
Supplementary materials for:
Diagnostic Benchmark and Iterative Inpainting

for Layout-Guided Image Generation

Appendix
In this Appendix, we provide additional ITERINPAINT ex-
periments, including image generation with user-defined
layouts, interactive image manipulation, ablation studies,
and training on COCO images (Sec. A), LAYOUTBENCH-
COCO details (Sec. B), examination of CLEVR GT layout
accuracy (Sec. C), additional GAN baseline (Sec. D), and
additional LAYOUTBENCH image samples (Sec. E).

A. Additional ITERINPAINT Experiments

Layout ReCo ITERINPAINT

Table 7. Image generation from some user-defined layouts with
ITERINPAINT and ReCo trained on CLEVR. On the leftmost col-
umn, we show three input layouts: (1) two rows of objects with
different sizes, (2) ‘AI’ written in the text, and (3) a heart shape.

A.1. Image Generation with User-defined Layouts

Table 7 shows image generation results from user-defined
layouts with CLEVR objects: (1) two rows of objects with
different sizes, (2) ‘AI’ written in the text, and (3) a heart

shape. While ReCo often fails to ignore or misplace some
objects, ITERINPAINT places objects significantly more ac-
curately. This shows the high robustness of ITERINPAINT,
which can follow even more abstract and complex than the
automatically generated layouts of LAYOUTBENCH.

A.2. Interactive Image Manipulation

Figure 6 shows interactive image manipulation examples.
With ITERINPAINT, users can interactively remove or add
objects from a given image at arbitrary locations. When
removing objects, we use a prompt ‘Add gray background’.

Add
cyan metal cube

Add
purple metal cylinder

Remove
brown metal cube

Remove
red metal cube

Figure 6. Interactive image manipulation with ITERINPAINT.
Users can create a binary mask (white: region to update / black:
region to preserve) to add or remove objects at custom locations.

A.3. ITERINPAINT Ablation Study

Pasting vs. Repaint. Instead of crop&paste, we experi-
ment the repainting the entire image during the inference.
As shown in Tab. 9, repainting results in -12.1% AP. Tab. 8
shows that the repaint-based update encodes/decodes the

1



Update Intermediate Generation GT image

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
Prompts Add gray rubber sphere Add green metal sphere Add purple metal cylinder Add purple rubber cube Add cyan rubber cylinder Add gray background

Crop&Paste
(default)

Repaint

Table 8. Intermediate generation samples of ITERINPAINT with crop&paste (top) and repaint (bottom) based image updates.

Image Update FG/BG Training Ratio Generation Order Checkpoint LAYOUTBENCH AP

Crop & Paste 3:7 Random SD Inpaint 36.5

Repaint 24.4 (-12.1)

1:9 36.0 (-0.5)
2:8 35.2 (-1.3)
4:6 35.8 (-0.7)
5:5 35.0 (-1.5)
6:4 34.4 (-2.1)
7:3 34.2 (-2.3)
8:2 34.2 (-2.3)
9:1 32.9 (-3.6)

10:0 (No BG) 27.5 (-9.0)

Top → Bottom 37.2 (+0.7)
Bottom → Top 36.1 (-0.4)

SD v1.4 31.4 (-5.1)

Table 9. Ablation studies on ITERINPAINT

whole image at each step and suffers from error propaga-
tion (i.e., early objects get distorted with step progress).

Training task ratio for foreground & background in-
painting. Sec. 4.3 in the main paper shows the LAY-
OUTBENCH layout accuracy with different ratios for fore-
ground/background inpainting tasks. We found that the 3:7
ratio performs best, but other task ratios perform similarly,
except for the case of 10:0, where not using background in-
painting tasks results in a significant -9.0% drop in AP.

Object generation order. Because of the camera angle of
CLEVR simulator, if there is an occlusion between objects,
it always takes the form of an object in the bottom (front),
occluding the object above it in 2D coordinates. We com-
pare 3 generation orders for rendering objects given the
spatial coordinates: top→bottom, bottom→top, and ran-
dom. Unlike other iterative generation models that are sen-
sitive in generation orders [1, 6], Tab. 9 shows that ITER-
INPAINT achieves similar AP with all 3 generation orders.
The robustness in arbitrary generation order would be use-
ful when users want to manipulate object layouts without
re-rendering images from scratch.

SD Checkpoint. In our experiments, the SD ‘inpainting’
checkpoint 1 shows slightly better layout accuracy than v1.4
checkpoint2, so we use the inpainting checkpoint by default
for ITERINPAINT.

1https : / / huggingface . co / runwayml / stable -
diffusion-inpainting

2https : / / huggingface . co / CompVis / stable -
diffusion-v1-4

A.4. Training on COCO images

Although our main focus is constructing a diagnostic LAY-
OUTBENCH benchmark with full scene control and evaluat-
ing the layout-guided image generation models, we also test
whether our proposed ITERINPAINT baseline model could
also perform well on real images. We train ITERINPAINT on
MS COCO [5] train2014 split, for around 100 epochs with
batch size 512 (after applying gradient accumulations). In
Table 10, we show some image generation samples from
ReCo (COCO checkpoint) and ITERINPAINT from COCO
layouts, where both models could locate objects in the cor-
rect positions. In Table 11, we show some arbitrary cus-
tom layouts with COCO objects. While both models are
correct in object locations, ReCo sometimes fails to place
wrong objects that are frequent in a given layout, while
ITERINPAINT shows a more precise object recognition per-
formance. Note that the original ReCo model was trained
with much bigger expensive training resources (e.g., ReCo
uses batch size 2048 vs. our ITERINPAINT uses batch size
512), and we leave bigger scale training and hyperparame-
ter tuning to future works.

B. LAYOUTBENCH-COCO Details

B.1. Dataset

The LAYOUTBENCH-COCO (Sec. 5.5 in the main pa-
per) benchmarks layout-guided image generation models
in zero-shot fashion. Following the design of LAYOUT-
BENCH, LAYOUTBENCH-COCO measures four skills:
number, position, size, and combination. The idea of num-
ber/position/size skills is essentially the same as those splits
of LAYOUTBENCH, while we replace the shape skill of
LAYOUTBENCH with a new ‘combination’ skill. The com-
bination skill measures whether a model can generate un-
common combinations of two objects, which is a specifi-
cally interesting evaluation scenario for zero-shot models;
for LAYOUTBENCH evaluation, the models finetuned on
CLEVR have seen many combinations of different objects,
so the combination of different objects is a less interesting
problem.

For each skill, we first define 2D bounding box layouts
without specifying objects. Then, we compose COCO [5]

https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/CompVis/stable-diffusion-v1-4


Layout GT image ReCo ITERINPAINT

Table 10. Image generation samples with COCO layouts (in-distribution) from ITERINPAINT and ReCo.

Layout ReCo ITERINPAINT

Table 11. Image generation samples with custom layouts with COCO objects (out-of-distribution) from ITERINPAINT and ReCo.

objects for each layout. This process ensures that the lay-
outs have balanced distributions among objects. In total,
LAYOUTBENCH-COCO provides 2,120 layouts. In Ta-
ble 12, we show example layouts for each skill. In the fol-
lowing, we describe how we create the layouts for each skill
in detail.
Skill 1: Number. We define two layouts for 2∼10 objects

and use 40 COCO objects, resulting in 720 total layouts (=
2×9×40). We name the layouts with 2∼4 and 8∼10 objects
as few and many splits. The layouts are paired with captions
with a template “a photo of [N] [objects]”.
Skill 2: Position. For each of boundary and center splits,
we define four layouts with 40 COCO objects, resulting
in 320 total layouts (= 2 × 4 × 40). The layouts are



Skill 1: Number

Skill 2: Position

Skill 3: Size

Skill 4: Combination

Table 12. Example layouts and captions of the four skills of LAYOUTBENCH-COCO.

paired with captions with a template “a photo of [N]
[objects]”.

Skill 3: Size. For each of tiny and large splits, we define
nine layouts with 40 COCO objects, resulting in 720 total
layouts (= 9×2×40). The layouts are paired with captions
with a template “a photo of [N] [objects]”.

Skill 4: Combination. This skill measures whether a
model can generate two objects that commonly or uncom-
monly appear in the real world. For each of the three spa-
tial relations (holding, next to, sitting on), we define three
layouts without specifying objects. For each of the three
relations, we manually define 20 object pairs of COCO ob-
jects for common and uncommon splits. For example, (1)
‘person sitting on chair’ is more common than (2) ‘elephant
sitting on banana’ in real life. This results in 360 total lay-
outs (= 2×3×3×20). The layouts are paired with captions
with a template “[objA] [relation] [objB]”.

B.2. Qualitative Examples

In Table 13 and Table 14, we show sample images generated
by different layout-guided image generation models from
LAYOUTBENCH-COCO layouts.

C. CLEVR GT Layout Accuracy

In Table 2, the AP on CLEVR GT images (60.7) is not as
high as that of LAYOUTBENCH GT images (90.7). This
is because of the noise of the bounding box annotations
provided by [4]. CLEVR [3] images are collected by (1)
sampling scene parameters such as object attributes, posi-
tions, lighting, and camera positions and (2) rendering im-
ages. However, the public CLEVR scene files do not con-
tain the original bounding box coordinates and randomly
jittered camera positions, which makes it impossible to pre-
cisely reconstruct the original bounding box coordinates



Skill 1: Number Skill 2: Position Skill 3: Size Skill 4: Combination
few many center boundary tiny large common uncommon

Captions 4 chairs 10 cars 5 buses 5 suitcases 3 cars 3 broccolis person is holding tennis racket parking meter is next to clock

ControlNet

GLIGEN

ReCo

ITERINPAINT

Table 13. Example images generated by four different methods given four splits of caption and layouts from LAYOUTBENCH-COCO. For
number/position/size skills, the captions have the prefix ‘a photo of’ before the ‘[N] [objects]’ text.

Skill 1: Number Skill 2: Position Skill 3: Size Skill 4: Combination
few many center boundary tiny large common uncommon

Captions 4 suitcases 9 broccolis 5 motorcycles 4 benches 3 umbrellas a surfboard handbag is holding cell phone fire hydrant is next to bed

ControlNet

GLIGEN

ReCo

ITERINPAINT

Table 14. Additional example images generated by four different methods given four splits of caption and layouts from LAYOUTBENCH-
COCO. For number/position/size skills, the captions have the prefix ‘a photo of’ before the ‘[N] [objects]’ text.

of CLEVR images.3 Krishna et al. [4] provides bounding
box annotations for CLEVR by approximating camera posi-
tions, but the annotations still have some errors. In Table 15,
we compare (1) bounding box annotations provided by [4]
(colored in blue) and (2) object detection results based on
our LAYOUTBENCH-trained DETR (colored in red), where
our DETR outputs boxes that bound the objects more tightly

3https : / / github . com / facebookresearch / clevr -
dataset-gen/blob/9742828c3667e81d5c381dbe1a0bcae4c1a7e89a/
image_generation/render_images.py#L270-L273

than the box annotations from [4]. On the test set of these
re-rendered CLEVR images with precise bounding boxes,
our DETR object detector could achieve 99% AP.

D. Additional GAN Baseline

In addition to the denoising diffusion models (LDM and
ReCo), we also experiment with Hintz et al. [2], a GAN-
based layout-guided image generation approach as our
baseline on CLEVR and LAYOUTBENCH layout experi-
ments. As shown in Table 16, while Hintz et al. tend to

https://github.com/facebookresearch/clevr-dataset-gen/blob/9742828c3667e81d5c381dbe1a0bcae4c1a7e89a/image_generation/render_images.py#L270-L273
https://github.com/facebookresearch/clevr-dataset-gen/blob/9742828c3667e81d5c381dbe1a0bcae4c1a7e89a/image_generation/render_images.py#L270-L273
https://github.com/facebookresearch/clevr-dataset-gen/blob/9742828c3667e81d5c381dbe1a0bcae4c1a7e89a/image_generation/render_images.py#L270-L273


Table 15. CLEVR images with (1) bounding box annotations provided by Krishna et al. (2018) [4] (colored in blue) and (2) object detection
results based on our LAYOUTBENCH-trained DETR (colored in red).

place objects in correct locations, the objects are much blur-
rier than the other diffusion models LDM, ReCo, and ITER-
INPAINT. The low image quality makes the objects very
hard to recognize (i.e., we could not tell whether a gener-
ated object is a cylinder, a cube, or a sphere), making the
model achieve much worse image quality (e.g., 180.9 FID
on CLEVR) and layout accuracy (e.g., 1.8 % AP on LAY-
OUTBENCH) metrics.

E. Additional Image Generation Samples on
LAYOUTBENCH

In the following Table 17, Table 18, Table 19, Table 20, Ta-
ble 21, Table 22, Table 23, and Table 24, we show additional
image samples of LAYOUTBENCH and model generation
results.

References
[1] Jaemin Cho, Jiasen Lu, Dustin Schwenk, Hannaneh Ha-

jishirzi, and Aniruddha Kembhavi. X-LXMERT: Paint, Cap-
tion and Answer Questions with Multi-Modal Transformers.
In EMNLP, 2020. 2

[2] Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Generating
multiple objects at spatially distinct locations. In ICLR, 2019.
5, 7

[3] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A
diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2901–2910,
2017. 4

[4] Ranjay Krishna, Ines Chami, Michael Bernstein, and Li Fei-
Fei. Referring Relationships. In CVPR, 2018. 4, 5, 6

[5] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
ECCV, 2014. 2

[6] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-Shot Text-to-Image Generation. In ICML, 2021. 2



Method
CLEVR LAYOUTBENCH

val Number Position Size Shape
few many center boundary tiny large horizontal vertical

GT

Hintz et al. [2]

Table 16. Images generated by Hintz et al. [2] on CLEVR (ID) and LAYOUTBENCH (OOD) layouts. GT boxes are shown in blue.



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 17. Additional LAYOUTBENCH Number-few task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows: Images
with GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 18. Additional LAYOUTBENCH Number-many task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows: Images
with GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 19. Additional LAYOUTBENCH Position-boundary task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows:
Images with GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 20. Additional LAYOUTBENCH Position-center task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows: Images
with GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 21. Additional LAYOUTBENCH Size-tiny task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows: Images with
GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 22. Additional LAYOUTBENCH Size-large task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows: Images with
GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 23. Additional LAYOUTBENCH Shape-horizontal task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows:
Images with GT boxes (in blue) and object detection results (in red).



GT

LDM

ReCo

ITERINPAINT
(Ours)

GT

LDM

ReCo

ITERINPAINT
(Ours)

Table 24. Additional LAYOUTBENCH Shape-vertical task samples. Top 4 rows: Images with GT boxes (in blue). Bottom 4 rows: Images
with GT boxes (in blue) and object detection results (in red).


	. Additional IterInpaint Experiments
	. Image Generation with User-defined Layouts
	. Interactive Image Manipulation
	. IterInpaint Ablation Study
	. Training on COCO images

	. LayoutBench-COCO Details
	. Dataset
	. Qualitative Examples

	. CLEVR GT Layout Accuracy
	. Additional GAN Baseline
	. Additional Image Generation Samples on LayoutBench

