
Abstract

In recent years, Face Anti-Spoofing (FAS) has played a
crucial role in preserving the security of face recognition
technology. With the rise of counterfeit face generation
techniques, the challenge posed by digitally edited faces to
face anti-spoofing is escalating. Existing FAS technologies
primarily focus on intercepting physically forged faces and
lack a robust solution for cross-domain FAS challenges.
Moreover, determining an appropriate threshold to
achieve optimal deployment results remains an issue for
intra-domain FAS. To address these issues, we propose a
visualization method that intuitively reflects the training
outcomes of models by visualizing the prediction results on
datasets. Additionally, we demonstrate that employing
data augmentation techniques, such as downsampling and
Gaussian blur, can effectively enhance performance on
cross-domain tasks. Building upon our data visualization
approach, we also introduce a methodology for setting
threshold values based on the distribution of the training
dataset. Ultimately, our methods secured us second place
in both the Unified Physical-Digital Face Attack Detection
competition and the Snapshot Spectral Imaging Face
Anti-spoofing contest. The training code is available at
https://github.com/SeaRecluse/CVPRW2024.

1. Introduction
Face recognition technology is currently widely used in

areas such as access control, facial payment systems, and
device unlocking. These applications all require validation
of the face's reliability, namely determining whether it
represents real face data. Traditional biometric
identification attacks have mostly originated from
real-world physical attacks, such as using 2D/3D printed
objects for spoofing or high-definition electronic replay
attacks. To ensure the reliable use of face recognition
systems, a series of face anti-spoofing competitions[1][2][3]
have been organized to enhance performance. There are
also many effective FAS methods that have been
proposed[4][5][6][7][8] . However, in recent years, with the rise
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of technologies like GAN[9] or Stable Diffusion[10], and the
widespread use of applications like deepfake[11], digital
editing of faces has posed a significant challenge to the
authenticity of faces in images or videos. Consequently, a
series of algorithms[12][13] designed to determine whether a
face has been digitally tampered with have emerged.
Considering both aspects as extensions of the FAS task,
CVPRW2024 has created a dataset and established three
tracks to study hybrid and cross-domain data, aiming to
integrate interception techniques for physically forged and
digitally edited faces.
To study the distribution of data across different

domains and to measure the effectiveness of model
training, we proposed a method for visual analysis using
prediction results. Through validation, we discovered how
techniques like downsampling and Gaussian blur enhance
the model's generalization capabilities. Downsampling
tends to enlarge the data domain, while Gaussian blur
makes classes more cohesive within themselves.
Additionally, using this visualization method, we found
that traditional threshold determination methods based on
metrics like ACER[14] might not be well-suited for
deployment scenarios. Consequently, we also introduced
an approach for determining thresholds based on our
visualization analysis scheme.

2. Related Work

2.1. Data visualization tasks
Visualization of data is often performed to interpret and

analyze the effects of a model. Existing visualization
methods are mostly designed by depicting the areas of
response on the model with respect to the data, such as
with tools like Captum[15]. However, these methods do not
provide direct guidance for optimizing Face Anti-Spoofing
(FAS) tasks, nor do they reveal how out-of-domain data
performs on the model.

2.2. Analysis of the role of data augmentation
The analysis of the effectiveness of data augmentation

in deep learning tasks has been ongoing[16][17]. Although
validations, such as downsampling and Gaussian blur,
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have proven to effectively enhance generalization, they
have not been clearly demonstrated through quantitative
analysis. Therefore, exactly how data augmentation
operations specifically affect model performance remains
a worthy subject for research.

2.3. Threshold selection in FAS tasks
In the FAS (Face Anti-Spoofing) domain, common

methods for determining thresholds are usually based on
the following performance metrics:
ACER (Average Classification Error Rate): The

threshold when calculating equal error rates.
ROC[18] (Receiver Operating Characteristic):

Calculation of a set of TPR-FPR pairs, using the threshold
that meets a specific criterion when FPR-TPR is greater
than a certain standard, for example using FPR = 0.1% and
TPR > 99%.
The primary issue with the above threshold selection

methods is that they calculate only proportionate values. In
AI tasks, after training, the scores of difficult samples often
differ greatly from those of easy ones. The identification of
challenging samples typically relates to the strength of the
model's generalization abilities. This is particularly critical
for cross-domain tasks, where easy samples may not play a
significant role.

3. Methodology
In this section, we will first define some basic concepts

such as prediction center ���������� , data radius ������,
and data density �������. These will assist in establishing
our data visualization. Sec. 3.1 will introduce these
concepts in detail and demonstrate the effects of data
visualization. Sec. 3.2 will show the changes in the data
domain after undergoing downsampling and Gaussian blur
processes, and, in conjunction with the data distribution of
Unified Physical-Digital Face Attack Detection, present
our hypothesis. Sec. 3.3 will exhibit the effects under
different threshold settings based on our visualized
patterns and propose our method for setting thresholds.
Lastly, we will validate our hypothesis through
experiments in Sec. 4.

3.1. Select prediction center point
During the training of supervised tasks, we typically

assign different label values for different classes. However,
due to the calculation method of loss, it is usually the case
that the loss cannot reach zero. Therefore, the label values
do not represent the actual prediction center after model
training. We need to determine the true prediction center
based on the predicted scores from the training or
validation set.

For a set of prediction scores, �����, after we sort them
from smallest to largest, there are several methods to
determine the center value of �����.

Use mean value. Eq. 1 This is probably the most
common way.

�������� = � = 1
� �������

� 1

Use median values. Eq. 2 This ensures that the
amount of data on both sides of the prediction score is
balanced.

���������� =
����� �

2
+ ����� �+1

2

2
2

Use distance equal values. Eq. 3 The sum of the
distances between the two segments of the predicted score
to reach this value is balanced. This takes into account
difficult samples and some singular values.

����������� = �����

� = 1

� − 1

����� − ������� =
� = � + 1

�

������ − ������ 3

Use weighted distance equal values. Eq. 4 Similar to
the selection of distance equal values, on top of this, the
prediction score is additionally used as a weight for
weighting. Doing so will amplify the impact of difficult
samples far from the center point.

��������ℎ��� ������� = �����

� = 1

� − 1

(����� − ������)2� =
� = � + 1

�

(������ − �����)2� 4

Assuming that we use any of the above calculation
methods to obtain the ���������� , use ������ Eq. 5 to
determine the radius of the prediction data domain, in the
common FAS two-classification task, we can draw a
two-dimensional prediction area on the predicted
one-dimensional 0-1 coordinate axis.

������ = ���(���������� − ���(�����),
���(�����) − ����������) 5

Using randomly generated data samples of length 500
that conform to a Gaussian distribution with a standard
deviation of 0.1, we have plotted the prediction region
diagrams Figure 1 using the above four methods as
���������� points.
Taking into account computational complexity as well

as the importance of focusing on difficult samples, in this
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paper we consistently use distance equal values as central
points for visualization drawing.

Figure 1: The differences in visualized images drawn using four
types of confirmed Predcenter are used. It can be observed that
when taking into account the 'distance equal', the predicted
distribution exhibits more pronounced stratified variability.

3.2. Study on Data Domain Variations
We conducted a study on how downsampling and

Gaussian blur improve the model's generalization
capabilities in Figure 2.
Downsampling reduces dimensionality and thus loses

high-frequency information such as edges and textures, but
it still preserves the core features; moreover, the noise
introduced by downsampling can extend the boundaries of
the original data domain.
Gaussian blur, by averaging the values of neighboring

pixels, can help suppress noise and highlight underlying
features, thereby making the original data domain more
cohesive.
In the Unified Physical-Digital Face Attack Detection

competition, we can observe that for FAS tasks, the Phys
data domain and the Adv/Digital data domain are markedly
different. If represented on a one-dimensional data axis
ranging from 0 to 1, with 0 as the label for a real face, the
data domains would be distributed from left to right as
follows: Live - Adv/Digital - Phys. Therefore, if one
wishes to generalize to other datasets using only one
specific data domain, it is necessary to employ data
augmentation techniques to diffuse the data domain
boundaries. We then validated that downsampling and
Gaussian blur as forms of data augmentation serve
different purposes in Figure 3.

Figure 2: The model, after being trained with downsampling and
Gaussian blur, will show changes similar to those illustrated in
the figure when the visualization of predicted data results is
performed.

Figure 3: In the Unified Physical-Digital Face Attack Detection
competition, we have a total of three tracks, and the data among
the three tracks are not shared. For genuine face data, the data is
completely consistent across all three tracks. However, for attack
face data, Track 1 possesses all types of fake face data, and its test
set will also include all types of fake face data. Conversely,
Tracks 2 and 3 each contain only one type of fake face data in
their training sets, but they are required to validate another type of
fake face data that is not included in the training set on their test
sets.

Additionally, since the visualization of predicted data
through changes in radius only provides an intuitive
feeling, we still need a means to perform quantitative
analysis with specific data. It is not the case that a larger
radius in the data domain necessarily indicates more
dispersed data. Therefore, we have defined a standard
value ��������� Eq. 6 and a density value
������� Eq. 7 to indicate the concentration of data
within the data domain.
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Ideally, ��������� should be close to 1. If it is very
large or very small, it indicates the presence of extremely
difficult samples in the data domain. And ������� , the
smaller it is, the more concentrated the distribution;
conversely, the larger it is, the more dispersed the
distribution.
Therefore, if downsampling are performed, the change

of ��������� will be more obvious. And if Gaussian blur
is applied, the ������� is significantly reduced.

3.3. Study on threshold setting
After the model training is complete, another challenge

is how to find an appropriate threshold on the validation set
in hopes that the model will perform well in actual
deployment. The training set is prone to overfitting and
may result in extreme classification scenarios. Even if the
prediction center points of the validation set and training
set are consistent, the sizes of the data domains they
contain may differ. Using traditional methods such as
ACER to determine the threshold may not necessarily
represent the optimal choice for FAS tasks.

Figure 4: The figure shows a set of visualized images of predicted
scores for the training and test sets. The left side represents the
training set, while the right side is the test set. In the left image,
the green vertical lines represent the boundaries of the two data
domains. It is not difficult to see that due to the high distinction
between positive and negative samples in the training set, any
score within the region from the left vertical line to the right
vertical line can serve as a threshold for ACER in the training set.
However, by comparing with the test set, it is evident that not
every threshold will achieve the expected results on the test set.

In Figure 4, we should be able to employ more
sophisticated means to select thresholds. Referring to the
method of choosing central points in Section 3.1, we can
see that the selection method for �ℎ���ℎ������� Eq. 8
corresponds to calculating the median value, representing
an expectation that the proportions of genuine and fake
samples correctly predicted are equal .

n = 1
N ����(������� < �ℎ���ℎ������� )�

N

= m= 1
M ����(������� > �ℎ���ℎ�������)�

M 8

Figure 5: The figure illustrates another common situation
encountered during training, where the training set cannot fully
converge, and different data domains consistently have
overlapping regions.

In Figure 5, when two predicted data domains intersect,
the threshold corresponding to the point of intersection of
the domains can be calculated using the cosine theorem.If
the two data zones do not intersect, it is defined as the
intermediate value between the two data and the boundary.
Alternatively, a balanced threshold �ℎ���ℎ����������

Eq. 9 could be employed using the point of balance
between the distances reached by the two data domains.

�ℎ���ℎ���������� ∈ ��������, ��������

� = 1

�

�ℎ���ℎ���������� − ��������

=
� = 0

�

������� − �ℎ���ℎ����������� 9

Although �ℎ���ℎ������� has proven its effectiveness
through long-term practice, we can still introduce more
threshold selection methods to ensure the model exhibits
its due performance in actual deployment.

4. Experiments
In this section, we conducted extensive experiments

based on data from the Unified Physical-Digital Face
Attack Detection competition and the Snapshot Spectral
Imaging Face Anti-spoofing contest. Next, in Sec 4.1, we
will introduce the data distribution and testing criteria for
the Unified Physical-Digital Face Attack Detection
competition. In Sec 4.2, we will present our model
performance without data augmentation and after
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downsampling and Gaussian blur, followed by data
analysis. In Sec 4.3, we will show the data distribution and
testing criteria for the Snapshot Spectral Imaging Face
Anti-spoofing contest. Sec 4.4 will provide visualized
graphs of prediction scores after training with different
data processing methods and demonstrate the specific
performance of using different thresholds on the model .

4.1. Datasets and Metrics for competitions 1
Unified physical-digital Attack dataset, namely

UniAttackData. The dataset consists of 1,800
participations of 2 and 12 physical and digital attacks,
respectively, resulting in a total of 29, 706 videos.Protocol
1aims to evaluate under the unified attack detection task.
Unlike the classical single-class attack detection, the
unified attack data protocol contains both physical and
digital attacks. The huge intra-class distance and diverse
attacks bring more challenges to the algorithm design.
Protocol 2 evaluates the generalization to “unseen” attack
types. The large differences and unpredictability between
physical-digital attacks pose a challenge to the portability
of the algorithms.
they use the “leave-one-type-out testing” approach to

divide Protocol 2 into twosub-protocols, where the test set
for each self-sub-protocol is an unseen attack type. the test
set of protocol 2.1 contains only physical attacks that have
not been seen in the training and development sets, and the
test set of protocol 2.2 contains only digital attacks that
have not been seen in the training and development set.

Performance Metrics. Three metrics, i.e., Attack
Presentation Classification Error Rate (APCER), Bona
Fide Presentation Classification Error Rate (BPCER), and
Average Classification Error Rate (ACER) [14] are utilized
for performance comparison. They can be formulated as

����� =
��

�� + ��

����� =
��

�� + ��

���� =
����� + �����

2
10

where ��, ��, �� and �� denote the false positive, false
negative, true negative and true positive sample numbers,
respectively. ACER is used to determine the final
ranking in ChaLearn Face Anti-spoofing Attack Detection
Challenge@CVPR2024.

4.2. Implementation Details for competitions 1
One of the purposes of this paper is to tackle

cross-domain issues by validating data augmentation
methods; therefore, we did not engage in further selection
of backbone networks. In the end, we solely utilized

ConvNeXtv2-B[19] as our backbone network. Given the
complexity of cross-domain tasks, techniques such as label
smoothing[20] and cut-mix[21] were also incorporated into
the training but were not used as variables for comparison.
The training parameters across all protocols are nearly
consistent.
Considering that Protocol 1 (p1) includes all types of

attack data, we did not perform any additional data
augmentation on p1. However, p2 involves cross-domain
attack data, and training with the original data would lead
to cross-domain data being almost indistinguishable. As
shown in Figure 3, we applied different data augmentation
techniques to p2.1 and p2.2 respectively. We believe there
exists a relative distance relationship between
live-advs/digi-phys. Therefore, by applying data
augmentation to a certain category of data to change its
data distribution domain, it is possible to distinguish
cross-domain data. Specifically, for p2.1 data, we
performed 2x downsampling data augmentation on live
data and then applied Gaussian blur to all data during
training. For p2.2 data, we conducted 2x/4x/8x
downsampling data augmentation on phys attack data. The
reason we do not apply uniform data augmentation to all
types of data is twofold. On one hand, the downsampling
operation, while expanding the data distribution domain,
also introduces noise, and we prefer not to introduce
excessive irrelevant information. On the other hand, due to
the application of the cut-mix technique, augmenting one
category of data can influence the training outcomes of
other categories. Table 1 shows the changes in the
predicted scores of models on their respective datasets
before and after data augmentation. Table 2 presents the
changes in the distribution of predicted scores across
different datasets through model cross-inference.
Urthermore, through the ������ , ��������� and

������� , Tables 3 and 4 also intuitively show the
numerical changes corresponding to different operations.
Clearly, the downsampling operation makes the data
domains more expansive, while Gaussian blur tends to
concentrate the data within the domains.
It can be observed that the resize data augmentation

operation, after expanding the data domain, can
significantly alter the balance point between classes.
However, it does not make a noticeable change to the
density of the data domain itself. On the other hand, the
Gaussian blur operation can significantly change the
density of the data itself, making it more cohesive.
Considering that each task has a different ratio of sample

quantities, this may be one of the reasons why the resize
operation has varying degrees of impact on the balance
point.
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Model-P1 Model-P2.1
(Orig)

Model-P2.1
(Extend)

Model-P2.2
(Orig)

Model-P2.2
(Extend)

Correct
Dataset
Train

Correct
Dataset
Dev

Model-P1 Model-P2.1
(Orig)

Model-P2.1
(Extend)

Model-P2.2
(Orig)

Model-P2.2
(Extend)

Dataset
Train-P1

Dataset
Train-P2.

1

Dataset
Train-P2.

2

Dataset
Dev-P1

Dataset
Dev-P2.1

Dataset
Dev-P2.2

Table 1: The visualization results of the predicted scores on their corresponding training and validation sets for models in
each track.

Table 2: The visualization results of the predicted scores for models in each track on different training and validation sets.
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Dataset
train

Model
P2.1 Radius Normalize Density

Live Face
Orig 0.16387 0.06212 0.00492

Extend 0.17958 0.03163 0.00293

All Fake
Face

Orig 0.17167 4.58766 0.32506

Extend 0.17984 6.51122 0.22755

Phys Fake
Face

Orig 0.13114 1.63312 0.63237

Extend 0.15308 2.63840 0.43475

Adv/Digital
Fake Face

Orig 0.20740 16.86177 0.00214

Extend 0.20267 16.50409 0.00181

Table 3: The changes in predicted scores for each dataset before
and after the data augmentation operation on p2.1 data.

Dataset
train

Model
P2.2 Radius Normalize Density

Live Face
Orig 0.02316 2.76702 0.06564

Extend 0.22304 0.12164 0.05546

All Fake
Face

Orig 0.15432 0.70159 0.52670

Extend 0.22453 6.46501 0.04794

Phys Fake
Face

Orig 0.14907 3.39799 0.01001

Extend 0.23244 16.75847 0.01381

Adv/Digital
Fake Face

Orig 0.18679 0.18797 0.12584

Extend 0.19596 3.35089 0.16948

Table 4: The changes in predicted scores for each dataset before
and after the data augmentation operation on p2.1 data.

4.3. Datasets and Metrics for competitions 2
HySpeFAS, which contains 6760 hyperspectral images

reconstructed from SSI images by TwIST algorithm. Each
hyperspectral image contains 30 spectral channels.
Meanwhile, as illustrated in Figure 6, the organizers have
provided a proprietary algorithm for linearly combining
the 30-channel data into 3-channel PNG format images
intended for visualization. Participants are allowed to train
and perform inference using these three-channel PNG
images instead of the entire 30 channels of data. This
competition aims to encourage the exploration of spectral
anti-spoofing algorithms suitable for SSI images, and to
promote research on new spectroscopic sensor face
anti-spoofing algorithms.
Performance Metrics, There is no fixed algorithm for

confirming the threshold. Contestants must perform a
binary classification of the predicted data based on the

threshold they select. Finally, the error rate is determined
using the method for calculating ACER.

Figure 6: The PNG images are a condensed version of the MAT
data, created by applying a linear transformation to reduce the
image channels from 30 down to 3. This conversion is designed
solely to facilitate easier visualization.

4.4. Implementation Details for competitions 2
Similar to the training configuration for competition 1 in

4.2, we utilized the ConvNeXtv2-B network with a
pretrained model as our training backbone too, and we
incorporated training enhancement techniques such as
label smoothing and cut-mix. Considering that the PNG
data is a condensed version of the original data, excessive
preprocessing could potentially distort the original data
distribution. Therefore, during data augmentation, we only
subjected the negative samples to 2x downsampling with a
50% probability. In the model training phase, we solely
relied on simple color jittering and horizontal flipping for
data enhancement, along with applying Gaussian blur to all
the data.
According to Tables 5 and 6, this also shows the impact

of downsampling and Gaussian blur on the data domain.
Based on the visualization results and the statistical data in
Table 7 and Figure 7, it is not difficult to see that the ACER
value corresponding to the training set may not achieve the
same reliable effect on the validation set. Therefore, we
finally chose to use the balanced threshold as the model’s
threshold selection. The effect of the balanced threshold
may not necessarily be better than the threshold
corresponding to ACER, but it can help us choose a more
reasonable threshold for the model.
In Table 6, it also can be seen that the density of the data

domain subjected to Gaussian blur without downsampling
augmentation has not changed significantly. This suggests
that the original data distribution is already very compact,
with no space for further consolidation. Therefore, it is
necessary to perform downsampling in order to enhance
generalization.
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Dataset-Train Dataset-Dev

Original data

Original data
With

Gaussian blur

Extended
data

Extended
data
With

Gaussian blur

Table 5: Visualization of model prediction scores before and after
using different data augmentation methods.

SSI
Data
Type

Dataset-Train Radius Normalize Density

Live
Face

Original data 0.42396 21.29378 0.01761
Original data

With
Gaussian blur

0.31287 12.10329 0.0175

Extended data 0.01877 0.8796 0.23657
Extended data

With
Gaussian blur

0.01315 0.67605 0.21732

Fake
Face

Original data 0.00878 0.98633 0.17133
Original data

With
Gaussian blur

0.00639 1.0597 0.17594

Extended data 0.02269 0.43808 0.05105
Extended data

With
Gaussian blur

0.00324 0.99691 0.1781

Table 6: R/N/D corresponding to each enhancement method of
HySpeFAS data.

Threshold Dataset-Train Dataset-Dev
FPR(%) TPR(%) ACER(%) FPR(%) TPR(%) ACER(%)

Fake
border 0.24815 0.0 100.0 0.0 3.434 100.0 1.717

Live
border 0.74673 0.0 100.0 0.0 0.0 7.212 3.606

Cross
point 0.49744 0.0 100.0 0.0 0.0 98.558 0.725

Balance
point 0.31795 0.0 100.0 0.0 0.0 100.0 0.0

Acer-left
point 0.24815 0.0 100.0 0.0 3.434 100.0 1.717

Acer-right
point 0.74673 0.0 100.0 0.0 0.0 7.212 3.606

Table 7: The thresholds selected in different ways on the train
dataset, and the corresponding FPR/TPR/ACER of these
thresholds on the train dataset and dev dataset.

Figure 7: The left graph shows different threshold selection
methods and their corresponding values on the train dataset,
while the right graph shows different threshold selection methods
and their corresponding values on the dev dataset. It can be seen
that the results using the �ℎ���ℎ���������� are the closest.

5. Conclusion
In this paper, we conducted a detailed analysis of the

specific effects of downsampling data augmentation and
using Gaussian blur for data enhancement through a
visualization method. It shows that good results can be
achieved in both cross-domain and within-domain tasks.
Additionally, we proposed a new method for threshold
setting. Applying these methods, we achieved second
place in both the Unified Physical-Digital Face Attack
Detection competition and the Snapshot Spectral Imaging
Face Anti-spoofing contest of ChaLearn Face
Anti-spoofing Attack Detection Challenge@CVPR2024.

References
[1] Fang, Hao et al. “Unified Physical-Digital Face Attack Det

ection.” arXiv.org (2024): n. pag. Web..
[2] Fang, Hao et al. “Surveillance Face Anti-Spoofing.” IEEE t

ransactions on information forensics and security 19 (2024):
1535–1546. Web.

[3] Liu, Ajian et al. “Contrastive Context-Aware Learning for
3D High-Fidelity Mask Face Presentation Attack Detection.
” IEEE transactions on information forensics and security 1
7 (2022): 2497–2507. Web.

[4] Liu, Ajian et al. “Face Anti-Spoofing via Adversarial Cross
-Modality Translation.” IEEE transactions on information f
orensics and security 16 (2021): 2759–2772. Web.

[5] Liu A, Liang Y. Ma-vit: Modality-agnostic vision transfor
mers for face anti-spoofing[J]. arXiv preprint arXiv:2304.0
7549, 2023.

[6] Liu A, Tan Z, Yu Z, et al. Fm-vit: Flexible modal vision tra
nsformers for face anti-spoofing[J]. IEEE Transactions on I
nformation Forensics and Security, 2023.

[7] Liu A, Wan J, Jiang N, et al. Disentangling facial pose and
appearance information for face anti-spoofing[C]//2022 26t
h international conference on pattern recognition (ICPR). I
EEE, 2022: 4537-4543..

[8] Liu A, Tan Z, Liang Y, et al. Attack-Agnostic Deep Face A
nti-Spoofing[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2023: 6335-
6344.

993



[9] Aggarwal, Alankrita, Mamta Mittal, and Gopi Battineni. “
Generative Adversarial Network: An Overview of Theory a
nd Applications.” International journal of information mana
gement data insights 1.1 (2021): 100004-. Web.

[10] Yang, Ling et al. “Diffusion Models: A Comprehensive Sur
vey of Methods and Applications.” ACM computing surve
ys 56.4 (2023): 1–39. Web.

[11] Westerlund M. The emergence of deepfake technology: A r
eview[J]. Technology innovation management review, 201
9, 9(11).

[12] Yu P, Xia Z, Fei J, et al. A survey on deepfake video detect
ion[J]. Iet Biometrics, 2021, 10(6): 607-624.

[13] Yu, Zitong et al. “Multi-Modal Face Anti-Spoofing Based
on Central Difference Networks.” arXiv.Org. Ithaca: Corne
ll University Library, arXiv.org, 2020. Web.

[14] international organization for standardization. Iso/iec jtc 1/s
c 37 biometrics: Information technology biometric presenta
tion attack detection part 1: Framework. In https://www.iso.
org/obp/ui/iso, 2016.

[15] Kokhlikyan, Narine et al. “Captum: A Unified and Generic
Model Interpretability Library for PyTorch.” arXiv.org (20
20): n. pag. Web.

[16] Munoz-Bulnes, Jesus et al. “Deep Fully Convolutional Net
works with Random Data Augmentation for Enhanced Gen
eralization in Road Detection.” 2017 IEEE 20th Internation
al Conference on Intelligent Transportation Systems (ITSC)
. IEEE, 2017. 366–371. Web.

[17] Shorten, Connor, and Taghi M. Khoshgoftaar. “A Survey o
n Image Data Augmentation for Deep Learning.” Journal of
big data 6.1 (2019): 1–48. Web.

[18] https://antispoofing.org/antispoofing-performance-metrics-t
ypes-and-details/
https://en.wikipedia.org/wiki/Receiver_operating_character
istic

[19] Yun S, Han D, Oh S J, et al. Cutmix: Regularization strateg
y to train strong classifiers with localizable features[C]//Pro
ceedings of the IEEE/CVF international conference on com
puter vision. 2019: 6023-6032.

[20] Liu, Z. , Mao, H. , Wu, C. Y. , Feichtenhofer, C. , Darrell,
T. , & Xie, S. (2022). A convnet for the 2020s. arXiv e-prin
ts.

[21] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu,et.al. .C
onvNeXt V2: Co-designing and Scaling ConvNets with Ma
sked Autoencoders. 2023.

994


