for controllable image generation systems that can
precisely follow arbitrary spatial configurations defined by
users. For this reason, recent work has focused on the task
of layout-to-image generation [9, 11, 22, 24, 35, 40, 45, 52],
which aims to generate images conditioned on multiple ob-
ject bounding boxes and their paired object labels. Recent

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5280

https://layoutbench.github.io

layout-guided text-to-image generation models [1, 23, 46]
extend predefined object labels with open-ended regional
captions, facilitating the models to generate open-set enti-
ties with the queried spatial configurations. With the recent
advances in large-scale image generation models [12, 32,
35, 36, 47], newer layout-guided models [1, 23, 46] have
shown promise in generating high-fidelity images follow-
ing spatial configurations.

However, most experiments in these previous works
are conducted in the in-distribution (ID) setting, where
the queried spatial configuration shares a similar layout as
the ones in the training samples. Hence, a natural ques-
tion arises: how well do these image generation meth-
ods perform in real-world scenarios with arbitrary, un-
seen out-of-distribution (OOD) layouts (e.g., many more
or larger/smaller or unusually positioned/shaped regions as
compared to the training samples)? Recent studies [23,
46] use qualitative and human evaluations to interpret the
model’s generation capabilities on arbitrary spatial config-
urations. However, those studies focus on the method de-
velopment and do not provide systematic benchmarks for
spatial control in image generation. In this study, we aim to
develop a benchmark to understand the status quo of image
generation with arbitrary spatial configurations and further
develop an iterative inpainting-based model to improve the
OOD layout generalization.

To this end, we first propose LAYOUTBENCH (Sec. 3), a
diagnostic benchmark featuring three properties as follows.
(1) We define four categories for spatial control: number,
position, size, and shape. LAYOUTBENCH systematically
designs the out-of-distribution (OOD) testing queries for
each skill, allowing easy comparison between different spa-
tial configurations. (2) We evaluate images by layout ac-
curacy in average precision (AP) to reflect the controllable
generation quality. With the release of a well-performing
category-balanced object detector that localizes generated
objects, LAYOUTBENCH allows fair and easy comparison
with prior works. (3) We choose to develop the benchmark
based on the CLEVR simulator [20] to disentangle the fac-
tor of image generation quality from the interested spatial
controllability. By simplifying the benchmark with sim-
ulated objects, LAYOUTBENCH can better reflect the true
spatial control capabilities and avoid blindly favoring large-
scale generation models that generate images with better vi-
sual qualities but do not understand spatial configurations.

Based on LAYOUTBENCH, we systematically evaluate
two recent representative layout-guided image generation
methods: LDM [35] and ReCo [46], where both models
are initialized by the Stable Diffusion checkpoint. We per-
form quantitative and qualitative analyses and fine-grained
split analyses on the four LAYOUTBENCH skills to pinpoint
the weaknesses of different models. As depicted in Fig. 1,
we find that both models fail on OOD layouts of LAYOUT-

BENCH, while they perform reasonably well on ID layouts.
Inspired by the OOD failures of existing models revealed

by our LAYOUTBENCH benchmark, we next propose ITER-
INPAINT, a new baseline for layout-guided image genera-
tion (Sec. 4). Unlike existing methods that condition all
the region configurations at a single generation step, ITER-
INPAINT decomposes image generation into multiple in-
painting steps and iteratively updates each region at a time.
By focusing on updating a single region at each time, the
model can tackle unseen, complex layouts more robustly
than existing methods. In experiments (Sec. 5), ITERIN-
PAINT shows significantly better layout accuracy on OOD
layouts and similar or better layout accuracy on ID lay-
outs than prior works. We also provide comprehensive ab-
lation studies on ITERINPAINT, including training task ra-
tio, crop&paste vs. repaint-based update, and generation or-
der. Lastly, we evaluate zero-shot performance of differ-
ent pretrained layout-guided image generation models on
LAYOUTBENCH-COCO, our new OOD layouts with real
objects, where our ITERINPAINT outperforms other SOTA
models in all four splits.

Our contributions are summarized as follows: (1) LAY-
OUTBENCH, a diagnostic benchmark for arbitrary spatial
control capabilities of layout-guided image generation mod-
els in four criteria: number, position, size, and shape, where
existing models often struggle (Sec. 3); (2) ITERINPAINT, a
new baseline for layout-guided image generation that gen-
erates foreground and background in a step-by-step manner,
which shows better generalization on OOD layout than prior
works (Sec. 4); and (3) detailed qualitative/quantitative/sub-
split evaluation of spatial control skills of different layout-
guided image generation models, comprehensive ablation
studies of ITERINPAINT design choices, and zero-shot eval-
uation of pretrained layout-guided image generation models
on LAYOUTBENCH-COCO (Sec. 5).

2. Related Work
Text-to-Image Generation Models. In the text-to-image
generation task, models generate images from natural lan-
guage descriptions. Early deep learning-based models [28,
33, 44, 48] were based on Generative Adversarial Networks
(GANs) [13]. Recently, multimodal language models and
diffusion models have been widely used for this task. X-
LXMERT [5] and DALL-E [31] introduce multimodal lan-
guage models that take text as input and generate discrete
image codes iteratively, where a vector-quantized autoen-
coder learns the mapping between image codes and pixels.
LDM [35] and GLIDE [29] propose text-conditional diffu-
sion models [18, 38] that iteratively update noisy images
to clean images. Recent multimodal language models (e.g.,
Parti [47] and MUSE [4]) and diffusion models (e.g., Stable
Diffusion [35], DALL-E 2 [32], and Imagen [36]) deliver
high level of photorealism in zero-shot generation.

5281

Number Position Size Shape

1) Generate images Layout-guided Image Generation Model

• Few (≤ 2) objects
• Many (≥ 11) objects

• Objects at center
• Objects at boundary

• Tiny objects
• Large objects

• Horizontally long
• Vertically long

Out-of-Distribution
Layout

2) Detect objects
& Calculate mAP

DetectedGiven

LayoutBench Skills

Figure 2. In LAYOUTBENCH, we measure 4 spatial control skills (number, position, size, shape) for layout-guided image generation. First,
1) we query the image generation models with OOD layouts. Then, 2) we detect the objects from the generated images, and calculate the
layout accuracy in average precision (AP). In each image, the ground-truth boxes are shown in blue and the objects detected are shown in
red. The images are generated by ReCo [46] trained on CLEVR [20], where it often misplaces (i.e., many red boxes outside of blue boxes)
or misses objects (i.e., many blue boxes are missed) on OOD layouts from LAYOUTBENCH.

Layout-to-Image Generation Models. In the layout-to-
image generation task, models generate images from lay-
outs (e.g., bounding boxes with paired text descriptions).
Early models adopt GAN framework [39, 41, 51], where
an adversarially trained convolutional generator is condi-
tioned on layout input. Mirroring the success of the text-to-
image models, recent layout-to-image models adopt multi-
modal language model (e.g., Make-A-Scene [12]) and dif-
fusion models (e.g., LDM [35], ReCo [46], SpaText [1],
GLIGEN [23], Universal Guided Diffusion [2]). While the
prior works encode and decode all region inputs in a single
step, ITERINPAINT decomposes image generation into mul-
tiple steps by focusing on generating one region at one time,
showing better generalization on unseen OOD layouts.

Evaluation for Layout-to-Image Generation. The
layout-to-image generation community has adopted two
types of metrics used in text-to-image generation tasks:
image quality and image-layout alignment. For image
quality, Inception Score (IS) [37] and Fréchet Inception
Distance (FID) [15] are commonly used. These metrics use
a classifier pretrained on ImageNet [8] that mostly contains
single-object images. Therefore, they are not well suited
for evaluating images with more complex scenes [10]. To
measure image-layout alignment, calculating FID on box
crops (SceneFID) [41] and object classification accuracy
on box crops [51] have been proposed. All these metrics
summarize the performance of layout-to-image models in a
single number, which does not reveal the skills in which the
model is good versus the model is bad. In contrast to the
existing metrics which do not pinpoint the model weakness,
our LAYOUTBENCH measures four spatial layout control

(number, position, size, and shape), to provide a more
fine-grained analysis of region control capabilities.

3. LAYOUTBENCH

We introduce LAYOUTBENCH, a diagnostic benchmark for
layout-guided image generation, with a focus on four spa-
tial control skills. In the following, we discuss dataset
(Sec. 3.1), layout accuracy (Sec. 3.2), and the poor general-
izability of existing methods [35, 46] on LAYOUTBENCH,
which motivates us to propose ITERINPAINT (Sec. 4).

3.1. Dataset

As illustrated in Fig. 2, LAYOUTBENCH evaluates spatial
control capability in 4 skills (number, position, size, shape),
where each skill consists of 2 different OOD layout splits,
i.e., in total 8 tasks = 4 skills × 2 splits. To disentangle
the spatial control from other aspects in image generation,
such as generating diverse objects, LAYOUTBENCH keeps
the same object configurations as CLEVR [19], whose ob-
jects have 3 shapes, 2 materials, and 8 colors (48 combina-
tions in total). Images in LAYOUTBENCH are collected in
two steps: (1) sample scenes for each skill, where a scene
is defined by the objects and their positions, (2) render im-
ages from the scenes with Blender [7] simulator and obtain
bounding box layouts. In total, we collect 8K images for
LAYOUTBENCH evaluation, with 1K images per task. In
Tab. 1, we show example images with ID and OOD layouts.
We explain the scene configurations below.

In-distribution: CLEVR. All scenes have 3∼10 objects.
These objects are positioned evenly on the canvas, with-

5282

ID layout OOD layout (LAYOUTBENCH)

CLEVR
Skill 1: Number Skill 2: Position Skill 3: Size Skill 4: Shape

few many center boundary tiny large horizontal vertical

Table 1. Example images with ID (CLEVR) and OOD (LAYOUTBENCH) layouts. GT boxes are shown in blue.

out much occlusion between them. In terms of size, the
rendered objects are in one of two scales {3.5, 7}. For
shape, the bounding box for each object is an almost per-
fect square. For each of the skills below, we only alter the
configurations specific to that skill, while keeping the re-
maining configurations the same as CLEVR.

Skill 1: Number. This skill involves generating images
with a specified number of objects. In contrast to the ID
CLEVR images with 3∼10 objects, we evaluate models on
two OOD splits: (1) few: images with 0∼2 objects; (2)
many: images with 11∼16 objects.

Skill 2: Position. This skill involves generating images
with objects placed at specific positions. Different from
ID CLEVR images featuring evenly distributed object po-
sition without much occlusion between objects, we design
two OOD splits: (1) center: objects are placed at the center,
thus leading to more occlusions; (2) boundary: objects are
only placed on boundaries (top/bottom/left/right).

Skill 3: Size. This skill involves generating images with
objects of a specified size. We construct two OOD splits:
(1) tiny: objects with scale 2; (2) large: objects with scale
{9, 11, 13, 15}. In comparison, the objects in CLEVR im-
ages have only two scales {3.5, 7}. We use 3∼5 objects for
this skill, as we find that using more than this number of
large objects can often obstruct the object visibilities.

Skill 4: Shape. This skill involves generating images with
objects of a specified aspect ratio. As the objects in CLEVR
images mostly have square aspect ratios, we evaluate mod-
els with two OOD splits: (1) horizontal: objects in which
one of the horizontal (x/y) axes are 2 or 3 times longer than
the other axis, leading to object bounding boxes with an as-
pect ratio (width:height) of 2:1 or 3:1; (2) vertical: objects
whose vertical (z) axis are 2 or 3 times longer than horizon-
tal (x/y) axes, resulting in object bounding boxes with an
aspect ratio of 1:2 or 1:3. We use 3∼5 objects for this skill,
as we find that using more than this number of objects can
often obstruct the object visibilities.

3.2. Layout Accuracy Evaluation

As illustrated in Fig. 2, we evaluate models with four spa-
tial control skills: number, position, size, and shape. Since

existing metrics FID and SceneFID measure how the over-
all distribution of Inception v3 [42] mean-pool features of
generated images/patches is similar to the feature distribu-
tion of ground-truth images/patches, they are less effective
in measuring how accurately each generated image follows
the input layout [10]. Following previous analyses [6, 16],
we evaluate the skills based on how well an object detector
can detect the object described in the input layout. To bet-
ter capture the objects with uncommon sizes, positions, and
aspect ratios etc, we train DETR [3] on separately gen-
erated 5K training images for each of 8 tasks, with 40K
total images. We initialize DETR parameters from the of-
ficial checkpoint with ResNet101 [14] backbone pretrained
on the COCO [25] train 2017 split. Following object detec-
tion literature [3, 34, 53], we report average precision (AP).

We evaluate two recent layout-guided image generation
models: LDM [35] and ReCo [46], trained on CLEVR. As
shown in Fig. 1, they fail on LAYOUTBENCH by ignoring
objects, misplacing objects, or placing wrong objects. We
closely examine the experiment results in Sec. 5.

4. ITERINPAINT

To improve the generalizability of OOD layouts, we pro-
pose ITERINPAINT, a new layout-guided image generation
method based on iterative inpainting. Unlike previous
methods [35, 46] that generate all objects simultaneously
in a single step, ITERINPAINT decomposes the image gen-
eration process into multiple steps and uses a text-guided
inpainting model to update foreground and background re-
gions step-by-step. In what follows, we briefly recap Sta-
ble Diffusion, which we build ITERINPAINT on (Sec. 4.1),
describe how we extend the Stable Diffusion for layout-
guided inpainting (Sec. 4.2), and introduce iterative fore-
ground/background inpainting (Sec. 4.3).

4.1. Preliminaries: Stable Diffusion

We implement the ITERINPAINT model by extending Sta-
ble Diffusion, a public text-to-image model based on La-
tent Diffusion [35]. Stable Diffusion consists of (1) a CLIP
ViT-L/14 [30] text encoder CLIPtext(s) that encodes a
prompt s into a 512-dimensional vector, (2) an autoencoder
(E(x), D(z)) with downsampling factor of 8, which em-
beds an image x into a 4-dimensional latent space z0 ∈

5283

(1) Foreground Inpainting

Mask
TargetGT Image

(N objs) Context
Sample
• (0~N-1) objs to show
• 1 obj to generate

(2) Background Inpainting

“Add red obj”

Prompt

Mask out
background

Mask
Target

Context

“Add gray
background”

Prompt
GT Image

Inpaint

: to be updated
: to be preserved

Inpaint

: to be updated
: to be preserved

Figure 3. ITERINPAINT Training. Our model is trained with (1) foreground and (2) background inpainting tasks (Sec. 4.3).

“Add red square”

“Add blue square”

“Add gray background”

Inpaint

Prompt Mask
: to be updated
: to be preserved

Context Image Generated Image

Inpaint

Inpaint

Paste with mask

Paste with mask

def iterinpaint(caps, boxes):
Empty image
img = Image.new((W,H))
Add foreground
for cap, box in zip(caps, boxes):

prompt = f"Add {cap}"
mask = get_obj_mask(box)
gen = inpaint(img, prompt, mask)
img = (1-mask) * img + mask * gen

Add background
prompt = "Add gray background"
mask = get_bg_mask(boxes)
gen = inpaint(img, prompt, mask)
return gen

Figure 4. ITERINPAINT Inference. Illustration (left) and Python pseudocode (right) of layout-guided image generation with ITERINPAINT

(Sec. 4.3). At each iteration, the inpainting model takes the prompt, mask, and previous image as inputs and generates a new image.

R(4,H,W), and (3) a diffusion U-Net ϵθ that performs de-
noising steps in the latent space given timestamp t and
CLIP text encoding (conditioned via cross-attention). The
model is trained with the following objective: LLDM =
Es,z0,t,ϵ[||ϵ− ϵθ(zt, t,CLIPtext(s))||22].

4.2. Extending Stable Diffusion for Inpainting

Our ITERINPAINT method decomposes complex scene gen-
eration into multiple steps, where each step is a text-guided
inpainting [50] process. Concretely, a model completes an
image region, given a context image, a binary mask indi-
cating the region, and a text description of the region. To
enable inpainting, we extend the U-Net of Stable Diffusion
to take the mask and a context image as additional inputs.
We use a binary mask of the same size as the image, in-
dicating the region to be updated (1: to be updated; 0: to
be preserved). To encode the mask and context image, we
add 5 additional channels to the U-Net’s first convolutional
layer, where the first dimension is used to encode the spa-
tially downsampled mask m ∈ [0, 1](H,W), and the remain-
ing 4 dimensions are for encoding the latent vector of the
context image zctx0 = E(xctx) ∈ R(4,H,W). The resulting
layout-guided inpainting model takes a context image xctx,
a text prompt s, and a binary mask m, as input and generates
an image xgen = inpaint(xctx, s,m). Next, we describe
the training and inference process of iterative inpainting.

4.3. Iterative Inpainting

ITERINPAINT decomposes the image generation process
into two phases: (1) step-by-step generation of each bound-
ing box/mask (foreground), and (2) filling the rest of the im-
ages (background). This decomposition would make each
generation step easier by allowing the model to focus on

generating a single foreground object or background.
During training, as shown in Fig. 3, we use a single ob-

jective to cover both foreground/background inpainting by
giving the model a different context image and mask: (1)
foreground inpainting - we sample context objects (from
N GT objects) to show, then sample an object to gener-
ate; (2) background inpainting - we mask out all objects,
and generate the background. We explore different ratios to
sample the two training tasks in Sec. 5.4, and find a 30%
and 70% ratio for foreground and background inpainting
tasks gives the best performance. We train our model with
the modified latent diffusion objective [35], LIterInpaint =
Es,z0,t,ϵ[||ϵ − ϵθ(zt, t,CLIPtext(s),m, zctx0)||22], where U-
Net is additionally conditioned on the mask m and the pre-
vious image zctx0 .

During inference, as shown in Fig. 4, we iteratively up-
date foreground objects and background, starting from a
blank image. For each step, we update the image by com-
posing context image xctx and the generated image xgen

using a mask m: xnew = (1−m) ∗ xgen +m ∗ xctx. For a
layout with N objects, our ITERINPAINT method generates
the final image with N + 1 (foreground + background) it-
erations. Overall, ITERINPAINT allows users to control the
generation order of each region and interactively manipu-
late the image from an intermediate generation step.

5. Experiments and Analysis

5.1. Experimental Setup

In addition to our ITERINPAINT, we evaluate two recent and
strong layout-guided image generation models, LDM [35],
and ReCo [46]. To focus on layout control evaluation, we
match the implementation details of three models.

5284

Method
CLEVR LAYOUTBENCH

val Number Position Size Shape Avg
few many center boundary tiny large horizontal vertical

GT (Oracle) 60.5/93.5 94.3/99.7 92.0/99.0 90.9/90.9 90.8/99.4 82.4/100.0 96.6/99.4 89.7/99.0 89.0/98.4 90.7/98.2
GT shuffled 0.0/0.0 0.1/0.1 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LDM 54.5/91.8 14.0/48.7 4.7/20.7 5.5/28.0 5.9/15.1 0.0/0.0 37.8/68.2 2.0/12.8 9.3/38.5 9.9/29.0
ReCo 44.0/89.0 8.5/36.9 2.5/12.7 2.8/17.4 2.5/8.7 0.0/0.0 32.4/70.5 3.0/19.3 8.7/37.8 7.6/25.4
ITERINPAINT (Ours) 57.2/90.8 50.4/80.5 52.4/87.7 49.6/83.8 50.1/82.1 2.4/7.9 63.1/92.6 4.7/18.5 19.3/60.1 36.5/64.1

Table 2. Layout accuracy in AP/AP50 (%) on CLEVR and LAYOUTBENCH. Best (highest) values are bolded.

Method CLEVR LAYOUTBENCH

LDM 3.4/13.0 31.1/57.9
ReCo 2.8/13.6 30.4/58.2
ITERINPAINT (Ours) 12.7/36.3 31.4/49.0

Table 3. Image quality in FID/SceneFID on CLEVR and LAY-
OUTBENCH. Best (lowest) values are in bolded.

Dataset details. We train models on the 70K training im-
ages in CLEVR [20]. As the original CLEVR dataset
does not provide the bounding box annotations, we use the
bounding box annotations provided by [21]. The original
images have 480x360 (WxH) sizes. For training, we resize
the images into 768x512 and center crop to 512x512.

Model details. We initialize all model parameters with Sta-
ble Diffusion v1 checkpoints. We train all models for 20K
steps with batch size 128 (i.e., single batch at each of
16 V100 GPUs with 8 gradient accumulation steps), and
AdamW optimizer [27] with constant learning rate 1e-4.
Following [46], we update U-Net and CLIP text encoder
parameters, while freezing the autoencoder. During infer-
ence, we use classifier-free guidance [17] scale of 4.0 and
50 PLMS [26] steps.

Bounding box encoding. For LDM and ReCo, we quan-
tize each of the bounding box coordinates (x1, y1, x2, y2)
into 1000 quantized bins. For LDM, we learn 48
class embeddings for CLEVR objects. We describe the
layout by concatenating the list of object class tokens
and quantized bounding boxes (e.g., “<020> <230>
<492> <478> <cls23> <121> · · · ”) and encode it
with CLIP text encoder. Unlike LDM, ReCo takes the
text description for each region instead of class em-
bedding (e.g., “<020> <230> <492> <478> cyan
metal sphere <121> · · · ”) as input.

Evaluation metrics. For quantitative evaluation, we mea-
sure layout accuracy and image quality. Layout accuracy is
measured by AP (average precision) based on DETR-R101-
DC5 [3], as mentioned in Sec. 3.2. Higher AP indicates that
the generated images follow the input layouts more closely.
FID [15] and SceneFID [41] are adopted to measure image
quality. Lower FID (SceneFID) indicates that the generated
images (boxes) have a more similar feature distribution to
the ground-truth ones.

5.2. Evaluation on LAYOUTBENCH

Quantitative evaluation. We first evaluate the layout ac-
curacy on generated images in Tab. 2. The first row shows
the layout accuracy based on the ground-truth (GT) images.
Our object detector evaluator can achieve high accuracy on
both CLEVR and LAYOUTBENCH datasets, showing the
high reliability of the detection-based layout accuracy eval-
uation results. Especially on LAYOUTBENCH, our detector
achieves above 98% AP50.1 The second row (GT shuffled)
shows a setting where given a target layout, we randomly
sample an image from the GT images to be the generated
image. The 0% AP on both CLEVR and LAYOUTBENCH
means that it is impossible to obtain high AP by only gen-
erating high-fidelity images but in the wrong layouts.

In the bottom half of Tab. 2, we see that while all 3
models achieve high layout accuracy with above 89% AP50

on CLEVR, the layout accuracy drop by large margins on
LAYOUTBENCH, showing the ID-OOD layout gap. Specifi-
cally, LDM and ReCo fail substantially on LAYOUTBENCH
across all skill splits, with an average performance drop
of 57∼70% per skill on AP50, compared to the high AP
on in-domain CLEVR validation split. Both models espe-
cially struggle with layout configurations with many, tiny,
horizontally-shaped objects and when objects are placed in
center/boundary. This is not surprising, as we have shown
in Fig. 1; we will also show qualitative evaluation later
in Tab. 4 that LDM and ReCo demonstrate poor general-
izability to OOD layouts in LAYOUTBENCH.

In contrast, ITERINPAINT can generalize better to OOD
layouts in LAYOUTBENCH while maintaining or even
slightly improving the layout accuracy on ID layouts in
CLEVR. Specifically, we observe an average performance
gain of 49.5% for Number, 61.3% for Position, 15.0% for
Size, and 10.7% for Shape in AP50, compared to LDM and
ReCo. Even on the extremely challenging Size-tiny split,
where LDM and ReCo fails to render any tiny objects onto
the given positions, ITERINPAINT can at least break the
zero performance. Another challenging case is the shape-

1The AP of GT CLEVR images (60.5) is a bit lower than that of GT
LAYOUTBENCH (90.7), because CLEVR bounding box annotations pro-
vided by Krishna et al. (2018) [21] have minor errors. On our re-rendered
CLEVR images with precise bounding boxes, the object detector could
achieve 99% AP (see appendix for details).

5285

Method
CLEVR LAYOUTBENCH

val Number Position Size Shape
few many center boundary tiny large horizontal vertical

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 4. Comparison of generated images on CLEVR (ID) and LAYOUTBENCH (OOD). GT boxes are shown in blue.

0-2 3-5 6-8 9-10 11-1314-160.0

0.5

1.0

AP

Number

boundary center random0.0

0.5

1.0 Position

2 3.5 5 7 9 11 13 150.0

0.5

1.0 Size

H3W1H2W1H1W1H1W2H1W30.0

0.5

1.0 Shape
In-distribution
LDM
ReCo
IterInpaint (Ours)

Figure 5. Detailed layout accuracy analysis with fine-grained splits of 4 LAYOUTBENCH skills. In-distribution (same attributes to CLEVR)
splits are colored in gray. For the Shape skill, the splits are named after their height/width ratio (e.g. H2W1 split consists of the objects
with a 2:1 ratio of height:width).

horizontal split, where all three models struggle, we fur-
ther conduct detailed analysis on the difficulty levels of each
split and the pain points of each model in Sec. 5.3.

In Tab. 3, we compare the quality of generated images
by reporting the FID/SceneFID scores. On CLEVR, the
LDM and ReCo achieves better FID/SceneFID metrics than
ITERINPAINT, indicating that the strong layout control per-
formance of ITERINPAINT comes with a trade-off in these
image quality metrics. However, on LAYOUTBENCH, the
three models achieve similar FID scores, despite the signif-
icant layout errors of LDM and ReCo, which suggests that
image quality measures alone are not sufficient for evaluat-
ing layout-guided image generation [10] and further justify
using layout accuracy to examine layout control closely.

Qualitative evaluation. Tab. 4 compares the GT images
and the images generated by the three models. On CLEVR,
all three models can follow the ID layout inputs to place the
correct objects precisely. On LAYOUTBENCH, LDM and
ReCo often make mistakes, such as generating objects that
are much smaller (e.g., Number-few) / bigger (e.g., Size-
tiny, Position-center) than the given bounding boxes and
missing some objects (e.g., Number-many, Position-center,
Position-boundary, Size-large). However, ITERINPAINT
can generate objects more accurately aligned to the given
bounding boxes in general, consistent with the higher lay-
out accuracy in Tab. 2. Especially for the extremely small
bounding boxes in Size-tiny, only ITERINPAINT, among the

three models, generates objects that fit. Interestingly, on
Shape-horizontal/Shape-vertical, while all three struggle to
generate long objects that are not seen in CLEVR, ITERIN-
PAINT tries to fill the given long bounding boxes by gener-
ating multiple objects. More qualitative examples per skill
are included in Appendix.

5.3. Fine-grained Skill Analysis

We perform a more detailed analysis on each LAYOUT-
BENCH skill to better understand the challenges presented
in LAYOUTBENCH and examine each method’s weakness.
Specifically, we divide the 4 skills into more fine-grained
splits to cover both in-distribution (ID; CLEVR configura-
tions) and out-of-distribution (OOD; LAYOUTBENCH con-
figurations) examples. We sample 200 images for each split
and report layout accuracy in Fig. 5.

Overall. Comparing across 4 skills, the majority of Size
skill splits (except for size=2) are the least challenging,
while the Position/Number skill is the most challenging.
ITERINPAINT significantly outperforms LDM and ReCo on
all splits. Among the other two, LDM has slightly higher
scores than ReCo overall.

Number. As the number of objects increases in the first
plot of Fig. 5, LDM and ReCo performance decreases,
while the ITERINPAINT performance remains consistent.

5286

Skill 1: Number Skill 2: Position Skill 3: Size Skill 4: Combination
few many center boundary tiny large common uncommon

4 chairs 10 cars 5 buses 5 suitcases 3 cars 3 broccolis person is holding tennis racket parking meter is next to clock

Table 5. Example images generated by ITERINPAINT given four splits of caption and layouts from LAYOUTBENCH-COCO.

Method Number Position Size Combination

ControlNet 9.2 15.3 10.8 6.4
GLIGEN 30.7 36.4 33.3 36.3
ReCo 30.9 38.9 24.1 18.7
ITERINPAINT (Ours) 31.4 39.1 33.5 44.1

Table 6. Zero-shot Layout Accuracy in AP (%) on
LAYOUTBENCH-COCO.

Position. As shown in the second plot of Fig. 5, there is a
slight ID-OOD performance gap for all three models. The
models perform similarly on boundary and center splits,
while slightly lower than the random ID split.

Size. As shown in the third plot of Fig. 5, the models are
better at generating large objects than small objects. No-
tably, all models fail at size=2, the smallest object scale
in our experiment. As shown in Tab. 4’s Size-tiny col-
umn, LDM and ReCo tend to generate bigger objects from
small bounding boxes, whereas ITERINPAINT could cor-
rectly generate small objects in the right location but misses
the details of right shapes or attributes.

Shape. As shown in the last plot of Fig. 5, there is a strong
ID-OOD gap for all three models. The models generate
vertically long (H2W1 and H3W1) better than horizontally
long (H1W2 and H1W3) objects. From our manual analy-
sis, there were some trends for models to prioritize fitting
the height to the width of the bounding boxes. This results
in trends of generating small square boxes for horizontally
long boxes that are too small to cover the box and generating
big square boxes that can sometimes cover some vertically
long boxes (see appendix for more examples).

5.4. Ablation of ITERINPAINT

We conduct ablation studies of ITERINPAINT design
choices: (1) Pasting (default) vs. Repaint based update, (2)
training task ratio for foreground & background inpainting,
and (3) object generation order. In summary, we found that
(1) repaint-based update suffers from error propagation, (2)
the 3:7 fg/bg training task ratio performs best, but other task
ratios perform similarly, and (3) ITERINPAINT is robust in
arbitrary generation orders, allowing flexible object layout
manipulation without full image re-rendering. Please see
appendix for detailed analysis.

5.5. LAYOUTBENCH-COCO: Zero-shot Evaluation of
Layout-guided Image Generation Models

Although our main focus is to provide a benchmark of
layout-guided image generation models with full control,
including the same computation and training data with arbi-
trary objects (e.g., blue metal cube), we also test the spatial
control capabilities of existing pretained models with lay-
outs of real objects (e.g., cars) in zero-shot. For this, we cre-
ate LAYOUTBENCH-COCO, a real object version of LAY-
OUTBENCH with 4 splits (Number, Position, Size, Combi-
nation), whose objects are from MS COCO [25]. The new
‘combination’ split consists of layouts with two objects in
different spatial relations, and the remaining three splits are
similar to those of LAYOUTBENCH.

We compare four models, covering both models with
segmentation mask inputs (ControlNet [49]; we create seg-
mentation masks by drawing bounding boxes with class-
specific colors), and bounding box inputs (GLIGEN [23],
ReCo [46], and our ITERINPAINT trained on COCO). For
evaluation metric, we use layout accuracy in AP with a
state-of-the-art object detector, YOLOv7 [43].

In Tab. 5, we show images generated by ITERIN-
PAINT on four splits of LAYOUTBENCH-COCO (see ap-
pendix for more generation examples from other methods).
Tab. 6 shows the layout accuracy of four evaluated models.
The bounding box-based models outperform the segmen-
tation mask-based model (ControlNet). Our ITERINPAINT
achieves higher layout accuracy than baselines in all four
splits, especially with a large margin in the combination
split. The experiment results indicate the effectiveness of
ITERINPAINT handling the challenging layouts.

6. Conclusion

We introduce LAYOUTBENCH, a diagnostic benchmark that
systemically evaluates four spatial control skills of layout-
guided image generation models: number, position, size,
and shape. We show that recent layout-guided image gen-
eration methods do not generalize well on OOD layouts
(e.g., many/large objects). Next, we propose ITERINPAINT,
a new baseline that generates foreground and background
regions step-by-step. In our detailed analysis of spatial con-
trol skills, ITERINPAINT has stronger generalizability than
baselines on OOD layouts. We hope that our work facili-
tates future work on controllable image generation.

5287

References
[1] Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta,

Yaniv Taigman, Devi Parikh, Dani Lischinski, Ohad Fried,
and Xi Yin. SpaText: Spatio-Textual Representation for
Controllable Image Generation. In CVPR, 2023. 2, 3

[2] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild,
Soumyadip Sengupta, Micah Goldblum, Jonas Geip-
ing, and Tom Goldstein. Universal guidance for diffusion
models. In CVPR Workshop, 2023. 3

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
End Object Detection with Transformers. In ECCV, 2020. 4,
6

[4] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Mur-
phy, William T. Freeman, Michael Rubinstein, Yuanzhen Li,
and Dilip Krishnan. Muse: Text-To-Image Generation via
Masked Generative Transformers. In ICML, pages 1–22,
2023. 2

[5] Jaemin Cho, Jiasen Lu, Dustin Schwenk, Hannaneh Ha-
jishirzi, and Aniruddha Kembhavi. X-LXMERT: Paint, Cap-
tion and Answer Questions with Multi-Modal Transformers.
In EMNLP, 2020. 2

[6] Jaemin Cho, Abhay Zala, and Mohit Bansal. DALL-Eval:
Probing the Reasoning Skills and Social Biases of Text-to-
Image Generative Models. In ICCV, 2023. 4

[7] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR, 2009. 3

[9] Wan-Cyuan Fan, Yen-Chun Chen, DongDong Chen, Yu
Cheng, Lu Yuan, and Yu-Chiang Frank Wang. Frido: Fea-
ture pyramid diffusion for complex scene image synthesis.
arXiv preprint arXiv:2208.13753, 2022. 1

[10] Stanislav Frolov, Tobias Hinz, Federico Raue, Jörn Hees, and
Andreas Dengel. Adversarial Text-to-Image Synthesis: A
Review. Neural Networks, 144:187–209, 2021. 3, 4, 7

[11] Stanislav Frolov, Avneesh Sharma, Jörn Hees, Tushar
Karayil, Federico Raue, and Andreas Dengel. Attrlostgan:
attribute controlled image synthesis from reconfigurable lay-
out and style. In DAGM German Conference on Pattern
Recognition, pages 361–375. Springer, 2021. 1

[12] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-A-Scene: Scene-
Based Text-to-Image Generation with Human Priors. In
ECCV, 2022. 2, 3

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative Adversarial Networks. In NIPS,
2014. 2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
2016. 4

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by

a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In NIPS, 2017. 3, 6

[16] Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Seman-
tic Object Accuracy for Generative Text-to-Image Synthesis.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 1–1, 2020. 4

[17] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion
Guidance. In NeurIPS Workshop, 2021. 6

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Dif-
fusion Probabilistic Models. In NeurIPS, 2020. 2

[19] Justin Johnson, Li Fei-Fei, Bharath Hariharan, C. Lawrence
Zitnick, Laurens Van Der Maaten, and Ross Girshick.
CLEVR: A diagnostic dataset for compositional language
and elementary visual reasoning. In CVPR, 2017. 3

[20] Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 2901–2910, 2017. 2, 3, 6

[21] Ranjay Krishna, Ines Chami, Michael Bernstein, and Li Fei-
Fei. Referring Relationships. In CVPR, 2018. 6

[22] Yandong Li, Yu Cheng, Zhe Gan, Licheng Yu, Liqiang
Wang, and Jingjing Liu. Bachgan: High-resolution im-
age synthesis from salient object layout. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8365–8374, 2020. 1

[23] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In
CVPR, 2023. 2, 3, 8

[24] Zejian Li, Jingyu Wu, Immanuel Koh, Yongchuan Tang, and
Lingyun Sun. Image synthesis from layout with locality-
aware mask adaption. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13819–
13828, 2021. 1

[25] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
ECCV, 2014. 4, 8

[26] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
Numerical Methods for Diffusion Models on Manifolds. In
ICLR, 2022. 6

[27] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In ICLR, 2019. 6

[28] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Rus-
lan Salakhutdinov. Generating Images from Captions with
Attention. In ICLR, 2016. 2

[29] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. GLIDE: Towards Photorealistic Image Gener-
ation and Editing with Text-Guided Diffusion Models. In
ICML, 2022. 2

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

5288

Krueger, Ilya Sutskever, Jong Wook, Kim Chris, Hal-
lacy Aditya, Ramesh Gabriel, Goh Sandhini, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. In ICML,
2021. 4

[31] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-Shot Text-to-Image Generation. In ICML, 2021. 2

[32] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical Text-Conditional Image Gen-
eration with CLIP Latents. ArXiv, 2204.06125, 2022. 2

[33] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
versarial text to image synthesis. In ICML, 2016. 2

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. In NIPS, 2015. 4

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 2, 3, 4, 5

[36] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic Text-to-
Image Diffusion Models with Deep Language Understand-
ing. In NeurIPS, 2022. 2

[37] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved Techniques
for Training GANs. In NIPS, 2016. 3

[38] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML,
2015. 2

[39] Wei Sun and Tianfu Wu. Image Synthesis From Reconfig-
urable Layout and Style. In ICCV, 2019. 3

[40] Wei Sun and Tianfu Wu. Image synthesis from reconfig-
urable layout and style. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10531–
10540, 2019. 1

[41] Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. De-
von Hjelm, and Shikhar Sharma. Object-Centric Image Gen-
eration from Layouts. In AAAI, pages 2647–2655, 2021. 3,
6

[42] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the In-
ception Architecture for Computer Vision. In CVPR, 2016.
4

[43] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 8

[44] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe
Gan, Xiaolei Huang, and Xiaodong He. AttnGAN: Fine-

Grained Text to Image Generation with Attentional Genera-
tive Adversarial Networks. In CVPR, 2018. 2

[45] Zuopeng Yang, Daqing Liu, Chaoyue Wang, Jie Yang, and
Dacheng Tao. Modeling image composition for complex
scene generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7764–7773, 2022. 1

[46] Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin
Lin, Chenfei Wu, Nan Duan, Zicheng Liu, Ce Liu, Michael
Zeng, and Lijuan Wang. Reco: Region-controlled text-to-
image generation. In CVPR, 2023. 1, 2, 3, 4, 5, 6, 8

[47] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and
Yonghui Wu. Scaling Autoregressive Models for Content-
Rich Text-to-Image Generation. Transactions on Machine
Learning Research, 2022. 2

[48] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-
GAN : Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks. In ICCV, 2017. 2

[49] Lvmin Zhang and Maneesh Agrawala. Adding Conditional
Control to Text-to-Image Diffusion Models. In ICCV, 2023.
8

[50] Lisai Zhang, Qingcai Chen, Baotian Hu, and Shuoran Jiang.
Text-guided neural image inpainting. In ACM MM, page
1302–1310, 2020. 5

[51] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
Generation from Layout. In CVPR, 2019. 3

[52] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8584–8593, 2019. 1

[53] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: Deformable Transform-
ers for End-to-End Object Detection. In ICLR, 2021. 4

5289

	. Introduction
	. Related Work
	. LayoutBench
	. Dataset
	. Layout Accuracy Evaluation

	. IterInpaint
	. Preliminaries: Stable Diffusion
	. Extending Stable Diffusion for Inpainting
	. Iterative Inpainting

	. Experiments and Analysis
	. Experimental Setup
	. Evaluation on LayoutBench
	. Fine-grained Skill Analysis
	. Ablation of IterInpaint
	. LayoutBench-COCO: Zero-shot Evaluation of Layout-guided Image Generation Models

	. Conclusion

