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Abstract

Foundational models such as Multimodal Large Lan-
guage Models (MLLMs) with their ability to interpret im-
ages and generate intricate responses has led to their
widespread adoption across multiple computer vision and
natural language processing tasks. However, they suffer
from hallucinations and struggle to reason over complex
reasoning tasks. In this work, we evaluate the performance
of MLLMs across multiple multimodal augmentations and
evaluate their performance in out-of-distribution settings.
We benchmark 3 models, across 2 vision-language datasets,
VQAv2 and CLEVR, and assess their performance across
adversarial transformations in both the vision and language
modalities. We introduce image perturbations using vari-
ous augmentations, including noise addition, blurring, and
median filtering and generate adversarial questions which
contain conjunctions, disjunctions and negations. Addi-
tionally, we conduct a detailed fine-grained analysis to as-
sess the model’s performance on particular question cat-
egories, such as those related to shape and color, across
images featuring identical or varying objects. Our find-
ings indicate a notable decrease in the performance of
current MLLMs for synthetic images, with a gradual de-
cline observed across both vision and language augmen-
tations. Specifically, Gaussian Noise Addition emerges as
the most detrimental augmentation, and we observe a sig-
nificant drop in performance with complex questions con-
taining multiple connectives. In these times of rapid devel-
opment and deployment of MLLMs in real-world settings,
we believe our findings are a first step towards benchmark-
ing the robustness and out-of-distribution behavior of such
models.

*Equal contribution. Correspondence to agneet@asu.edu
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Figure 1. In this work, we evaluate the robustness of Multimodal
Large Language Models on out-of-distribution settings. We create
adversarial attacks both in the vision and language modality and
find that existing models show a steady decline in performance
under these scenarios.

1. Introduction

With the continuous expansion of data availability and com-
putational capabilities [27], large language models such as
GPT-4 [24], LLaMA-2 [27], Mistral [14], and PaLM2 [2]
have demonstrated exceptional performance in both natural
language understanding (NLU) and generation (NLG). The
emergence of multimodal large language models signifies a
shift towards integrating LLMs with additional modalities
such as images and audio, enabling them to produce appro-
priate outputs for diverse input types [35]. Several studies

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5314



have explored the fusion of LLMs with visual understand-
ing, exemplified by models like GPT-4V [32], Gemini [26],
Flamingo [1], and Qwen [3]. The impressive achievements
of Multimodal Large Language Models (MLLMs) in mul-
tiple vision tasks has inspired their application in complex
multimodal challenges such as robotics [18] and common-
sense reasoning [31].

Despite their impressive performance across various
tasks, MLLMs face challenges such as hallucinations and
reasoning over complex text-image pairs. MLLM halluci-
nations have been well studied in LURE [36] and Wood-
pecker [33], and their reasoning abilities are benchmarked
in MM-VET [34], MME [11] and MMBench [23]. How-
ever, their evaluation and performance under distribution
shifts and adversarial attacks remain under-explored.

In this paper, we explore this research question and in-
vestigate state-of-the-art MLLMs and benchmark their per-
formance on out-of-distribution settings. We conduct our
experiments on 2 widely used vision-language datasets:
VQAv2 [13] and CLEVR [15], which consist of real-world
and synthetically generated images, respectively. We gen-
erate a total of 10 adversarial samples for a given instance,
both in the vision and language modality to conduct a holis-
tic study, across multiple out-of-distribution scenarios. Fur-
thermore, we examine how model performance varies based
on factors such as the number of objects in an image, the
nature of questions (numerical, color-related, binary, shape-
related), and the presence of multiple object types within an
image. An overview of our workflow is presented in Fig-
ure 1.

Our investigation reveals several interesting findings.
First, we find that MLLMs perform significantly worse on
synthetic images in comparison to real-world images. Sec-
ond, across both real-world and synthetic images, model
performance declines with the addition of image augmenta-
tions, with the Gaussian Low Pass Filter causing the largest
drop. Third, for questions with adversarial augmentations,
models consistently provide affirmative (’Yes’) responses.
Fourth, we perform a detailed study and categorize model
responses based on number of objects in an image and by
question types; and reveal observations such as a significant
decrease in performance on ’color’-related questions with
an increasing number of objects in an image. To summa-
rize, our contributions are as follows :

• We study 3 Multimodal Large Language Models, on 2
datasets, VQAv2 and CLEVR, and develop an evaluation
benchmark that creates adversarial samples through 6 dif-
ferent image and 4 reasoning-based language augmenta-
tions.

• Our evaluations reveal that incorporating these augmen-
tations leads to a decrease in model performance on both
natural and synthetic images, with synthetic images ex-
hibiting lower performance overall.

• Additionally, we find that a) the Gaussian Low Pass Filter
augmentation leads to the largest drop in performance, b)
models struggle when an image contains objects of mul-
tiple kinds, c) color-based questions in complex scenes
leads to multiple errors and d) models tend to answer in
the affirmative when presented with complex logical con-
nectives.

2. Related Works
Large Language Models (LLMs) have demonstrated re-
markable proficiency across various tasks, showcasing their
adaptability to solve diverse problems across different
modalities [16, 30]. This has led to the emergence of Multi-
modal Large Language Models (MLLMs), specifically de-
signed to tackle challenges with multi-modal inputs and ex-
hibit promising performance, particularly in zero-shot gen-
eralization scenarios [6]. Broadly, MLLMs can be catego-
rized based on their modeling into three main types [36].
The first category involves integrating a frozen vision en-
coder with a large language model, utilizing cross-attention
mechanisms to handle cross-modalities with Flamingo [1]
being a pioneering work in this regard. In the second
category, features extracted from the vision encoder are
connected to the pre-trained model through linear layers.
PaLM-E [10], which combines PaLM [7] with a vision en-
coder, exemplifies this approach. Additionally, this method
has been adopted in various works, including LLaVA [22]
and Shikra [5]. However, a limitation of this approach lies
in the creation of the visual sequence length, which can im-
pact the performance of MLLMs. To address this limitation,
the third category proposes employing transformer models
to reduce the sequence length of visual features efficiently.
BLIP-2 [17], inspired by DETR [4], stands as a significant
contribution in this category.

Despite their impressive performance in tackling var-
ious modalities, MLLMs are often not robust and can
produce hallucinations with slight changes in images or
text. Recent efforts [21, 29] have focused on addressing
this issue and proposing mitigating methods. For exam-
ple, LVT-Instruction [21] tackles hallucinations by reducing
the length of textual instructions. However, this approach
comes with the trade-off of limiting the learning capabilities
of MLLMs. In contrast, LLaVA RLHF [25] employs syn-
thetic data to modify the robustness of the model. This in-
volves training a reward model using human-annotated data
to generate signals, aligning a supervised fine-tuned model
with human preferences. Yet, this method requires a signif-
icant amount of annotated data, posing a limitation. Mean-
while, HACL [36]introduces hallucination captions as com-
plex negative samples in contrastive learning. Additionally,
some studies focus on detecting object hallucinations within
different domains of MLLMs that have a high effect on the
robustness of the model. For instance, POPE [19] addresses
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Figure 2. Baseline Performance of InstuctBLIP, LLaMA-Adapter-
V2, and LLaVA models on the VQAv2 and CLEVR dataset.

this by transforming hallucinations into binary classification
problems, thereby informing the model about the presence
of objects in an image.

Several studies have proposed benchmarks to assess the
MLLMs across various reasoning tasks. MM-VET [34]
demonstrated MLLMs’ proficiency in handling complex
tasks yet highlighted persistent challenges such as their lim-
ited generalization capabilities. To address this, they intro-
duced new benchmarks aimed at enhancing MLLMs’ abil-
ity to generalize. Similarly, MME [11] introduced a com-
prehensive benchmark evaluating MLLMs’ performance
across 14 subtasks related to perception and cognition. An-
other noteworthy study, MMbench [23], comprises two key
components. Firstly, it offers a curated dataset that sur-
passes existing benchmarks in terms of question variety and
evaluation abilities. Secondly, it presents a cyclic evalua-
tion strategy integrating ChatGPT to assess MLLMs’ per-
formance. Despite these efforts revealing areas of MLLMs’
underperformance across diverse tasks, none have exten-
sively evaluated the robustness of foundational MLLMs. A
contemporary work has been proposed that explores image-
based attacks on MLLMs [8], however they focus majorly
on gradient-based attacks compared to our pixel level at-
tacks and do not take into consideration the impact of lan-
guage level perturbations.

While previous studies have explored reasoning and hal-
lucinations in MLLMs to show their robustness, the impact
of distribution shift and adversarial perturbation on these
models remains underexplored. We study this critical prob-
lem and the evaluate the generalization patterns associated
with multiple models, identifying key points of failure for
safer deployment of these models in real-world settings.

3. Experiments and Analysis
In this section, we delve into the comprehensive evalua-
tion of the robustness of foundation models through a se-
ries of carefully designed experiments. The experiments
primarily focus on two distinct Visual Question Answer-
ing (VQA) datasets, VQAv2 [13], a real-world dataset, and
CLEVR [15], a synthetic dataset. VQAv2 is based on the
images from the COCO dataset [20], which has rich and
complex visual content that is highly relevant for the models
to answer the questions. CLEVR serves as a diagnostic tool
for assessing various visual reasoning abilities with minimal
biases. Its detailed annotations provide valuable insights
into the specific types of reasoning required for each ques-
tion, enabling a thorough analysis of model strengths and
weaknesses. Moreover, CLEVR images serve as an out-of-
distribution dataset, as most MLLMs are pre-trained/fine-
tuned on real-world images such as COCO.

We begin by establishing baselines using multiple
MLLMs such as InstructBLIP [9], LLaMA-Adapter-
V2 [12], and LLaVA [22] on the original dataset. Subse-
quently, we introduce perturbations in both vision and lan-
guage modalities, aiming to analyze the behavior of these
models under various changes. For evaluation, we use the
Zephyr-7B [28] language model due to its impressive Nat-
ural Language Understanding and Question-answering ca-
pabilities. We prompt the Zephyr-7B model to act as an
evaluator in our experimental setup and present it with a
ground truth answer and predicted answer pair. We then
task it with responding to whether the two answers are con-
sistent with each other or not. To maintain consistency and
mitigate randomness in the inferences, we use a tempera-
ture setting of zero. The insights gained through these ex-
periments help us better understand the models’ adaptabil-
ity and robustness when faced with multimodal distribution
shifts and augmentations.

3.1. Baseline

For the baseline analysis, we randomly sample 15K images
from both the VQAv2 and CLEVR datasets, totaling 30K
images. The sampling was conducted using a uniform dis-
tribution method, ensuring an equal likelihood of selecting
any image from the datasets. To ensure diversity and rich-
ness in the evaluation, we pair each image with five dis-
tinct questions, amounting to approximately 75K Question-
Answer (QA) pairs per dataset. This approach enables a
robust understanding of the models’ performance across a
varied set of scenarios. An examination of the performance
of our multimodal foundation models on the two datasets
can be seen in Figure. 2. This analysis serves as a crucial
reference point for evaluating the subsequent perturbations
introduced in the following subsections.

We observed that all models tend to perform noticeably
better on the real-world VQAv2 dataset compared to the
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Figure 3. Comprehensive Evaluation of (a) InstructBLIP, (b) LLaMA-Adapter-V2, and (c) LLaVA on CLEVR: Variation in performance
(accuracy) with increasing scene complexity, defined by the number of objects in the image.

synthetic CLEVR dataset. This can be attributed to multiple
factors: As previously mentioned, images from CLEVR are
inherently OOD in comparison to the images from VQAv2;
VQAv2 consists of diverse and natural real-world scenar-
ios with various objects, scenes and lighting conditions that
require commonsense reasoning and contextual understand-
ing. In contrast, the questions in CLEVR focus on spatial
reasoning and demand an understanding of object proper-
ties such as color, shape, material, and size. Another in-
teresting observation is that although CLEVR is composed
of simple geometric shapes and objects, reasoning by foun-
dation models’ is not on par with the images from COCO,
which are composed of complex real-world scenes and ob-
jects. These results show that current MLLMs do not gener-
alize well to out-of-distribution settings. Additionally, there
is a lack of grounding towards fine-grained object proper-
ties such as material and texture, along with shortcomings
in understanding geometrical properties such as spatial re-
lationships.

Next, we split the CLEVR dataset based on the type of
expected answers into 4 categories: shape, color, yes-no,
and numerical, and observed the variation in performance
with varying scene complexity and object distribution.

Scene Complexity Analysis: We define increasing scene
complexity as an increase in the number of distinct objects
in the image. These categorizations are enabled by the well-
designed CLEVR dataset, which provides ground truth an-
notations. We present our analysis in Figure 3. We find
that InstructBLIP shows a large degradation in performance
as scene complexity increases, whereas LLaMA-Adapter-
V2 and LLaVA exhibit more consistent results. Questions
expecting a color and shape-type answer showcase a steep
decline across all models with an increase in the number
of objects. On the other hand, other questions maintain
a performance similar to the entire dataset, with LLaMA-
Adapter-V2 and LLaVA performing the best on numerical-

type questions. One potential explanation for the observed
shortcomings related to shape and color could stem from
the lack of diversity in the datasets used to train these mod-
els. For instance, it’s possible that real-world datasets don’t
contain sufficient representations of certain features, such
as ”cubes” or objects colored ”cyan”.

Object Distribution Analysis: Next, we split the
CLEVR dataset into 2 subsets based on the type of objects
present in the image. We define the Intra subset with images
containing objects of the same type, specifically, identical
shapes. The Inter subset comprises images with multiple
object types. We summarise our results in Table 1. The
models consistently perform better on images containing
objects with the same shape, indicating that as the diversity
in object shapes increases, the performance degrades.

Model Type Question Type Split
Shape Numerical Color Yes-No Overall

InstructBLIP Inter 44.07 39.87 28.34 51.63 43.75
Intra 71.69 43.47 34.75 45.81 46.29

LLaMA-Adapter-V2 Inter 41.79 63.03 17.06 53.74 50.65
Intra 65.40 63.32 31.01 47.74 53.25

LLaVA Inter 41.77 65.56 34.89 51.61 52.71
Intra 52.2 67.79 42.78 53.7 53.37

Table 1. Performance Comparison of InstructBLIP, LLaMA-
Adapter-V2, and LLaVA (Accuracy) on the CLEVR Dataset. Re-
sults are Categorized Across Object Distribution: Intra (Images
with Same Object Shapes) and Inter (Multiple Object Shapes),
Split by Question Types.

3.2. Visual Perturbation

Building upon the baseline analysis, we investigate the im-
pact of introducing visual perturbations on these models.
Using various image augmentation techniques, we assess
the models’ performance in handling changes in the visual
aspects of the input data. We consider 6 different image
augmentation techniques: 1) Median Filter, 2) Gaussian
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Augmentations
InstructBLIP LLaMA-Adapter-V2 LLaVA

VQAv2 CLEVR VQAv2 CLEVR VQAv2 CLEVR
w/o Aug w/ Aug w/o Aug w/ Aug w/o Aug w/ Aug w/o Aug w/ Aug w/o Aug w/ Aug w/o Aug w/ Aug

Median Filter 71.09% 57.45% 43.64% 40.39% 56.78% 55.11% 49.99% 49.52% 72.83% 58.07% 53.34% 48.97%
Gaussian Noise Addition 71.1% 63.16% 44.14% 40.84% 57.16% 59.84% 50.16% 50.24% 73.17% 65.18% 52.49% 48.56%

Multiplicative Noise Addition 71.33% 63.72% 43.55% 41.06% 57.01% 59.52% 50.9% 50.79% 73.02% 65.03% 53.12% 49.05%
Gaussian LowPass Filter 71% 55% 43.93% 39.16% 56.96% 53.05% 51.18% 49.61% 73.26% 54.13% 53.46% 46.71%

Zoom Blur 70.96% 55.12% 43.44% 40.6% 56.66% 54.1% 50.27% 50.18% 72.98% 57.33% 52.47% 47.41%
ISO Noise Addition 71.2% 63.6% 44.08% 42.02% 57.04% 59.5% 51.52% 51.53% 73.22% 65.03% 52.94% 49.3%

Table 2. The Impact of 6 Image Augmentations on Model Performance (accuracy) over VQAv2 and CLEVR Datasets: Drop in per-
formance observed for every image augmentation compared to baseline performance, indicating a lack of robustness when exposed to
out-of-distribution settings.

(a)

(b)

Figure 4. The Impact of Six Image Augmentations on Model Performance (accuracy) over CLEVR Dataset: Variation observed in (a) color-
based questions, and (b) shape-based questions. (B: Baseline, MF: Median Filter, GNA: Gaussian Noise Addition, MNA: Multiplicative
Noise Addition, GLF: Gaussian Low-Pass Filter, ZB: Zoom Blur, INA: ISO Noise Addition)

Noise Addition, 3) Multiplicative Noise Addition, 4) Gaus-
sian Low Pass Filter, 5) Zoom Blur, and 6) ISO Noise Ad-
dition. We choose these augmentations as they entail multi-
ple aspects: image smoothing (median filtering), sampling
from varying distributions (Gaussian, Multiplicative, and
ISO Noises), and change in the frequency domain (Gaus-
sian Low Pass).

We randomly select 30K questions out of 75K in the
datasets and perform augmentation on their corresponding
images. Using these specific image and question pairs, we
evaluate the performance of the models with and without
performing augmentations whose accuracies are shown in
Table 2. It is apparent from the table that all models exhibit
a decline in performance when subjected to visual perturba-
tions across the VQAv2 and CLEVR datasets. This drop un-
derscores the challenge of maintaining robustness in multi-
modal foundation models when faced with alterations in the

visual aspects of input data. However, LLaMA-Adapter-V2
consistently demonstrates greater resilience to visual pertur-
bations compared to the other models across both datasets.
This suggests a higher level of adaptability to multiple vari-
ations in image characteristics.

Additionally, certain augmentations have a more pro-
nounced impact on model performance. For instance, Gaus-
sian, multiplicative, and ISO noise addition appear to have
a lesser impact on all three models compared to other aug-
mentation techniques. This observation indicates variations
in sensitivity to different types of visual alterations among
the models and that noise, across different distributions,
does not impact model performance significantly. It’s worth
noting that in some cases, especially with VQAv2, certain
augmentations result in significant performance drops, ex-
ceeding 20%. Similarly, in the CLEVR dataset, perfor-
mance dips of over 10% are observed for some augmenta-
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QT QF Question Answer

Original Q1 Are there any gray balls to the left of the yellow block? No
Q2 Is there an object that has the same material as the yellow sphere? Yes

NOT ¬Q1 Are there not any gray balls to the left of the yellow block? Yes
¬Q2 Is there not an object that has the same material as the yellow sphere? No

AND Q1 ∧Q2
Are there any gray balls to the left of the yellow block and
is there an object that has the same material as the yellow sphere? No

OR Q1 ∨Q2
Are there any gray balls to the left of the yellow block or
is there an object that has the same material as the yellow sphere? Yes

COMPLEX

Q1 ∨ ¬Q2
Are there any gray balls to the left of the yellow block or
is there not an object that has the same material as the yellow sphere? No

Q1 ∧ ¬Q2
Are there any gray balls to the left of the yellow block and
is there not an object that has the same material as the yellow sphere? No

¬Q1 ∨Q2
Are there not any gray balls to the left of the yellow block or
is there an object that has the same material as the yellow sphere? Yes

¬Q1 ∧Q2
Are there not any gray balls to the left of the yellow block and
is there an object that has the same material as the yellow sphere? Yes

Table 3. Illustration of question composition using conjunction and disjunction operations, used for experiments involving language
perturbations. (QT: Question Type, QF: Question Formula)

Augmentation
InstructBLIP LLaMA-Adapter-V2 LLaVA

VQAv2 CLEVR VQAv2 CLEVR VQAv2 CLEVR
Yes No Yes No Yes No Yes No Yes No Yes No

Original 80.9% 81.43% 49.31% 53.14% 71.62% 40.69% 53.71% 53.83% 42.76% 57.84% 65.76% 21.88%
NOT 43.71% 57.96% 40.61% 53.41% 66.63% 10.74% 65.54% 23.75% 39.71% 22.24% 64.03% 6.09%
AND 77.78% 68.46% 61.95% 28.48% 69.24% 28.12% 57.74% 41.84% 81.47% 77.24% 66.92% 7.23%
OR 71.82% 57.32% 72.07% 48.88% 81.73% 75.76% 75.95% 66.73% 72.24% 54.76% 75.44% 56.07%

COMPLEX 57.63% 57.32% 57.36% 36.61% 66.67% 2.95% 44.98% 42.98% 69.97% 59.41% 66.06% 4.63%

Table 4. Impact of Four Language Augmentations on F1-scores of ‘Yes’ and ‘No’ classes over VQAv2 and CLEVR Datasets with higher
scores indicated in bold: An increased disparity between the two classes leading to reduced fairness in the models as complex connectives
are introduced. We notice an increased bias with higher scores for the ‘Yes’ class, indicating an inclination towards affirmative responses.

tions. As mentioned in the previous section, we can observe
that the performance of the models on the CLEVR dataset
is worse compared to its on the VQAv2 dataset due to the
CLEVR dataset having images that are synthetic in nature
and require a more in-depth understanding of color, shape
and spatial reasoning compared VQAv2.

To gain deeper insights into the varying degrees of sensi-
tivity observed among different models and augmentations,
we perform experiments focused on questions related to
the physical aspects of objects in images from the CLEVR
dataset - color and shape, as summarized in Figure 4.

Color-based Questions All models show a decline in per-
formance on color-based questions. We hypothesize that
the diversity of colors present in the CLEVR dataset leads
to the models generating incorrect responses. InstructBLIP
exhibits the most substantial decline for color-related ques-
tions across the six augmentation methods, indicating a
higher sensitivity to color-centric changes. On the other
hand, LLaMA-Adapter-V2 and LLaVA display a more re-
silient performance.

Shape-based Questions Unlike color-based questions,
all three models display a similar dip in performance, with
LLaMA-Adapter-V2 being the best-performing model.

These results demonstrate the differing degrees of ro-
bustness among the three models in addressing color-related
questions while showing a similar decline when dealing
with shape-related questions. Notably, among all the aug-
mentations applied, the Gaussian Low Pass Filter consis-
tently proved to be the most disruptive, noticeably affecting
the models’ understanding of both color and shape proper-
ties in the images.

3.3. Language Perturbation

In this subsection, we turn our attention to the language
modality to investigate how the visual understanding of
these foundation models is impacted when faced with ques-
tions that are logical combinations of their original ques-
tions. Our objective is to analyze how these models han-
dle questions that entail combinations of logical operations
such as NOT, OR, AND, and COMPLEX, thereby introduc-
ing complexity to the question. For this, we curate questions

5319



Baseline Median Filter Gaussian Noise
Addition

Multiplicative
Noise Addition

  Gaussian Low
Pass Filter Zoom Blur  ISO Noise

Addition

Question: How many dogs are there?

GT: 1

Pred: 1

Question: What color is the truck?

GT: Red and White

Pred: White and Red

Pred: White and Blue

Question: What is the color of the

rubber cube?

GT: Red

Pred: Red

Question: Are there fewer tiny yellow

cylinders than yellow metal cubes?

GT: No

Pred: No

Pred: Red and White Pred: Red Pred: White Pred: White Pred: White and Red

Pred: 1 Pred: 1 Pred: 1 Pred: 2 Pred: 0 Pred: 1

Pred: Red Pred: Red Pred: Red Pred: Purple Pred: Red Pred: Red

Pred: YesPred: YesPred: YesPred: NoPred: NoPred: Yes

Figure 5. Illustrative results of LLaVA and the subsequent change in performance with various image augmentations.

from both datasets, each originally having a yes-no type an-
swer, and perform logical operations to create compound
questions. Table 3 illustrates an example of how the new
questions used in the experiments have been created. We
then balance the dataset by considering an equal number of
samples for both yes and no answer-type questions.

The initial analysis indicates that the models perform rel-
atively well on simple yes-no questions, achieving similar
F1-scores for the yes and no classes. However, on introduc-
ing complexity to the questions, a variation is observed, as
seen in Table. 4. The F1-score of the three models shows an
increase across most experiments for the yes class, consis-
tently achieving F1-scores over 70% on the VQAv2 dataset
and over 60% on the CLEVR dataset. These scores reflect a
better performance for yes-type answers when compared to
the original questions. However, a substantial drop in per-
formance is observed for the no-type answers, resulting in
an average gap of over 20% when compared to the perfor-
mance of the yes-type answers. This finding suggests that
these models have a tendency to lean towards affirmative
responses when faced with complex questions involving bi-
nary connectives.

4. Qualitative Results

We showcase qualitative analysis of our experiments in Fig-
ure 5 and 6, respectively. We present examples of the
LLaVA model since we find it to be the best-performing
model among the three models. In Figure 5, we illustrated
the effect of the multiple visual perturbations on the predic-
tions made by LLaVA. As we find quantitatively, the model
does not perform well on the Gaussian Low Pass Filter aug-
mentation, with a similar performance drop on the zoom
blur as well. For all other augmentations, the performance
delta is less but lower in comparison to the baseline perfor-
mance. Both in color and count-based questions, we find
that the model is close to the ground truth answer however,
it is not able to make an accurate prediction.

In Figure 6, we present the inability of the model to an-
swer complex reasoning questions. We find that, while the
model is able to answer simpler questions, on combining
them with another question leveraging logical operators, it
fails to understand the importance of the connectives. As
also described before, the model tends to answer in the af-
firmative when asked questions with multiple connectives
and especially when negation is involved.
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Question: Is there NOT a yellow vest?

GT: No Pred: No

Question: Is there a yellow vest OR are the skiers in a competition?

GT: Yes Pred: Yes

Question: Is there a yellow vest AND are the skiers NOT in a competition?

GT: No Pred: No

Question: Is this a zoo?

GT: Yes Pred: Yes

Question: Is this a zoo OR are all tree in this photo alive?

GT: Yes Pred: Yes

Question: Are any blue balls visible?

GT: Yes Pred: Yes

Question: Are any blue balls visible OR is the material of the green

block the same as the sphere right of the big matte sphere?

GT: Yes Pred: Yes

Question: Are any blue balls visible AND is the material of the

green block NOT the same as the sphere right of the big matte sphere?

GT: No Pred: No

Question: Is this NOT a zoo AND are all tree in this photo alive?

GT: No Pred: Yes

Question: Is the building behind the motorcycle all brick?

GT: No Pred: Yes

Question: Is the building behind the motorcycle all brick OR is this

a classic motorcycle?

GT: Yes Pred: No

Question: Is the building behind the motorcycle NOT all

brick AND is this a classic motorcycle?

GT: Yes Pred: No

Question: Is the shiny cylinder the same color as the big cylinder?

GT: No Pred: No

Question: Is there anything else that is the same material as the cyan

thing OR do the yellow block and the green object have the same size?

GT: Yes Pred: Yes

Question: Is there anything else that is the same material as the cyan

thing AND do the yellow block and the green object have the same size?

GT: No Pred: Yes

Question: Do the yellow block AND the green object not have the

same size?

GT: Yes Pred: No

Question: Are there lesser tiny cyan cylinders than cyan things

OR is the tiny shiny cylinder the same color as the big cylinder?

GT: Yes Pred: No

Question: Are there more tiny cyan cylinders than cyan things

AND is the tiny shiny cylinder the same color as the big cylinder?

GT: No Pred: Yes

a. 

b. 

c. 

a. 

b. 

c. 

a. 

b. 

c. 

a. 

b. 

c. 

a. 

b. 

c. 

a. 

b. 

c. 

Figure 6. Illustrative results of LLaVA and the subsequent change in performance when presented with questions that contain different
logical connectives.

5. Conclusion

In this work, we evaluate Multimodal Large Language
Models and benchmark their robustness and generalization
capabilities across datasets, vision-language augmentations,
and reasoning abilities. We find that model performance
shows a steady decline under distribution shift and presents
a fine-grained analysis across multiple attributes. Our find-
ings are crucial to fostering efficient and safe deployment
of foundational models in real-world settings, where distri-
bution shift is a common phenomenon. While our study
sheds light on the limitations of these models under var-
ious settings, we advocate for rigorous evaluation of ro-
bustness through stringent benchmarks. It is imperative
to acknowledge the potential limitations of our evaluation
model, Zephyr. While it serves as a valuable method in
evaluating the prediction, there exists a possibility that it
might also be susceptible to errors. This recognition under-
scores the importance of ongoing scrutiny and refinement

of the models, ensuring that its outputs remain accurate and
reliable. Moving forward, efforts should also be directed
towards implementing robust validation processes and con-
tinuously improving the model to mitigate such risks. As
these systems are actively deployed in real-world settings,
it is imperative that these failures are better understood and
addressed. We believe our findings are a first step towards
this and can be used as a means for better utilization of foun-
dational models in vision and language tasks.
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