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Abstract

Introducing a novel Attack-agnostic Face Anti-spoofing
framework, this paper addresses the challenge of determin-
ing the authenticity of a captured face in face recognition
systems. Current methods, trained on existing fake faces, of-
ten lack generalization and perform poorly against unseen
attacks. The proposed framework presents a fresh approach
to face anti-spoofing, leveraging modified squeezed resid-
ual blocks and attention mechanisms. Convolutional lay-
ers within the Multiattention-Net architecture capture spa-
tially hierarchical features, enhancing feature representa-
tion and improving the network’s sensitivity to critical fea-
tures. These spatial features are refined through a dual at-
tention block to emphasize important features. The squeeze-
and-excitation (SE) mechanism further enhances the rep-
resentation by recalibrating channel-wise responses to em-
phasize informative features, incorporating global average
pooling and channel-wise excitation. The Multiattention-
Net achieves a balanced trade-off between feature richness
and computational efficiency, demonstrating superior per-
Sformance in face anti-spoofing tasks. Experimental results
on benchmark datasets validate the effectiveness of this ap-
proach, highlighting its potential for real-world applica-
tions in security and biometric authentication.

1. Introduction

The rise of the internet has fueled the widespread adop-
tion of biometric technologies for security and identification
purposes. Face recognition, with its convenience and accu-
racy, has become a prominent choice in various domains,
including finance, social security, and intelligent security
systems [9]. However, face recognition systems remain
vulnerable to spoofing attacks, where imposters attempt to
gain unauthorized access using artifacts like photographs or
masks (Presentation Attacks, PAs) [6]. Therefore, robust
and efficient face anti-spoofing (FAS) systems are critical
to ensure the integrity of face recognition applications.
Deploying FAS systems in real-time scenarios, such as
mobile devices and surveillance cameras, necessitates com-

putationally efficient algorithms capable of real-time data
processing. Balancing accuracy with computational effi-
ciency remains a key challenge in such settings. FAS sys-
tems also raise privacy concerns regarding biometric data
collection and processing. Striking a balance between ef-
fective anti-spoofing measures and user privacy is a com-
plex issue that requires careful consideration.

Driven by these challenges, research on face anti-
spoofing detection has witnessed significant growth in re-
cent years, yielding promising advancements. This paper
proposes a novel approach to face anti-spoofing leveraging
modified squeezed residual blocks (MSRs).

2. Related Work

Face recognition technology is getting more and more
widespread these days. Face anti-spoofing detection is an
important face recognition component that has garnered a
lot of attention and grown into a mostly independent field
of research. Traditional approaches often rely on texture
analysis to differentiate between real and fake faces. Tech-
niques such as Local Binary Patterns (LBP), Histogram of
Oriented Gradients (HOG), and Local Phase Quantization
(LPQ) have been used for feature extraction. Spoofed fa-
cial images or videos may lack natural facial movements.
Analyzing motion patterns can help detect anomalies that
indicate spoofing.

2.1. Face Anti-Spoofing based on Image Texture

A recent study by Thippeswammy, Vinutha, and Dhana-
pal [6] suggested a technique based on a collection of lo-
cal appearance-based approaches’ texture descriptors. The
classification of photos into real and fake ones done by us-
ing the K-nearest neighbors (KNN) classifier. The NUAA
Photo Imposter database was used to test their system.

A face anti-spoofing detection method based on support
vector machine recursive feature elimination (SVM-RFE)
and color texture Markov feature (CTMF) was presented by
Zhang et al.[12] . Dimension reduction using SVM-RFE is
applied to make it appropriate for real-time detection.

A face anti-spoofing technique based on color texture
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analysis was presented by Boulkenaf et al.[29]. To cre-
ate the final descriptor, they extract LBP histograms from
a single image channel and connect them. The color
texture-based approach outperforms the gray texture-based
approach.

A novel method for detecting liveness using general im-
age quality assessment was introduced by Galbally and
Marcel in [7].A low-pass Gaussian kernel filter is applied to
obtain the image. A Simple Linear Discriminant Analysis
is used to classify the data as true or fraudulent (LDA). The
experimental validation was conducted using two publicly
available datasets, namely the CASIA FAS-Datbase and the
replay-attack database.

In order to extract texture feature histograms from local
blocks of grayscale images and global images, Maatta et
al. [10] used multiple uniform LBP operators of different
scales. They then connected these histograms to create a
531-dimensional feature histogram, which they then sent to
an SVM classifier with RBF as the core for training and
testing of real human faces and deceptive face classification.

In order to determine whether the recognized image is
a real face or a fake face, Peixoto et al. [1] first used the
DoG filter to obtain the medium frequency band informa-
tion in the image information. They then used the Fourier
transform to extract key features, and finally they used a lo-
gistic regression classifier to differentiate and classify the
extracted and processed feature information.

The method based on image texture analysis has many
advantages, including low costs, a simple algorithm, and
easy implementation. High-definition cameras and the use
of high-quality 3D masks have made the use of texture in-
formation no longer feasible.

2.2. Face Anti-Spoofing Based on Deep Learning

An increasing number of researchers are applying deep
learning to face anti-spoofing in an effort to find more po-
tent ways to counteract face deception, thanks to the tech-
nology’s remarkable performance in face recognition and
ongoing development. Deep learning, in contrast to the con-
ventional manual feature extraction method, has the abil-
ity to automatically learn photos, extract more plentiful and
important facial features, and assist in properly differenti-
ating between real and fake faces. Deep learning methods,
particularly CNNs, have shown significant advancements in
face anti-spoofing. CNN architectures are trained on large
datasets of both real and spoofed facial images to learn dis-
criminative features.

Yang et al. [24] created a unique Spatio-temporal Anti-
spoofing Network (STASN) that considers both local and
global spatial information. The three components of the
model are SASM, RAM, and TASM. TASM is a CNN-
LSTM that uses a frame sequence as input, extracts CNN
features first, propagates LSTM, and then predicts the bi-

nary classification outcome.

In order to classify the spoofing samples into semantic
subgroups, Liu et al. [28] defined the detection of unknown
spoofing attacks as Zero-shot Facial Anti-Spoofing (ZSFA)
and proposed a novel Deep Tree Network (DTN) that was
used to train trees in an unsupervised manner to find the fea-
ture library with the greatest variation. Furthermore, the au-
thor developed the first face anti-spoofing database, SiW-M,
comprising multiple forms of deception, to better research
ZSFA.

An technique that harmoniously blends CNN and RNN
(Recurrent Neural Network) architecture was put forth by
Liu, Jourabloo, and Liu [26]. In contrast to other deep learn-
ing techniques

In order to perform face anti-spoofing, Liu et al. [27] in-
tegrated face depth data and rPPG signal. They noted that
the binary classification problem was substituted with the
targeted feature supervision problem. To accomplish the
two types of supervision, the author created a deep learning
technique utilizing CNN - RNN architectures. CNN rec-
ognizes the delicate texture by using the supervision of the
depth image.

In [25], a two-stream CNN (Convolution Neural
Networks)-based technique was presented. It uses the com-
plete face image and patches from the same face to differen-
tiate between artificial and genuine faces. When compared
to prior state-of-the-art performance, the experimental re-
sults on the CASIA-FASD, MSU-USSA, and replay attack
datasets demonstrate a remarkable performance.

Face depth map was initially used by Atoum et al. [25]
as the primary data for differentiating between face faking.
This research proposes a two-channel CNN based face anti-
spoofing technique that combines depth information with
local aspects of face images.

A completely data-driven hyper-depth model based on
transfer learning was presented by Tu et al. [22]. After
extracting the spatial features of sequence frames using a
pre-trained deep residual network (ResNet-50) [? ], the
model inputs the spatial features into an LSTM unit to ob-
tain temporal features that can be used for final classifica-
tion. Boulkenafet et al.[? ] treated face spoof detection
as a binary classification task. In order to identify hidden
texture features that result in different depths for actual and
artificial faces, the CNN component uses depth map super-
vision. The RNN portion learns to estimate the rPPG signal,
which verifies the temporal variability of the rPPG signal
instead of computing it in the conventional manner . A uni-
fied network framework for iris, face, and fingerprint spoof-
ing detection was proposed by Menotti et al. [2]. Through
two optimizations, Architecture optimization (AQO) and fil-
ter optimization (FO), which randomly search for the best
convolutional neural network among a number of networks
specified in the hyper-parametric search space, the model
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learns representations directly from input.

Yang et al. [11] originally proposed using convolutional
neural networks (CNNSs) to extract features for face anti-
spoofing in 2014. This study paved the way for new devel-
opments in deep learning for face anti-spoofing. The de-
tection effect was significantly lower than with traditional
methods because the technology was not yet mature.

Datasets and challenges play a critical role in advanc-
ing face anti-spoofing research. The CASIA-SURF dataset,
along with its associated Multi-modal Face Anti-spoofing
Attack Detection Challenge [31], focuses on multi-modal
anti-spoofing. The CASIA-SURF CeFA dataset[14] ad-
dresses cross-ethnicity issues. The CASIA-SURF HiFi-
Mask dataset[ 1 5] targets 3D high-fidelity mask attacks, and
the SuHiFiMask dataset[3] tackles face anti-spoofing in
surveillance scenarios. The recently introduced UniAttack-
Data dataset[4] unifies physical and digital attack detec-
tion within a single benchmark. These resources provide
standardized benchmarks, facilitating method comparison
and driving innovation in face anti-spoofing techniques.
Several recent advancements have emerged in face anti-
spoofing research. CFPL-FAS [17] leverages prompt learn-
ing to achieve generalizable anti-spoofing, aiming for robust
performance across diverse attack classes. Multi-Domain
Incremental Learning[23] proposes a method to improve
model robustness by incrementally learning from multiple
data domains. Fm-vit[16] introduces a flexible modal vision
transformer architecture for enhanced model efficiency and
effectiveness. Finally, MA-ViT[13] focuses on modality-
agnostic vision transformers to learn representations that
are invariant to presentation attacks.

Face anti-spoofing based on deep learning is gaining at-
tention from many researchers due to its superior feature ex-
traction. The capacity of face anti-spoofing based on deep
learning has progressively improved through network up-
dating, transfer learning, integration of multiple features,
and domain generalization with the tireless efforts and re-
peated attempts of numerous scholars, and has now sur-
passed the conventional method.

To summarize, the key contributions of our work are out-
lined as follows:

1. Our architecture introduces MSRs, extending tra-
ditional residual blocks with squeeze-and-excitation (SE)
modules. MSRs dynamically recalibrate channel-wise fea-
ture responses, leading to a more discriminative feature
space emphasising informative details critical for robust
face anti-spoofing.

2. Post feature extraction, our network incorporates dual
attention mechanisms operating at varying spatial levels.
These mechanisms selectively emphasize relevant spatial
features in facial expressions, enabling the network to focus
on crucial details across resolutions and enhancing its abil-
ity to differentiate genuine faces from spoofing attempts.

3. Our architecture strikes a balance between anti-
spoofing performance and computational efficiency. With
approximately 6 million parameters and 1.99 G FLOPs, the
model delivers competitive performance while maintaining
a lightweight structure suitable for real-world deployment.

3. Proposed Method

This work proposes a novel network architecture for face
anti-spoofing that discriminates between genuine facial ex-
pressions and spoofing attempts. The architecture leverages
state-of-the-art techniques, including modified squeezed
residual blocks[8] (MSRs) and dual attention [30] mech-
anisms, to capture intricate spatial information and adap-
tively recalibrate feature responses for robust spoofing de-
tection.The proposed multi-level attention network is in-
spired by [18-20] .

3.0.1 Feature Extraction

The network takes a facial image as input and processes it
through a series of convolutional layers for feature extrac-
tion. The first convolutional layer utilizes a 7x7 filter kernel
to extract complex local patterns and structures. This is fol-
lowed by max-pooling layers for downsampling the feature
maps, enabling the network to learn abstract features at dif-
ferent spatial resolutions.

The core component of the feature extraction process re-
sides in the modified squeezed residual block (MSR). This
block builds upon the traditional residual block by incor-
porating additional squeeze-and-excitation (SE) modules.
These SE modules dynamically recalibrate channel-wise
feature responses, enhancing the discriminative power of
the network by emphasizing informative features and sup-
pressing irrelevant ones.

3.0.2 Dual Attention Mechanisms

The second stage of the network employs dual attention [30]
mechanisms to further refine the features extracted from the
MSRs. These mechanisms selectively emphasize important
spatial features while suppressing background information,
effectively capturing the subtle details of facial expressions
crucial for distinguishing genuine faces from spoofing at-
tempts. Notably, the dual attention mechanisms operate at
different spatial levels, allowing the network to focus on rel-
evant features at each processing stage and achieve a more
comprehensive understanding of the input face.

3.1. Modified squeezed residual block

The modified squeezed residual block (MSR) [8] is a funda-
mental component of our face anti-spoofing network. It is
represented in Figure 2. It integrates squeeze-and-excitation
(SE) blocks with convolutional layers to enhance feature
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Figure 2. Block Diagram of Modified squeezed residual block

representation and adaptively recalibrate channel-wise fea-
ture responses.

Let Xippu € R¥*WXC denote the input tensor, where
H, W, and C represent the height, width, and number of
input channels, respectively.

3.1.1 Primary Convolutional Layer

The input tensor is processed by a convolutional layer
with a set of filters to generate the primary feature tensor
Xprimary € RH xW XF:

Xoprimary = Conv2D (Xinput, Wy, bp) + by, (1)

Here, Conv2D denotes the 2D convolution operation,
W, ¢ RbpxkpxCOxF represents the filter bank, k, is the fil-
ter size, I is the number of output channels, and b, € R¥
is the bias vector.

3.1.2 Main Convolutional Layers with Leaky ReLU
Activation

The input tensor undergoes batch normalization (BN) fol-
lowed by a Leaky ReLU activation function, denoted as
LeakyReLU(:):

X = LeakyReLU (BN(Xinput)) 2)
Three consecutive convolutional layers are applied to X
with Leaky ReLU activation in between:

X = LeakyReLU (Conv2D(X, W,,b.) + b.) (3)

where W, € RFexkexCXE represents the filters for the
convolutional layers and b, is the corresponding bias vec-
tor.
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3.1.3 Squeeze and Excitation (SE) Layer:

The output tensor X is globally average pooled to generate
a squeeze vector z € RY":

z = GlobalAvgPool(X) “4)

The squeeze vector is passed through two fully-
connected (FC) layers with ReLU and sigmoid activations,
respectively, to compute channel-wise attention weights s €
RE:

s = O'(WQRGLU(W1Z +b1) +bo) (@)

where W, € RV*F W, € RFXU b, € RY, and
by € R¥ represent the weights and biases for the FC layers,
U is the number of hidden units in the first FC layer, and o
denotes the sigmoid function.

The attention weights are reshaped and element-wise

multiplied with X to obtain the scaled feature tensor
Xscale c RH xW ><F:

Xscale =X0Os (6)

3.1.4 Residual Connection with Modified Output

The final output is formed by adding the primary feature
tensor Xprimary, the original input tensor Xj,py processed by
a separate convolutional layer, and the scaled feature tensor
Xscale:

Certainly, the complete equation for the residual output
is:

OUtPUt = Xpm'mary + COHVZD(Xi71,put7 Wm bT‘) + Xscale
ey

Here’s a breakdown of the remaining terms:

* W, € RErxFexCOXFE represents the filter bank for the
additional convolutional layer applied to the input tensor. *
b, € R¥ is the bias vector for the additional convolutional
layer.

Here, W, € RFr*krXCXF represents the filter bank for
the additional convolutional layer and b,. is the correspond-
ing bias vector. This residual connection allows the network
to learn from both the identity mapping and the transformed
features, potentially leading to faster convergence and im-
proved performance.

The modified squeezed residual block (MSR) ef-
fectively combines convolutional layers, squeeze-and-
excitation (SE) blocks, and residual connections to achieve
robust feature representation for face anti-spoofing tasks.
The SE block adaptively recalibrates channel-wise feature
responses, leading to a more discriminative feature space
for identifying genuine faces from spoofing attempts. The
residual connection promotes efficient gradient flow and

mitigates the vanishing gradient problem, allowing the net-
work to learn deeper and more complex features. Overall,
the MSR contributes significantly to the effectiveness of the
face anti-spoofing network.

3.2. Dual Attention Mechanisms

The network employs a dual attention mechanism to cap-
ture both channel-wise and spatial dependencies in features.
This mechanism refines feature maps by focusing on in-
formative channels and emphasizing crucial spatial regions.
Given an input feature map X € RHXWXC where H, W,
and C represent the height, width, and number of channels
respectively, the dual attention module outputs an attention-
weighted feature map S 4 € REXWxC:
Channel Attention:

C4a =X © (6(MLP(Concat(GAP(X), GAM(X)))))
)
In this equation, GAP(X) and GAM(X) represent the
global average pooling and global max pooling operations
applied to the input feature map X, respectively.
Spatial Attention:

Sa =C4 ® (o(Conv2D(Concat(P,(Ca),Pm(Ca)))))

(®)

In this equation, P,(C 4) and P,,,(C 4 ) represent the av-

erage pooling and max pooling operations applied to the
channel attention feature map C 4, respectively.

4. Experiments
4.1. Experimental Setting

Four separate models were trained using the UPD dataset.
The train dataset was randomly divided into training and
validation sets with an 85:15 split. Data augmentation tech-
niques were applied during training for all models. Each
model addressed a specific protocol: Model 1 focused on
Protocol 1 (unified attack detection), Model 2 on Protocol
2.1 (generalization to unseen physical attacks), Model 3 on
Protocol 2.2 (generalization to unseen digital attacks), and
Model 4 was trained on all three protocols combined.We
utilized the Binary Focal Cross-Entropy loss function dur-
ing the training phase of our models.

The Adam optimizer was employed with a learning rate
schedule that decayed from 0.001 to 0.00001 over 150 train-
ing epochs. The training used an NVIDIA Tesla P100 GPU
with 16GB of RAM and the TensorFlow Keras framework.

4.2. Dataset

We evaluated our proposed method on three publicly avail-
able face anti-spoofing datasets: The Unified Physical-
Digital Face Attack Detection (UPD) [5], CelebA-Spoof
[32], and Large Crowdcollected Facial Anti-Spoofing
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Dataset (LCC ) [21]. We focused on the UPD dataset for
training due to its comprehensiveness and the availability
of diverse spoofing attacks.

4.2.1 UPD Dataset and Protocols

The UPD dataset [5] provides three protocols for evaluating
face anti-spoofing algorithms:

Protocol 1: Unified Attack Detection [5]: This protocol
assesses the model’s ability to detect both physical and dig-
ital spoofing attacks. The training, validation, and test sets
encompass real human faces and all attack types included
in the dataset. The significant intra-class variations and dis-
tances between different attack types and real faces present
a challenging scenario for robust algorithm design.

Protocol 2: Generalization to Unseen Attacks: This pro-
tocol evaluates the model’s ability to generalize to unseen
attack types. Since physical and digital attacks have inher-
ent differences, achieving algorithm portability across at-
tack domains can be difficult. We address this challenge by
employing a “leave-one-type-out testing” approach. Proto-
col 2 is further divided into two sub-protocols: Sub-protocol
2.1: The test set comprises physical attack types not in-
cluded in the training or development sets. Sub-protocol

datasets correspond to different evaluation protocols: Pro-
tocol 1 (P1) for unified attack detection, Protocol 2.1
(P2.1) for generalization to unseen physical attacks, Pro-
tocol 2.2 (P2.2) for generalization to unseen digital at-
tacks, and a combined dataset encompassing all proto-
cols (All dataset”). The table reports key performance
metrics: Bonafide Presentation Classification Error Rate
(BPCER), Average Classification Error Rate (ACER), Ac-
curacy (ACC), F1 score, and Area Under the Curve (AUC).

The model exhibits consistent performance across all
datasets, characterized by low error rates (BPCER, ACER)
and high accuracy (ACC). Notably, on P2.2, the model
achieves a low BPCER of 1.48 % and a low ACER of
0.07 %, demonstrating its ability to effectively discriminate
between genuine and spoofed presentations. Furthermore,
high F1 scores and AUC values across all datasets suggest
the model’s robustness and reliability in classification tasks.

The model’s performance on the combined dataset ("All
dataset”) reinforces its generalization capability, indicat-
ing its suitability for real-world scenarios with diverse data
sources. Overall, the comprehensive evaluation presented
in Table 1 highlights the effectiveness and versatility of the
proposed model for face anti-spoofing tasks.

. e ; Prot. Model ACER(%) ACC(%)T AUC(%)T
2.2: The test set comprises digital attack types not included ResNets0 [5] 1.35 98.83 99.79
. .« VIT-B/16 [5] [HTML]FFFFFF5.92 92.29 97
in the training or development sets. Auxilary[5] e 9868 5983
CDCN[5] 14 08.57 99.52
FFDI[5] 2.01 97.97 99.57
Protocol | Class | Live | Phys | Adv | Digital | Total UniAttackDetection[5] 0.52 99.45 99.96
T Proposed Net Proposed Net 6.34 89.5 94.38
Pl train | 3000 | 1800 | 1800 1800 8400 ResNet3005] 34605531 53.696.39 | 87.89%6.11
eval 1500 | 900 1800 1800 6000 VIT-B/16[5] 33.6949.33 52.43%25.88 | 83.77%2.35
Auxiliary[5] 42.98+6.77 37.71%26.45 | 76.27+12.06
test 4500 2700 7106 7200 21506 CDCN[5] 34.33+0.66 53.10+12.70 | 77.46+17.56
P21 eval | 1500 0 1706 1800 5006 FFD[5] 34.20£1.32 40.43£14.83 | 80.97%2.86
UniAttackDetection[5] 22.42+10.57 67.35+£23.22 | 91.97+4.55
test 4500 5400 0 0 9900 Proposed Net Proposed Net 0.941+0.07 98.5+99.71 98.9+99.77
P2.2 train | 3000 | 2700 0 0 5700
eval | 1500 | 2700 0 0 4200 Table 3. Comparison of the proposed model with different models

test | 4500 0 10706 | 10800 | 26006

Table 1. Number of images in training, evaluation, and testing
sets across various categories under three protocols: P1, P2.1, and
P2.2.

4.3. Results on the UPD Dataset, LLC dataset and
CelebA- Spoof Dataset

Dataset BPCER% | ACER% | ACC% |F1 score | AUC %
P1 14.688 6.34 89.5| 89.673| 94.38
P2.1 1.8824 0.941 98.5 98.9| 99.897
P2.2 1.48 0.07] 99.71 99.77 99.9
All dataset 12.95 6.477| 88.74 91.58 95.5

Table 2. The results of the proposed network for different datasets

Table 2 summarizes the performance of our proposed
model on various datasets from the UPD benchmark. These

and datasets.

Table 3 compares the performance of various models
on different datasets using metrics such as ACER (Attack
Presentation Classification Error Rate), ACC (Accuracy),
and AUC (Area Under the Curve). The models include
ResNet50, ViT-B/16, Auxiliary, CDCN, FFD, and UniAt-
tackDetection, with our proposed model labelled "Proposed
Net.”

Protocol 1 Results: The proposed model achieves an
ACER of 6.34%, ACC of 89.5%, and AUC of 94.38%.
These results indicate competitive performance compared
to other models under Protocol 1. However, for Protocol
2, the proposed model demonstrates a significant improve-
ment, achieving an ACER of 0.941%, ACC of 98.5%, and
AUC of 98.9%. This suggests the proposed method is par-
ticularly effective for Protocol 2, outperforming other mod-
els.

Table 4 presents the performance metrics for various
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Model BPCER | ACER | Accuracy | F1 score | AUC
P1 26.3| 137 81.2 8541 91.8
P2.1 1.9 0.8 97.6 97.9| 99.2
P22 1.5 0.1 99.2 99.3| 99.8
All dataset 10.6 53 87.9 90.1| 94.3

Table 4. LLC Dataset Performance metrics for different models

models evaluated on the LLC dataset[21]. Here, BPCER
refers to the Bonafide Presentation Classification Error Rate
and ACER refers to the Attack Presentation Classification
Error Rate. The table 4 shows that models P1, P2.1, and
P2.2 achieve progressively lower error rates. Model P1 ex-
hibits a BPCER of 26.3% and an ACER of 13.7% Model
P2.1 significantly improves upon these results, achieving a
BPCER of 1.9% and an ACER of 0.8%. Further improve-
ment is observed with model P2.2, which reaches a BPCER
of 1.5% and an ACER of 0.1 %. Finally, training on the
entire dataset leads to the best performance across all met-
rics, with a BPCER of 10.6%, an ACER of 5.3%, and high
accuracy, F1 score, and ROC AUC score.

Model BPCER% | ACER% | ACC% | F1 score% | AUC%
P1 14.2 79 82.4 86.1 92.3
P2.1 2.3 1.1 96.9 97.5 99.0
P2.2 1.8 0.2 99.0 99.2 99.7
All dataset 11.5 5.8 88.2 90.5 94.8

Table 5. Performance metrics for different models on the CelebA-
Spoof

Table 5 presents the performance metrics for various
models evaluated on the CelebA-Spoof dataset[32]. Model
P1 exhibits a BPCER of 14.2%, an ACER of 7.9%, and
an accuracy of 82.4%. Models P2.1 and P2.2 significantly
improve with progressively lower error rates and higher
accuracy. Specifically, P2.1 achieves a BPCER of 2.3%,
an ACER of 1.1%, and an accuracy of 96.9%, while P2.2
reaches a BPCER of 1.8%, an ACER of 0.2%, and an accu-
racy of 99.0%. Finally, training on the entire dataset leads to
further improvement across all metrics, achieving a BPCER
of 11.5%, an ACER of 5.8%, and an accuracy of 88.2%.

4.4. Ablation Study
Method BPCER | ACER | Acc| AUC
MDRS wo Dual Attention 10.2 5.6(87.3| 93.5
MDRS wo Spatial Side layer 8.5 43(89.1| 942
MDRS wo Dual Attention + SS layer 12.3 6.8185.7| 92.1
Proposed Net 1.68| 0.505(99.1{99.89

Table 6. The ablation study examines various components using
evaluation protocol P1.

Table X presents an ablation study evaluating the impact

of various components within the proposed model frame-
work using evaluation protocol P1. We investigate the per-
formance of the model under the following configurations:

MDRS without the Dual Attention module MDRS with-
out the Spatial Side layer MDRS without both Dual Atten-
tion and Spatial Side layer Proposed Net (full model) Re-
sults:

MDRS without the Dual Attention module achieves a
BPCER of 10.2%, ACER of 5.6%, accuracy of 87.3%, and
AUC of 93.5%. Removing the Spatial Side layer from
MDRS leads to a slight improvement, with a BPCER of
8.5%, ACER of 4.3%, accuracy of 89.1%, and AUC of
94.2%. Interestingly, omitting both the Dual Attention and
Spatial Side layer results in performance degradation, evi-
denced by a BPCER of 12.3%, ACER of 6.8%, accuracy of
85.7%, and AUC of 92.1%.

The Proposed Net, which incorporates both the Dual At-
tention mechanism and the Spatial Side layer, outperforms
all other configurations. It achieves a BPCER of 1.68%,
ACER of 0.505%, accuracy of 99.1% and AUC of 99.89%.
These results highlight the effectiveness of these compo-
nents in improving the model’s performance.

5. Conclusion

This work investigated the effectiveness of a novel deep
learning architecture for face anti-spoofing tasks. We eval-
uated the model on two benchmark datasets (LLC and
CelebA-Spoof) under different evaluation protocols. The
proposed model consistently performed better than baseline
models, demonstrating significant reductions in BPCER
and ACER while achieving high accuracy. In Protocol 2,
the proposed model achieved a BPCER as low as 0.941
% and an ACER of 0.505%. An ablation study further
confirmed the importance of two key components within
the model: the Dual Attention mechanism and the Spa-
tial Side layer. The Dual Attention mechanism effectively
highlights important features, while the Spatial Side layer
captures crucial spatial information. Together, these com-
ponents contribute significantly to the model’s ability to
distinguish between genuine and spoofed presentations.We
plan to explore the generalizability of the model on diverse
datasets and real-world scenarios, while also investigating
techniques for interpretability and lightweight design for
resource-constrained deployment.
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