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Abstract

Although considerable research progress has been made
in the field of face anti-spoofing(FAS), it still faces continu-
ous threats from ultra-realistic face mask attacks. Facing the
challenge of highly realistic flexible masks, spectral sensors
show great potential in enhancing the safety of FAS systems.
However, the application of snapshot spectral imaging (SSI)
in FAS is still in its infancy and faces two major challenges:
data scarcity and data content differences. To this end, we
introduce a data processing and model training method for
SSI images. In terms of data processing, we use RandomBor-
derMask technology and RandomDropChannels strategy to
avoid misjudgment of material information, reduce interfer-
ence from redundant information, and learn from RGB image
preprocessing methods to enhance data diversity. Regarding
model training, we propose a model integration strategy and
semi-supervised learning technology, which combines the
prediction results of multiple models and uses pseudo labels
to expand the training data to solve the over-fitting problem
caused by data scarcity. These innovative methods achieved
first-class results in the 5th Face Anti-Spoofing Challenge
@CVPR2024, verifying their effectiveness in improving the
accuracy and robustness of the FAS system.

1. Introduction
The Face Anti-Spoofing (FAS) system is extensively em-
ployed in face recognition systems to safeguard them from
the vulnerabilities posed by presentation attacks, including
video attacks, print attacks, and 3D masks. Acknowledging
the pivotal role of FAS in enhancing security, both academic
institutions and industry leaders have conducted extensive re-
search, resulting in remarkable progress in this field[32, 34].

Confronted with the challenge of highly realistic flexible
masks crafted from materials like silicone or latex, the inte-
gration of advanced spectroscopy sensors into facial recogni-
tion systems can markedly improve their ability to detect and
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distinguish these types of deceptive appearances[20]. The
advantages of hyperspectral imaging are particularly note-
worthy in this context. Snapshot Spectral Imaging (SSI)[17],
an advanced imaging technique, excels at capturing high-
dimensional spectral information of a scene in a single expo-
sure. This technique provides a wealth of detailed informa-
tion, enabling the system to differentiate between authentic
faces and deceptive disguises more accurately. However, de-
spite its potential, the application of FAS within SSI remains
largely unexplored. Further investigation is necessary to
fully harness the capabilities of this cutting-edge technology
and ensure robust security in facial recognition systems[30].

The application of hyperspectral images in FAS confronts
numerous obstacles[37]. Traditional hyperspectral cameras
heavily rely on optics grating and mechanical scanning sys-
tems, rendering them prohibitively expensive, bulky, and
cumbersome in capturing a single hyperspectral image. Con-
sequently, their practicality in real-world scenarios remains
limited. Although researchers have developed the fast com-
putational speed and high reconstruction fidelity make it
practical in real-time on-chip hyperspectral imaging systems,
such as SSI[21]. However, the SSI data suitable for FAS
remains scant. This poses the initial challenge of achieving
high performance when working with a limited amount of
SSI training data.

The second challenge in the application of SSI images
in FAS is the difference in data content. SSI images exhibit
significant differences from the widely used RGB image
data content. SSI images typically have a higher number of
channels but lower resolution, which is the opposite of RGB
images. Additionally, SSI images primarily emphasize dis-
tinctions in material properties, whereas RGB images reflect
the color appearance characteristics of the real world. Re-
searchers must devise innovative data processing techniques
that go beyond traditional methods to adapt to these differ-
ences. In order to obtain higher accuracy performance from
SSI images compared to RGB images, researchers must also
improve their training methods and design specialized FAS
algorithm models. This involves exploring novel techniques
that effectively leverage the spectral information contained
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Figure 1. SSI examples from HySpeFAS dataset. The first row is
the fake face, and the second row is the real face.

in SSI images for enhanced FAS applications.
To delve deeper into spectral face anti-spoofing algo-

rithms that are compatible with SSI images and to fuel re-
search efforts in novel spectroscopic sensor-based face anti-
spoofing techniques, a surveillance FAS dataset has been
meticulously assembled by Shijie Rao. Dubbed HySpeFAS,
this dataset was employed in the 5th Face Anti-spoofing
Challenge@CVPR2024. It comprises a comprehensive
collection of 6,760 hyperspectral images, which were ex-
pertly reconstructed from SSI images utilizing the TwIST
algorithm[3]. Each hyperspectral image boasts 30 spectral
channels, offering a rich and diverse spectral representation.
Figure 1 presents a selection of illustrative samples, provid-
ing a glimpse into the dataset’s breadth and depth.

Inspired by the above discussion, we introduce a data
processing and model training method for SSI images to
solve these two problems: data scarcity and data discrepancy.
In terms of data processing, we use the unique RandomBor-
derMask technology to avoid the model’s misjudgment of
materials such as medical masks. At the same time, we use
RandomDropChannels to discard channels and reduce redun-
dant information interference to enhance data diversity. In
addition, we also draw on the preprocessing method of RGB
images to improve data diversity through various enhance-
ment techniques. In terms of model training, we propose a
model ensemble strategy to combine the prediction results of
multiple models trained with different augmentations to im-
prove accuracy and robustness. At the same time, we explore
semi-supervised learning technology and use model predic-
tions as pseudo-labels to expand the amount of training data,
effectively solving the over-fitting problem caused by the
scarcity of SSI data. In summary, the main contributions of
this paper are summarized as follows:
• Based on the characteristics of SSI images, we proposed a

unique data processing method, which effectively avoids
misjudgment of material information, reduces redundant
information interference, and enhances data diversity.

• We innovatively propose two training methods for SSI
images, model ensemble learning, and semi-supervised
learning, both of which effectively avoid model overfitting.

• The proposed method won the first place in the “Snapshot

Spectral Imaging Face Anti-spoofing Challenge” of the
5th Face Anti-spoofing Challenge@CVPR2024.

2. Related work
FAS methods for RGB images: After several years of
intense research and development, the domain of FAS has
witnessed remarkable advancements with RGB images. In
the initial stages of FAS exploration on RGB images, a
plethora of traditional approaches, relying on manual feature
extraction were introduced. These traditional methods, such
as LBP[5], SIFT[18], SURF[4], and HOG[11], primarily
aimed at extracting pertinent spoofing patterns from diverse
color spaces. This endeavor often necessitated specific task-
related prior knowledge. However, with the swift evolution
of deep learning, techniques rooted in Deep Convolutional
Neural Networks (CNN) have gradually emerged as the pre-
ferred choice for tackling FAS challenges on RGB images.
CNNs excel at learning discriminative high-level features
from vast datasets, encompassing both color and texture at-
tributes, as well as intricate features like facial contours and
edges. Their effectiveness on FAS tasks on RGB images has
been unequivocally demonstrated. Prominent CNN-based
methodologies include residual learning frameworks[7], and
centered differential convolution[33], among others, which
have significantly contributed to the field’s progress.

Despite the breakthroughs achieved by FAS due to
deep learning, it still faces the challenge of domain gen-
eralization, such as domain adaptation[12] and domain
generalization[10, 24, 31] issues across different scenarios
and attack types. Recently, some methods[16, 25, 29] have
carefully designed frameworks and loss functions to learn
discriminative features and generalized feature spaces. How-
ever, these domain generalization-based methods rely exces-
sively on domain labels, which may not accurately reflect the
true domain distribution. To address this, Zhou et al.[38] pro-
posed aligning features at the instance level without domain
labels, aiming to reduce the sensitivity of features to specific
instance styles. Despite progress in domain generalization, a
persistent challenge in the RGB FAS field is the increasing
realism and decreasing cost of attack props. Many realistic
masks and genuine human images cannot be distinguished
by models using RGB images alone.

FAS methods for spectral images: With the rapid de-
velopment of 3D printing technology and bionic silicone
rubber technology, the lifelikeness of 3D masks is even suf-
ficient to deceive the human visual perception system[14].
Such highly realistic masks undoubtedly pose significant
challenges to the current FAS systems[2, 9]. However, the
widely used FAS methods based on additional sensors such
as RGBD and NIR often perform poorly in cross-dataset
evaluations[22]. This domain adaptation issue leads to dif-
ficulties in ensuring the performance of FAS systems in
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Figure 2. The framework of the proposed method. Each SSI image undergoes two different sets of augmentations and is trained by two
branch models, and the outputs are finally integrated for classification.

practical deployment, casting serious doubts on their sta-
bility and reliability. To address this issue, researchers
have attempted to adopt various advanced sensor technolo-
gies, including SWIR[8], thermal cameras[23], light field
cameras[13], and polarization cameras[27], to capture more
subtle and unique features of genuine and fake faces. While
these techniques have improved the recognition capabilities
of FAS to a certain extent, their disadvantages are also appar-
ent: high price, bulky size, and inconvenience in operation.
These factors hinder their integration into real-world face
recognition systems[34].

Spectral analysis, as an effective means of identifying
different materials, provides us with a new avenue. Stud-
ies have shown that due to the specific absorption effect of
hemoglobin in human blood, the reflection spectrum of hu-
man skin exhibits two distinct minima at 545nm and 575nm
[20]. HSI-based FAS methods leverage this characteristic
to distinguish between genuine and fake faces by capturing
these subtle spectral differences, often resulting in more re-
liable and robust performance compared to methods based
on RGB cameras[1, 15]. However, traditional hyperspec-
tral cameras, which rely on optical gratings and mechanical
scanning systems, are often expensive, bulky, and require a
considerable amount of time to capture an HSI. This limits
their practical applications in the real world, leading to a
scarcity of public FAS datasets based on HSIs[36].

In recent years, with the rapid development of on-chip
spectral imaging sensor technology, the utilization of silicon
metasurfaces and computational imaging techniques[28, 30]

has enabled the realization of on-chip snapshot HSI sensors.
These sensors can capture HSI data at video rates, providing
the potential for introducing hyperspectral perception into
daily life. However, there is still a relative dearth of research
on the application of HSI data in FAS, leaving ample room
for further exploration in this field.

3. Methodology
In this section, we first introduce an overview of our method
in Section 3.1. Then, we elaborate on the proposed data
preprocessing method and model training suitable for SSI
images in Section 3.2 and Section 3.3 respectively.

3.1. Overview method

In our approach, we recognize the importance of data pre-
processing and data augmentation in dealing with the unique
characteristics of the HySpeFAS dataset. Furthermore, we
also realize the importance of model training methods for
scarce data tasks. We utilize two training strategies, model
ensemble, and semi-supervised learning, to achieve the best
performance on the test set. Figure 2 shows the framework
of our approach.

3.2. Data processing method for SSI images

There exist disparities in channels, resolutions, and im-
age content between SSI and RGB images, necessitating
a unique approach for FAS. Directly applying the prepro-
cessing methods tailored for RGB images is inadequate. The
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Figure 3. SSI examples after data preprocessing. All images are
randomly applied with transformations: flipping, cropping, rotation,
CoarseDropout, RandomBorderMask, RandomDropChannels.

key advantage of SSI images lies in their heightened sen-
sitivity to diverse materials. While there are conspicuous
disparities in the materials of authentic faces and 3D face
masks, the introduction of medical masks worn by real in-
dividuals can obfuscate the distinction between real faces
and face masks. Consequently, to extract reliable material
information from SSI images, we employ the RandomBor-
derMask technique to occlude the lower portion of the face,
thereby preventing the model from erroneously interpreting
mask material.

We attempted to transform the 30-channel SSI image into
a 3-channel image utilizing the averaging technique and dis-
covered that both methods exhibited comparable classifica-
tion accuracy in the FAS task. This observation suggests that
SSI channels contain redundant information. To prevent the
model from unduly focusing on a specific layer of channels,
we employed the RandomDropChannels method to ran-
domly discard some channels. This strategy enhances data
diversity and mitigates the risk of data loss or corruption.

In addition to the aforementioned operations, we also
draw inspiration from the preprocessing methods utilized for
RGB images to meticulously preprocess our data, thereby
ensuring optimal model performance. Precisely, we normal-
ize the input data to guarantee that each feature possesses
a comparable scale, preventing any specific feature from
dominating the learning process due to its larger magnitude.
Furthermore, we adopt diverse augmentation techniques tai-
lored to the unique characteristics of our data, including
random flipping, random cropping, and random rotation. Ad-
ditionally, we introduce a technique called CoarseDropout,
which randomly masks larger areas of the input image to sim-
ulate occlusion or dropout scenarios, further enriching the
data diversity. Figure 3 is examples after data preprocessing

3.3. Model training method for SSI images

Due to the limited availability of SSI data, with existing
datasets containing merely a few thousand samples, model
training is highly susceptible to overfitting. To address this
issue arising from the scarcity of SSI data, we employed two
innovative training strategies, both achieving a perfect score

of 0 ACER of Challenge@CVPR2024.
1) Model Integration. Instead of relying solely on a single

model, we combined the predictions of multiple models to
enhance accuracy and robustness. Each model was trained
using a distinct data augmentation technique. During the
prediction phase, we averaged the outputs of these models,
capitalizing on the diversity of their predictions.

2) Semi-supervised Learning Technique. We initially
trained the model using labeled data and augmented the
dataset with various techniques to broaden its diversity. Once
the model was trained, we employed it to predict labels for
the test dataset. These predicted labels were subsequently
treated as ground truth labels, and the model was further
trained using this expanded labeled dataset. By leveraging
the model’s predictions as pseudo-labels, we effectively in-
creased the amount of labeled data available for training,
ultimately enhancing performance.

4. Experiments

4.1. Experimental Settings

HySpeFAS datase. The HySpeFAS dataset consists of a
total of 6,760 images, which are divided into three parts:
training, validation, and testing sets. The training set com-
prises 3,900 images, and 936 images for validation, and
1,924 images for the testing set, which serves as the ultimate
test to evaluate the performance of the algorithms. Each
hyperspectral image in the dataset includes 30 spectral chan-
nels, and each image provides detailed information across a
broad range of wavelengths.

Evaluation metrics. We adopt established standards
within the field of FAS for evaluating the performance in
the competition, including Attack Presentation Classification
Error Rate (APCER), Bona Fide Presentation Classification
Error Rate (BPCER), and Average Classification Error Rate
(ACER) as the evaluation metric, in which APCER and
BPCER are used to measure the error rate of fake or live
samples, respectively. They can be formulated as:

APCER =
FP

FP + TN
,

BPCER =
FN

FN + TP
,

ACER =
APCER+BPCER

2
,

(1)

where FP , FN , TN , and TP denote the counts of false
positive, false negative, true negative, and true positive in-
stances, respectively. ACER is used to determine the final
ranking in Snapshot Spectral Imaging Face Anti-spoofing
Challenge@CVPR2024.
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Data preprocess. Since the dataset has already been
cropped to focus on the face area, we directly load the dataset
without the need for additional cropping. Additionally, we
normalize the data to ensure all features or channels have a
similar scale as each channel represents a specific spectral
band, and we rescale the values of each channel to a range
between 0 and 1 independently.

Architecture details. We use resnest14[35] which has a
shallower version of the popular resnest architecture since
the training set is relatively small for this task to mitigate
overfiting and reduce the risk of poor generalization.

Training details. Our proposed method is implemented
with Pytorch. In the training phase, we use the stochastic gra-
dient descent (SGD) optimizer with a momentum of 0.9, and
the initial learning rate is 1e−2, and employ a cosine learning
rate schedule to adjust the learning rate during training. We
resized the images to a size of 112×112 based on the obser-
vation that the mean dimensions of the images are close to
112 pixels in both width and height. Various data augmenta-
tion techniques are applied to expand training data, including
RandomCrop, RandomFlip, RandomRotate, RandomCoarse-
Dropout, RandomBorderMask, and RandomDropChannels.
For RandomCoarseDropout, we set the probability is 0.1, the
size of the erasure area ranges from 8×8 to 32×32 pixels,
and the number of areas varies between 8 to 16. For Ran-
domBorderMask, we apply masking with a probability of
0.3, where the mask’s range varies between 0.5 and 1. For
RandomDropChannels, we drop out 10% of channels with a
probability of 0.1.

We choose the Cross Entropy loss function which is com-
monly used for classification tasks. We employ balancing
strategies to handle sample imbalance in the training set. The
model is trained on two V100 GPUs for 50 epochs with a
batch size of 80.

Semi-supervised and model ensemble learning details.
For the semi-supervised learning method, after training a
model with various data augmentation techniques, then 100%
of predictions are incorporated into the training set to refine
the model, and we select the final model from the last epoch
of the iterative process. For the model ensemble method,
we train two models with different data augmentation tech-
niques, we merge the two models with a weight ratio of 1:1
as the final output.

4.2. Comparison with State-of-the-art Methods

In this section, we compare the performance of the proposed
method with other teams. Table 1 summarizes the compari-
son results of three metrics: APCER, BPCER, and ACER.
Our method achieves the highest performance on all metrics

Team APCER(%) ↓ BPCER(%) ↓ ACER(%) ↓
ctyun-ai 0.310 0.641 0.475

Ricardozzf 0.124 0.320 0.031
hexianhua 0.372 0 0.186

SeaRecluse 0.062 0 0.031
Ours(semi-supervise) 0 0 0

Ours(model ensemble) 0 0 0

Table 1. Comparing results with other teams on the test set of
the HySpeFAS Dataset. Our method achieves 0 on APCER(%),
BPCER(%), and ACER (%) metrics when using semi-supervised
learning and model ensemble methods.

when employing semi-supervised learning and model ensem-
ble methods, and the result demonstrates the effectiveness of
our method for face anti-spoofing on the HySpeFAS dataset.

4.3. Ablation Study

In this section, ablation studies are conducted to demonstrate
the importance of the choice of data augmentations, back-
bone, and input size. We implement a series of testing sets
under different settings and detailed performance is provided
under the metrics of APCER, BPCER, and ACER.

Data Augmentation We explore the performance of us-
ing different data augmentation strategies. Table 2 reports
detailed results. We observe that incorporating data augmen-
tation techniques such as RandomFlip, RandomCrop, and
RandomRotate leads to improvements in ACER, APCER,
and BPCER metrics to 0.962%, 1.786%, and 1.374%, respec-
tively. Furthermore, from our experiments, we found that the
combination of CoarseDropout, RandomBorderMask, and
RandomDropChannels has resulted in the best performance,
although these individual enhancements may not have shown
improvements when used separately. These performance im-
provements indicate the importance of utilizing suitable data
augmentation strategies on SSI images.

Backbone Selection We compare the performance of
resnest which are variants of the resnest network architec-
ture, differentiated based on the depth and the number of
layers they possess. As presented in Table 3, using resnest14
achieved best ACER(1.065%), best APCER(0.687%) and
best BPCER (1.442%). These results indicate that selecting
an appropriate network improves the performance of our
method.

We analyze the performance using different model struc-
tures and sizes including inceptionv4[26], regnety32[19],
resnet18[7], and resnest14. According to the performance
presented in table 4, resnest14 achieves the best performance
in terms of ACER and APCER metrics with values of 0.687%
and 1.065%, respectively. The experimental results suggest
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Exp. Flip Crop Rotate CoarseDropout BorderMask DropChannels APCER(%) ↓ BPCER(%) ↓ ACER(%) ↓
1 % % % % % % 6.731 4.808 5.769
2 " % % % % % 4.533 4.808 4.670
3 " " % % % % 0.824 1.923 1.374
4 " " " % % % 1.786 0.962 1.374
5 " " " " % % 1.923 0.962 1.442
6 " " " " " % 2.610 0.481 1.545
7 " " " " " " 0.687 1.442 1.065
8 " " " % % " 5.907 2.404 4.155
9 " " " " % " 7.005 0 3.503

10 " " " % " " 9.066 0 4.533

Table 2. The result of different data augmentation strategies on model performance.
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(a) visualization of Exp.6 in Table 2
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(b) visualization of Exp.9 in Table 2
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(c) visualization of Exp.7 in Table 2

Figure 4. Visualization of different data augmentation.

backbone APCER(%) ↓ BPCER(%) ↓ ACER(%) ↓
resnest50 3.709 2.404 3.056
resnest26 3.846 1.923 2.885
resnest14 0.687 1.442 1.065

Table 3. The performance on different depths of model.

backbone Macs APCER(%) ↓ BPCER(%) ↓ ACER(%) ↓
inceptionv4 1.66G 12.225 0.481 6.353
regnety32 0.84G 14.835 4.327 9.581
resnet18 0.75G 7.967 0.962 4.464
resnest14 0.73G 0.687 1.442 1.065

Table 4. The result of different model structures.

backbone input size APCER(%) ↓ BPCER(%) ↓ ACER(%) ↓
resnest14 224×224 3.709 3.846 3.777
resnest14 64×64 7.967 2.885 5.426
resnest14 112×112 0.687 1.442 1.065

Table 5. The result of different input sizes.

that the structure of the model we choose is more suitable
for the HySpeFAS dataset.

Impact of image size We explore the impact of different
input image sizes on the model’s performance by testing the
model with dimensions of 224×224, 112×112, and 64×64.
From the results presented in Table 5, it is observed that
the use of 112×112 dimensions achieve the best perfor-
mance and achieve metrics of 0.687% on APCER, 1.442%
on APCER, and 1.065% on ACER. The experimental find-
ings indeed underscore the advantage of utilizing input im-
age sizes comparable to the original dimensions employed
during the model’s training phase, significantly enhancing
the overall performance of our proposed method.

4.4. Visualizations

Impact of data augmentation We employ distributed
Stochastic Neighbor Embedding (t-SNE) to visualize the
model’s performance after applying different data augmen-
tation techniques. As shown in Figure 4, combining dif-
ferent data augmentation separates positive and negative
samples more effectively. We use GradCam[6], a gradient
localization-based visual interpretation technique to observe
the effectiveness of BorderMask. As shown in Figure 5, our
model focuses on the relevant characteristics and ignores
irrelevant or redundant information to achieve good perfor-
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mance.

(a) original image (b) Exp.9 in Table 2 (c) Exp.7 in Table 2

(d) original image (e) Exp.9 in Table 2 (f) Exp.7 in Table 2

Figure 5. GradCam of the effectiveness on BorderMask augmenta-
tion.

5. Conclusion
In this paper, we deeply explore the application of SSI im-
ages in the field of FAS and propose a series of innovative
solutions to address the two major challenges of data scarcity
and data content differences faced in this field. In terms of
data processing, we adopt the RandomBorderMask technol-
ogy and RandomDropChannels strategy, which effectively
avoids misjudgment of material information, reduces the
interference of redundant information, and significantly en-
hances the diversity of data. In terms of model training, we
proposed two methods, model ensemble learning, and semi-
supervised learning, which not only improved the accuracy
and robustness of the model but also successfully solved the
over-fitting problem caused by data scarcity. These innova-
tive methods have achieved remarkable results in practical
applications. Our method won first place in the ”Snapshot
Spectral Imaging Face Anti-spoofing Challenge” of the 5th
Face Anti-spoofing Challenge@CVPR2024. In summary,
our method provides important theoretical support and prac-
tical guidance for the application of SSI images in the field
of FAS.
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