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Abstract

While text-to-visual models now produce photo-realistic
images and videos, they struggle with compositional text
prompts involving attributes, relationships, and higher-
order reasoning such as logic and comparison. In this work,
we conduct an extensive human study on GenAI-Bench to
evaluate the performance of leading image and video gen-
eration models in various aspects of compositional text-to-
visual generation. We also compare automated evaluation
metrics against our collected human ratings and find that
VQAScore – a metric measuring the likelihood that a VQA
model views an image as accurately depicting the prompt
– significantly outperforms previous metrics such as CLIP-
Score. In addition, VQAScore can improve generation in
a black-box manner (without finetuning) via simply rank-
ing a few (3 to 9) candidate images. Ranking by VQAS-
core is 2x to 3x more effective than other scoring methods
like PickScore and ImageReward at improving human rat-
ings for DALL-E 3 and Stable Diffusion, especially on com-
positional prompts that require advanced visio-linguistic
reasoning. Lastly, we identify areas for improvement in
VQAScore, such as addressing fine-grained visual details.
Despite mild limitations, VQAScore serves as the best au-
tomated metric as well as reward function for improving
prompt alignment. We will release over 80,000 human rat-
ings to facilitate scientific benchmarking of both generative
models and automated metrics.

1. Introduction

State-of-the-art text-to-visual models like Stable Diffu-
sion [56], DALL-E 3 [2], Gen2 [17], and Sora [63] gener-
ate images and videos with exceptional realism and quality.
Due to their rapid advancement, traditional evaluation met-
rics and benchmarks (e.g., FID scores on COCO [23, 37]
and CLIPScores on PartiPrompt [22, 80]) are becoming in-
sufficient [40, 50]. For instance, benchmarks should in-
clude more real-world compositional text prompts [43] that

*Co-first authors; †Co-senior authors.

involve attribute bindings, object relationships, and logi-
cal reasoning, among other visio-linguistic reasoning skills
(Figure 1). Moreover, it’s crucial for automated evalua-
tion metrics to measure how well the generated images (or
videos) align with such compositional text prompts. Yet,
widely used metrics like CLIPScore [22] function as bag-
of-words [39, 69, 81] and cannot produce reliable alignment
(faithfulness [25]) scores. Therefore, to guide the scientific
benchmarking of generative models, we conduct a compre-
hensive evaluation of compositional text-to-visual genera-
tion alongside automated alignment metrics [5, 22, 30].

Evaluating text-to-visual generation. We collect a new
text-to-visual benchmark, GenAI-Bench, which consists
of 1,600 challenging real-world text prompts sourced from
professional designers. Compared to benchmarks [25, 30,
45] such as PartiPrompt [80] and T2I-CompBench [26] (see
Table 1), GenAI-Bench captures a wider range of aspects in
compositional text-to-visual generation, ranging from basic
(scene, attribute, relation) to advanced (counting, compar-
ison, differentiation, logic). We collect a total of 38,400
human alignment ratings (1-to-5 Likert scales [50]) on im-
ages and videos generated by ten leading models, such as
Stable Diffusion [56], DALL-E 3 [2], Midjourney v6 [48],
Pika v1 [52], and Gen2 [17]. Our human study shows
that while these models can often accurately generate ba-
sic compositions (e.g., attributes and relations), they still
struggle with advanced reasoning (e.g., logic and compari-
son) (Figure 2). For instance, for “basic” prompts that do
not require advanced reasoning, the state-of-the-art DALL-
E 3 (most preferred by humans) achieves a remarkable av-
erage rating of 4.3, meaning its images range from having
“a few minor discrepancies” to ‘matching exactly” with the
prompts. However, its rating on “advanced” prompts drops
to 3.4, indicating “several discrepancies”. Figure 3 presents
all human ratings.

Evaluating automated metrics. We also use the hu-
man ratings to benchmark automated metrics (e.g., CLIP-
Score [22], PickScore [30], and Davidsonian [5]) that mea-
sure the alignment between an image and a text prompt.
Specifically, we show that a simple metric, VQAScore,
which computes the likelihood of generating a “Yes” an-
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Figure 1. Compositional text prompts of our GenAI-Bench (highlighted in green) reflect how real-world users may seek precise
control in text-to-visual generation. For example, users might add details by specifying compositions of basic visual entities and properties
(highlighted in gray), such as scenes, attributes, and relationships (spatial/action/part). Moreover, user prompts may require advanced visio-
linguistic reasoning (highlighted in blue), such as counting, comparison, differentiation, and logic (negation/universality). Appendix B
details these essential skills with additional examples. Table 1 compares GenAI-Bench with previous benchmarks [26, 30, 58, 80].

swer to a question like “Does this figure show {text}?” from
a VQA model, significantly surpasses previous metrics in
correlating with human judgments. VQAScore can be cal-
culated end-to-end from off-the-shelf VQA models, with-
out finetuning on human feedback [30, 78] or decomposing
prompts into QA pairs [5, 79]. VQAScore is strong be-
cause it leverages the compositional reasoning capabilities
of recent multimodal large language models (LLMs) [9, 41]
trained for VQA. For instance, our study adopts the leading
CLIP-FlanT5 model [40], which follows the best training
practices in the literature [8], e.g., using a bidirectional en-
coder that allows the image and question embeddings to at-
tend to each other. VQAScore based on CLIP-FlanT5 sets
a new state-of-the-art on both GenAI-Bench and previous
benchmarks like TIFA160 [25] and Winoground [69]. As
such, we recommend adopting VQAScore over the “bag-
of-words” CLIPScore, which has been overly abused in our
community [28, 81]. We will release all human ratings to
facilitate the development of automated metrics.

Improving generation with VQAScore. We show that
one can improve text-to-image generation by ranking gener-
ated candidates with VQAScore and selecting the highest-
scoring one. This ranking-based approach does not require
any finetuning and can operate in a fully black-box man-
ner [44], needing only an image generation API. Remark-
ably, simply ranking between 3 to 9 images can already en-
hance the average human ratings for DALL-E 3 and SD-
XL by 0.2 to 0.3 (on a 1-to-5 Likert scale), setting the new
closed-source and open-source SOTAs on GenAI-Bench.
VQAScore significantly outperforms other metrics; for in-

stance, using CLIPScore for ranking often leads to the same
or lower human ratings. We present qualitative examples in
Figure 7. Overall, VQAScore emerges as the most effec-
tive ranking metric, surpassing other metrics that rely on
costly human feedback (e.g., PickScore [30]) or ChatGPT
for prompt decomposition (e.g., Davidsonian [5]) by 2x to
3x.

Limitations. Lastly, we explore the implications of
Goodhart’s Law [18], particularly limitations of VQAS-
core in detecting fine-grained visual details and resolving
linguistic ambiguity. Despite these mild limitations, we
strongly urge the research community to adopt VQAScore
as a reproducible supplement to non-reproducible human
studies [50], or as a superior alternative to CLIPScore,
which has ceased to be effective [28, 39, 81].

Contribution summary.

1. We conduct an extensive human study on text-to-visual
generation using GenAI-Bench, revealing limitations of
leading open-source and closed-source models.

2. By collecting over 80,000 human alignment ratings, we
demonstrate that VQAScore is a simpler and more ef-
fective alternative to CLIPScore, which has been abused
in current evaluations. We will release all human ratings
to foster further research in this area.

3. We present a simple approach that improves generation
by ranking images with VQAScore, significantly sur-
passing other scoring methods by 2x to 3x.

5291



Table 1. Comparing GenAI-Bench to existing text-to-visual benchmarks. GenAI-Bench comprehensively covers essential aspects of
compositional text-to-visual generation, emphasizing advanced reasoning skills (highlight in blue) that are required to parse real-world
prompts. Moreover, GenAI-Bench tags each prompt with all evaluated aspects, in contrast to most benchmarks that assign merely one
or two tags per prompt, even when multiple aspects are involved. GenAI-Bench also provides human ratings for both image and video
generative models to support the benchmarking of automated metrics.

Benchmarks Aspects Covered in Compositional Text-to-Visual Generation Tagging Human Annotation
Scene Attribute Relation Count Negation Universal Compare Differ

PartiPrompt (P2) [80] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 2 Tags ✗
DrawBench [58] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 1 Tag ✗
EditBench [72] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
TIFAv1 [25] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ All Tags Images
Pick-a-pic [30] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ Images
T2I-CompBench [26] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 1 Tag Not Released
HPDv2 [77] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Images
EvalCrafter [45] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ Videos

GenAI-Bench (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ All Tags Images & Videos

Figure 2. GenAI-Bench challenges leading image and video generation models. We present example prompts that fail even the state-
of-the-art models such as DALL-E 3 [2], Stable Diffusion (SD-XL) [56], Pika [52], and Gen2 [17]. Note that each GenAI-Bench prompt
is tagged with all evaluated aspects, allowing researchers to identify specific areas for improvement. In particular, “advanced” prompts
(highlighted in blue) that require higher-order visio-linguistic reasoning – such as counting, comparison, differentiation, and logic – pose
greater challenges to all generative models.

2. Related Works

Text-to-visual benchmarks. Early benchmarks mostly
rely on captions from existing datasets like COCO [6, 25,
37, 55], focusing on generating simple objects, attributes,
and scenes. Other benchmarks, such as HPDv2 [77]
and Pick-a-pic [30], primarily evaluate image quality (aes-
thetic) using simpler text prompts. Recently, bench-
marks like DrawBench [58], PartiPrompt [80], and T2I-
CompBench [26] have shifted the focus to compositional
text-to-image generation with an emphasis on attribute
bindings and object relationships. Our GenAI-Bench esca-
lates the challenge by incorporating real-world user prompts

that require “advanced” reasoning (e.g., logic and compari-
son) to benchmark next-generation text-to-visual models.

Automated metrics. Perceptual metrics like IS [59],
FID [23] and LPIPS [82] use pre-trained networks to as-
sess the quality of generated imagery using reference im-
ages. To evaluate vision-language alignment (also referred
to as faithfulness or consistency [10, 25, 46]), recent stud-
ies [4, 15, 16, 29, 32, 47, 57, 61, 74] primarily report CLIP-
Score [22], which measures (cosine) similarity of the em-
bedded image and text prompt. However, CLIP cannot re-
liably process compositional text prompts due to its “bag-
of-words” encoding [28, 39, 81]. Recent methods like Im-
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ageReward [78], PickScore [30], and HPSv2 [77] further
leverage human feedback to improve models like CLIP by
finetuning on large-scale human ratings. Another popular
line of works [7, 25, 26, 62, 75] uses LLMs like ChatGPT to
decompose texts into simpler components for analysis, e.g.,
via question generation and answering (QG/A) [5]. For ex-
ample, Davidsonian Scene Graph (or DSG) [5] decomposes
a text prompt into simpler QA pairs and outputs a score as
the accuracy of answers generated by a VQA model. How-
ever, Lin et al. [39, 40] show that such methods still face
challenges in decomposing complex text prompts.

3. GenAI-Bench for Text-to-Visual Evaluation
In this section, we present GenAI-Bench, a challenging

benchmark featuring real-world text prompts tagged with
essential aspects of compositional text-to-visual generation.

Skill taxonomy. Prior literature on text-to-visual gen-
eration [26, 58, 80] focuses on generating “basic” ob-
jects, attributes, relations, and scenes. However, as illus-
trated in Figure 1, real-world prompts often require “ad-
vanced” compositional reasoning, including comparison,
differentiation, counting, and logic. These “advanced”
compositions extend beyond the “basic” ones. For ex-
ample, real-world prompts may involve counting not just
objects, but also attribute-object pairs and even object-
relation-object triplets, e.g., “three white seagulls
flying over a blue lake”. Accordingly, we cat-
egorize compositional reasoning into “basic” (objects,
scenes, attributes, and spatial/action/part relations) and
“advanced” aspects (counting, comparison, differentiation,
negation, and universality). Table 1 shows that GenAI-
Bench uniquely covers all these essential aspects. We pro-
vide definitions and more examples in Appendix B.

GenAI-Bench. We collect 1,600 prompts from design-
ers who routinely use text-to-image tools [48]. To improve
diversity and quality, these designers also use ChatGPT for
brainstorming prompt variants and correcting grammatical
errors. Importantly, involving professional designers helps
ensure the prompts are free from subjective or toxic con-
tent. For example, we observe that ChatGPT-generated
prompts from T2I-CompBench [26] can include subjective
(e.g., non-visual) phrases like “a natural symbol of
rebirth and renewal”. Similarly, Pick-a-pic [30]
may contain inappropriate content (e.g., NSFW) crafted by
malicious web users. We detail our collection procedure
and discuss how we avoid these issues in the Appendix C.
Lastly, we tag each prompt with all its evaluated aspects
of compositional reasoning, in contrast to previous bench-
marks that either release no tags [30, 45, 77] or limit them
to one or two [26, 58, 80]. In total, GenAI-Bench provides
over 5,000 human-verified tags with a roughly balanced dis-
tribution of skills. Specifically, about half of the prompts in-
volve only “basic” compositions, while the other half poses

greater challenges by incorporating both “basic” and ”ad-
vanced” compositions. Figure 2 shows random prompts
from GenAI-Bench that challenge some of the best genera-
tive models like DALL-E 3 [2] and Gen2 [17].

4. Human Evaluation via GenAI-Bench
We now present an extended human study of ten leading

image and video generative models using GenAI-Bench.
Human evaluation. We evaluate six text-to-image

models: Stable Diffusion [56] (SD v2.1, SD-XL, SD-XL
Turbo), DeepFloyd-IF [12], Midjourney v6 [48], DALL-
E 3 [2]; along with four text-to-video models: Mod-
elScope [71], Floor33 [14], Pika v1 [52], Gen2 [17]. Next,
we hire three annotators to collect 1-to-5 Likert scale human
ratings for image-text or video-text alignment using the rec-
ommended annotation protocol of [50]:

How well does the image (or video) match the description?
1. Does not match at all.
2. Has significant discrepancies.
3. Has several minor discrepancies.
4. Has a few minor discrepancies.
5. Matches exactly.

(a) GenAI-Bench (Image Ratings)

(b) GenAI-Bench (Video Ratings)

Figure 3. Human evaluation on GenAI-Bench. We show
the average human alignment ratings on ten popular image and
video generative models. We highlight closed-source models (e.g.,
DALL-E 3 [2]) in green. We find that (1) “advanced” prompts that
require higher-order reasoning (e.g., negation and comparison)
challenge all models more, (2) models using better text embed-
dings or captions (DeepFloyd-IF [12] and DALL-E 3 [2]) outper-
form others (SD-XL [56]), (3) open-source and video-generative
models [17, 56] still lag behind their closed-sourced and image-
generative counterparts, suggesting room for improvement.

Our collected human ratings indicate a high level of inter-
rater agreement, with Krippendorff’s Alpha reaching 0.72
for image ratings and 0.70 for video ratings, suggesting sub-
stantial agreement [25]. Specifically, the use of the Likert
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Figure 4. VQAScore (based on CLIP-FlanT5 [40]) versus CLIPScore on samples from GenAI-Bench. VQAScore shows a significantly
stronger agreement with human ratings compared to CLIPScore [22], making it a more reliable tool for automatic text-to-visual evaluation,
especially on real-world user prompts that involve complex compositional reasoning.

scale makes the final average rating interpretable. For ex-
ample, a score near 5 implies that the model’s generated im-
ages almost always “match exactly” with the input prompts.

Analysis. Figure 3 presents human ratings for basic, ad-
vanced, and overall prompts. Notably, advanced prompts
that require complex visio-linguistic reasoning are much
harder. For example, the top-performing DALL-E 3 scores
4.3 on basic prompts, indicating “a few minor discrep-
ancies”. However, its score drops to 3.4 on advanced
prompts, indicating “several minor discrepancies”. Inter-
estingly, models (e.g., DeepFloyd-IF and DALL-E 3) using
stronger text embeddings from LLMs (e.g., T5 [54]) out-
perform those using CLIP text embeddings (e.g., SD-XL).
Lastly, we observe that open-source and video-generative
models lag behind their closed-source and image-generative
counterparts, suggesting avenues for future improvement.
In Appendix C, we detail model performance across vari-
ous aspects, highlighting challenges in higher-order reason-
ing like negation and comparison.

5. Evaluating Automated Metrics
We now use our human ratings to benchmark automated

alignment metrics [5, 22, 79] on GenAI-Bench. We high-
light a simple metric, VQAScore, as a superior alternative
to the widely used CLIPScore.

VQAScore. Given an image and text, we calculate
the probability of a “Yes” answer to a simple question
like “Does this figure show ‘{text}’? Please answer yes
or no.”:

P (“Yes”|image,question) (1)

We implement VQAScore using the state-of-the-art CLIP-
FlanT5 model [40] trained on 665K public VQA data [41].
For video-text pairs, we average the scores across all video
frames following prior work [61]. We include more imple-
mentation details and pseudocode in Appendix D.

Table 2. Evaluating the correlation of automated metrics with
human ratings on GenAI-Bench. We report Pairwise accu-
racy [13], Pearson, and Kendall, with higher scores indicating bet-
ter performance for all. VQAScore based on the CLIP-FlanT5
VQA model [40] (detailed in Appendix E) achieves the strongest
agreement with human ratings on images and videos, significantly
surpassing popular metrics like CLIPScore [22], PickScore [30],
and Davidsonian [5].

Method
GenAI-Bench (Image) GenAI-Bench (Video)

Pairwise Pearson Kendall Pairwise Pearson Kendall

CLIPScore [22] 51.9 19.3 13.5 53.6 25.3 18.0

BLIPv2Score [22] 55.1 25.0 20.7 54.6 25.3 20.1

ImageReward [78] 57.4 36.3 25.2 60.0 42.9 31.4

PickScore [30] 57.7 36.6 25.9 56.8 34.6 24.8

HPSv2 [77] 50.1 15.1 10.3 50.6 17.5 12.1

VQ2 [79] 52.5 16.2 14.8 52.8 18.0 15.5

Davidsonian [5] 54.2 32.5 23.1 55.9 32.3 23.5

VQAScore 63.1 46.0 37.1 63.2 50.6 38.2

Evaluation setup. To evaluate automated metrics on
GenAI-Bench, we follow TIFA160 [25] to report the Pear-
son and Kendall coefficients, which reflect the correlation of
the metric score with human judgment. However, Deutsch
et al. [13] (EMNLP’23 outstanding paper) note several is-
sues with these metrics. For example, Pearson assumes a
linear relationship between metric and human scores, while
Kendall ignores ties common in 1-to-5 Likert scales. As
such, we also report Pairwise accuracy [13], designed to
address these issues. We direct readers to [13] for equations
and provide a brief overview below. For a dataset with M
items (e.g., image-text pairs), there are two M -size score
vectors: one for human ratings and one for metric scores.
Pairwise accuracy (a value between 0 and 1) evaluates the
percentage of agreement across all M x M pairs of items,
i.e., if one item scores higher, lower, or ties with another
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item in both human and metric scores. Additionally, we
apply the tie calibration technique from [13] to find the op-
timal tie threshold for each metric.

Results. Table 2 shows that VQAScore significantly out-
performs previous metrics such as CLIPScore [22], mod-
els trained with extensive human feedback [30, 77, 78],
and QG/A methods that use the same CLIP-FlanT5 VQA
model [5, 79]. Appendix G shows that VQAScore achieves
the state-of-the-art performance on seven more alignment
benchmarks such as TIFA160 [25] and Winoground [69].
Figure 4 qualitatively compare VQAScore against CLIP-
Score on random samples from GenAI-Bench. The strong
performance of VQAScore makes it a more reliable tool for
the future automated evaluation of text-to-visual models.

6. Improving Text-to-Visual Generation
VQAScore’s superior performance in evaluating text-to-

visual generation suggests its potential to improve genera-
tion as well. We now show that VQAScore can improve
the alignment of DALL-E 3 [2] and SD-XL [56] by simply
ranking candidate images.

Figure 5. VQAScore can select images generated by SD-
XL [56] that outperform DALL-E 3’s [2]. Although less pow-
erful in prompt alignment than DALL-E 3, SD-XL [56] can still
be improved by selecting three to nine candidate images with
the highest VQAScore. We provide examples of how VQAScore
ranks SD-XL images in Appendix A.

Ranking images by VQAScore. Given the same
prompt, most text-to-visual models produce vastly different
images in each inference run, with some being better than
others. As such, we propose a black-box method [44] that
improves text-to-image generation by ranking a few can-
didate images with VQAScore and selecting the highest-
scoring one. This ranking-based approach is simple yet sur-
prisingly effective. For instance, despite SD-XL’s weaker
prompt alignment compared to DALL-E 3, Figure 5 shows
how VQAScore can select the best SD-XL images (from
a few candidates) that outperform DALL-E 3’s. Figure 7
shows that VQAScore can also improve the closed-source

(a) Improving DALL-E 3 by image ranking

(b) Improving SD-XL by image ranking

Figure 6. Improving text-to-visual generation by ranking nine
candidate images. We show the performance gains over the Ran-
dom baseline (no ranking) in green and decreases in red. Notably,
selecting the highest-VQAScore images from nine candidates can
significantly boost the overall human alignment ratings. In con-
trast, ranking by CLIPScore [22] results in the same or lower per-
formance. Overall, VQAScore is 2x to 3x more effective than
other methods that rely on costly human feedback (PickScore [30])
or decompose texts using ChatGPT (Davidsonian [5]). Table 3 de-
tails performance gains for more scoring methods across basic,
advanced, and all prompts.

(black-box) DALL-E 3 by correctly selecting the most
prompt-aligned images from three candidates.

A benchmark for ranking. To compare against other
ranking metrics (e.g., CLIPScore and PickScore), we hire
three annotators to rate nine generated images for each
prompt. In this preliminary study, we randomly select 800
prompts from GenAI-Bench and collect 43,200 human rat-
ings for 14,400 images generated by DALL-E 3 and SD-
XL. We will release this benchmark for reproducibility and
to facilitate the evaluation of future ranking metrics.

VQAScore achieves superior performance gains. Fig-
ure 6 confirms that ranking by VQAScore delivers the most
significant improvements in human ratings. While rank-
ing by CLIPScore [22] results in the same or even lower
performance, VQAScore consistently improves with more
images to rank. VQAScore is also 2x to 3x more effec-
tive than other ranking metrics that rely on expensive hu-
man feedback (e.g., PickScore [30]) or decompose texts via
ChatGPT (e.g., Davidsonian [5]). Table 3 details the per-
formance gains for ranking 3 to 9 images across basic, ad-
vanced, and all prompts. VQAScore notably improves the
prompt alignment of DALL-E 3 and SD-XL by about 0.3 on
“advanced” prompts that require complex visio-linguistic
reasoning, such as counting, comparison, and logic.
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Figure 7. Ranking DALL-E 3 generated images with VQAScore and CLIPScore. VQAScore outperforms CLIPScore in ranking
candidate images generated by DALL-E 3, particularly for prompts that involve attributes, relationships, and higher-order reasoning. This
indicates that VQAScore can already improve text-to-image generation using only an image generation API [44]. We detail the performance
gains achieved by VQAScore and other metrics in Figure 6 and Table 3.

Table 3. Comparing scoring methods for image ranking. We present the average human ratings of 7 popular scoring methods across
basic, advanced, and all prompts on GenAI-Bench. Performance gains over the Random baseline (no ranking) are highlighted in green,
while decreases are marked in red. Notably, some scoring methods like CLIPScore [22] can lead to a performance drop, particularly with
an increasing number of images. For instance, CLIPScore results in a 0.04 drop when given more images to rank (from 3 to 9). In contrast,
VQAScore demonstrates consistent and significant improvements with more images. VQAScore especially improves performance on the
more challenging “advanced” prompts that require complex visio-linguistic reasoning skills like counting, comparison, and logic. For these
“advanced” prompts, VQAScore boosts DALL-E 3 by 0.30 and SD-XL by 0.27 by ranking nine images, outperforming the second-best
method PickScore [30] by 2x to 3x. For reference, we include human (oracle) performance (ranking by ground-truth human ratings). We
will release over 40,000 human ratings to aid in the development of future ranking metrics.

Method
Basic Advanced Overall

3 Imgs 9 Imgs 3 Imgs 9 Imgs 3 Imgs 9 Imgs

Random 4.62 4.62 3.82 3.82 4.11 4.11

Human Oracle 4.85+.23 4.94+.32 4.25+.43 4.53+.71 4.46+.35 4.68+.57

CLIPScore [22] 4.64+.02 4.64+.02 3.84+.02 3.78−.04 4.13+.02 4.09−.02

ImageReward [78] 4.66+.04 4.60−.02 3.88+.06 3.90+.08 4.16+.05 4.15+.04

PickScore [30] 4.68+.06 4.71+.09 3.87+.05 3.87+.05 4.16+.05 4.17+.06

HPSv2 [77] 4.66+.04 4.68+.06 3.86+.04 3.83+.01 4.14+.03 4.13+.02

VQ2 [79] 4.65+.03 4.67+.05 3.85+.03 3.85+.03 4.14+.03 4.14+.03

Davidsonian [5] 4.67+.05 4.71+.09 3.88+.06 3.89+.07 4.16+.05 4.18+.07

VQAScore 4.68+.06 4.71+.09 3.98+.16 4.12+.30 4.23+.12 4.33+.22

Method
Basic Advanced Overall

3 Imgs 9 Imgs 3 Imgs 9 Imgs 3 Imgs 9 Imgs

Random 4.05 4.05 3.17 3.17 3.48 3.48

Human (Oracle) 4.41+.36 4.62+.57 3.53+.36 3.84+.67 3.84+.36 4.12+.64

CLIPScore [22] 4.11+.06 4.17+.12 3.21+.04 3.21+.04 3.53+.05 3.55+.07

ImageReward [78] 4.19+.14 4.21+.16 3.25+.08 3.29+.12 3.59+.11 3.62+.14

PickScore [30] 4.18+.13 4.24+.19 3.28+.11 3.31+.14 3.60+.12 3.64+.16

HPSv2 [77] 4.15+.10 4.22+.17 3.25+.08 3.29+.12 3.57+.09 3.62+.14

VQ2 [79] 4.08+.03 4.13+.08 3.21+.04 3.23+.06 3.52+.04 3.55+.07

Davidsonian [5] 4.10+.05 4.15+.10 3.21+.04 3.26+.09 3.53+.05 3.58+.10

VQAScore 4.19+.14 4.32+.27 3.30+.13 3.44+.27 3.62+.14 3.75+.27

(a) Improving DALL-E 3 by image ranking (b) Improving SD-XL by image ranking
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7. Goodhart’s Law Still Applies
When a measure becomes a target, it ceases to be
a good measure.

— Marilyn Strathern [64]

This quote conveys the essence of Goodhart’s Law [18, 19]:
an over-optimized metric inevitably loses its effectiveness.
This phenomenon is well-documented in fields such as ma-
chine learning [24, 68], economics [11, 19], and educa-
tion [3, 31]. Acknowledging that VQAScore is also sub-
ject to this law, we examine its limitations as an automated
metric and suggest avenues for future improvements.

Limitations of VQAScore. We conduct a qualitative
study by manually examining samples where VQAScore
and human ratings disagree. Figure 8 identifies three failure
cases: (1) miscounting when there are too many objects,
(2) overlooking fine-grained visual details, and (3) misin-
terpreting linguistic ambiguity. We posit that VQA models
with higher image resolution [60] and more capable lan-
guage models [49, 67] may improve on these challenging
aspects. Despite these mild limitations, we strongly rec-
ommend adopting VQAScore as a more reliable alternative
to CLIPScore, which has already ceased to be an effective
metric [28, 39, 81]. We believe VQAScore also serves well
as a reproducible supplement to non-reproducible human
studies [50].

8. Conclusion
Limitations and future work. Currently, GenAI-Bench

does not evaluate several vital aspects of generative mod-
els [34, 45, 51, 76], such as toxicity, bias, aesthetics, and
video motion. Although our ranking-based approach is ef-
fective, future work may explore white-box finetuning tech-
niques for more efficient inference.

Summary. We have conducted an extensive human
study with GenAI-Bench, focusing on both compositional
text-to-visual generation and automated evaluation metrics.
We show a straightforward ranking-based method that im-
proves the prompt alignment of black-box generative mod-
els. By discussing Goodhart’s Law, we hope to encour-
age further research into automated evaluation techniques,
which is essential to the scientific progression of this field.
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Figure 8. Limitations of VQAScore (please zoom into the fig-
ures for a detailed view). We identify three failure cases of
VQAScore. (a) While VQAScore can reasonably count objects in
small quantities, it struggles with larger numbers. (b) VQAScore
can overlook small visual details, such as entities that occupy only
a small portion of the image. (c) VQAScore may not understand
ambiguous prompts, misinterpreting “two shoes” as “two pairs of
shoes”, or “towards the left (of the viewer)” as “towards the left
(of the swan)”.
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