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Abstract

Heterogeneous face recognition (HFR) involves the
intricate task of matching face images across the visual
domains of visible (VIS) and near-infrared (NIR). While
much of the existing literature on HFR identifies the domain
gap as a primary challenge and directs efforts towards
bridging it at either the input or feature level, our work
deviates from this trend. We observe that large neural
networks, unlike their smaller counterparts, when pre-
trained on large scale homogeneous VIS data, demonstrate
exceptional zero-shot performance in HFR, suggesting that
the domain gap might be less pronounced than previously
believed. By approaching the HFR problem as one of
low-data fine-tuning, we introduce a straightforward
framework: comprehensive pre-training, succeeded by a
regularized fine-tuning strategy, that matches or surpasses
the current state-of-the-art on four publicly available
benchmarks. Given its simplicity and demonstrably strong
performance, our method could be used as a practical
solution for adjusting face recognition models to HFR as
well as a new baseline for future HFR research. Corre-
sponding training and evaluation codes can be found at
https://github.com/michaeltrs/RethinkNIRVIS.

1. Introduction

Face recognition (FR) is one of the most important and
well-studied fields in computer vision [1, 62]. It was for
many years one of the main driving forces for the develop-
ment of new lines of research in machine learning and was
one of the first wins of Deep Neural Networks (DNNs) ver-
sus human perception [41]. Nowadays, FR technologies are
widely adopted from cell-phones and laptops Face ID sen-
sors to border control and immigration to name just a few.
The most adopted and used systems currently operate with
Near-Infrared (NIR) images due to their high robustness to
illumination changes, as well as because it can be easily
combined with liveness detection systems [5, 53]. This is
in contrast with most research that is conducted and pub-
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Figure 1. Face photo captured under visible and infrared light [22].
The infrared spectrum can be divided into four sub-bands: NIR
(0.75-1.4pm), SWIR (1.4-3pum), MWIR (3-8 pm), and LWIR
(8—15pm) [42]. The spectral sensitivity of NIR imagery is much
closer to that of the VIS spectrum opposed to images captured at
the far end of the IR spectrum.

lished in academia which uses images captured by conven-
tional Visible spectrum (VIS) camera, mainly because the
publicly available databases are a product of web harvest-
ing [64]. Thus, we argue that research on face recognition
using non-visible light sources, and in particular NIR light,
is of significant importance for building enhanced liveness
detection systes and robust anti-spoofing frameworks.

Moreover, while NIR sensors are increasingly used for
capturing face images during deployment (probes), these
probes will need to be compared to images collected in a
face database (gallery). In contrast to probes, face enroll-
ment to gallery typically takes place in controlled environ-
ments which reduces the need for robustness to illumination
conditions offered by NIR sensors. Additionally, because
gallery images typically include images initially captured
for use in official documents, e.g. passports, most galleries
contain images captured in the VIS domain. As a result,
FR systems will need to adress the problem of adequately
matching faces between the two modalities. Heterogeneous
NIR-VIS face recognition (HFR) [15, 16, 21, 44, 56] deals
with the problem of face matching between the NIR and
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Figure 2. Size of FR datasets (#images, #identities). The average
size of NIR-VIS datasets is three orders of magnitude smaller than
RGB datasets.

VIS modalities and is becoming essential in modern FR sys-
tems. Most published HFR works suggest the presence of a
domain gap as one of the main challenges in HFR [15, 16]
and propose techniques to bridge that gap.

We follow a fundamentally different approach. Moti-
vated by the perceptual similarities between VIS and NIR
imagery (Fig.1) and the richness of VIS FR datasets (Fig.2)
we employ transfer learning for solving the HFR problem.
Our main observations and contributions are the following:

1. Domain gap: we have determined that large CNNs,
when pre-trained on extensive VIS data, show remark-
able zero-shot performance in NIR-VIS HFR, even out-
performing current benchmarks. This observation con-
trasts the prevailing HFR narrative of a large domain
gap and has been missed by the HFR literature which
has focused exclusively on training smaller models that
do not exhibit this behaviour. Instead, it indicates that
large scale VIS data contain enough information to ad-
dress the HFR problem, however, typically employed ar-
chitectures fail to learn these cross modality features.

2. VIS pre-training: based on the above finding, we shift
our focus towards harnessing large-scale VIS data for
HFR and introduce pre-training strategies which lead to
demonstrably improved zero-shot performance.

3. NIR-VIS fine-tuning: standard fine-tuning is found
to disrupt the embedding space developed during pre-
training. Two simple methods are presented that do not
only rectify previous issues but also set new performance
benchmarks on four public NIR-VIS HFR datasets. Fur-
thermore, we show that further harnessing large-scale
VIS data during the fine-tuning stage leads to further im-
provements in sensor generalization performance, mak-
ing HFR systems generalize to imagery captured using

novel NIR sensors.

2. Related Work
2.1. Primer on face recognition.

Recent years have witnessed a number of successful
deep face recognition techniques, such as DeepFace [48],
DeepID [45-47], FaceNet [40], SphereFace [32], Cos-
Face [51] and ArcFace [9]. The majority of the advance-
ments are based on the evolution of training loss functions.
Most of the early works rely on metric-learning based loss,
including contrastive loss [6] and triplet loss [40]. How-
ever, metric-learning based methods are usually inefficient
on large-scale training datasets, suffering from the combi-
natorial explosion in the number of face pairs or triplets.
Therefore, the research community has moved attention to
the classification-based loss function. Wen et al. [55] de-
velops a center loss to enhance the intra-class compactness.
Ly-softmax [37] and NormFace [49] apply Lo normaliza-
tion constraint on both features and weights to improve face
recognition under low-quality. Since then, several margin-
based softmax losses [9, 32, 50, 51] progressively improve
the performance on various celebrity benchmarks. Based
on margin-based softmax loss, recent works further im-
prove the performance by exploring adaptive parameters
[30, 31, 59, 60], inter-class regularization [13, 17, 61], and
sample mining [25, 52].

2.2. Heterogeneous face recognition.

Thanks to their insensitivity to the visual spectral range, im-
ages captured at the NIR spectrum are naturally robust to
variations in ambient lighting conditions and, aided by IR
illumination, allow for detail capturing in low light condi-
tions at a close range. This property of NIR images sug-
gests that the performance of trained face recognition sys-
tems will be robust on unconstrained illumination variations
and in low light environments. As a result, such devices are
preferred and extensively used in security and monitoring
systems for which performance on low light conditions is
highly desirable. Early studies on the use of NIR images
for face recognition have verified the advantages of using
NIR [26, 28], Thermal infrared (TIR) [43] and Short wave
infrared (SWIR) [34] images compared to same dataset size
of VIS images. However, VIS face recognition datasets
include significant ambient light variations, thus, facilitat-
ing the development of models that are invariant to all but
extreme illumination conditions, outperforming their NIR
counterparts by a large margin. In this work we show that
under appropriate training large scale VIS datasets can lead
to strong perfromance in the heterogeneous case.

However, homogeneous face recognition in the NIR do-
main can be problematic for some applications such as se-
curity systems which requires face matching across NIR
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and VIS modalities leading to the development of HFR.

HFR methods have identified a domain gap between the two

modalities and focus their attention on bridging that gap in

order to transform the HFR problem into a homogeneous
problem. Currently, there are two dominant approaches in
the deep HFR literature:

1. Image synthesis methods propose to solve the HFR
problem by bridging the domain gap at the level of
model inputs, by learning to translate faces across do-
mains [21, 38, 58]. A powerful VIS face recognition
model is subsequently used for the face matching task.

2. Domain-invariant feature learning methods [18, 36,
39] aim at extracting facial identity features which are
invariant to the source image domain, thus, bridging the
domain gap at the level of extracted features.

Several studies use a combination of the above paradigms.

Among these, [15, 16] rather than treating the image gener-

ation problem as conditional VIS generation from a NIR in-

put, they choose an unconditional generative model trained
to generate paired NIR-VIS images from random noise and
generate a large amount of training samples which are used
to train a network to learn a domain invariant feature space.

To the best of our knowledge, the current state-of-the-art in

HFR is achieved by [33], who reconstruct 3D face shape

and reflectance from a large 2D facial dataset and transform

the VIS reflectance to NIR reflectance in order to generate
large-scale photorealistic data in the NIR and VIS spectra
for further fine-tuning.

Our method offers a simplified solution to the HFR prob-
lem. We rely heavily on good initialization of model pa-
rameters from pre-trained checkpoints and proposed regu-
larized finetuning techniques for extending the pre-trained
foundational face recognition models in the new modality
while retaining their performance in the original domain.

2.3. Transfer learning

Transfer learning aims at improving a learner’s performance
on a target task and data domain pair by “transferring” the
knowledge already learned through training in different but
somehow related source task and domain pair [35].
Depending on the discrepancy between the source and
target domains, transfer learning can be categorized into
two distinct groups [65]. In homogeneous transfer learn-
ing [54], inputs and ground truths, in both the source and
target domains share the same feature space. Otherwise,
the approach is referred to as heterogeneous transfer learn-
ing [8]. In the case where tasks are to remain the same
and only the domains were to change, the problem is re-
ferred to as domain adaptation [14]. Furthermore, depend-
ing on how knowledge is transferred, methods can be split
into two major categories [35]. Parameter-based techniques
transfer knowledge in the form of inheriting parameters of
a model pretrained on the source task. Similarly, instance-

based methods aim at utilising a subset of the source data
together with the target data. Our method is a heteroge-
neous method and utilises both types of knowledge trans-
fer. We initialise model weights from models pretrained on
large scale VIS data and further utilise the pretraining set
during finetuning as a form of regularization.

Closely related to our work, transfer learning through
reusing classifier weights has been extensively used as a
means for knowledge distillation [2] including works on FR
[10]. However, transfer learning for FR typically involves
transferring to a different set of identities which discards the
possibility of reusing classifier weights. To avoid this issue,
[63] pre-compute the classifier as the mean per-class em-
bedding of the pre-trained backbone and freeze these values
to fine-tune the backbone for homogeneous FR. Addition-
ally, they do not allow model parameters to deviate signifi-
cantly from pre-trained values through an L2 regularization
term. We find that building a classifier through averaging
identity embeddings leads to very strong perfromance when
combined with our finetuning pipeline but discard L2 regu-
larization in favour of our proposed regulariziation scheme
which is tailored to heterogeneous data.

3. Method

Our method is primarily motivated by the following obser-
vation: in contrast to VIS images, the use of NIR cameras
is not ubiquitous, discarding the possibility of gathering
large-scale NIR imagery data from the public domain. This
showcases the important role of large-scale VIS data as a
source of pre-training data. Furthermore, naive fine-tuning
is found to reduce performance in most cases tested in sec-
tion 4.3, suggesting the need for research on appropriate
transfer learning techniques. More specifically, our method
can be categorised as a domain invariant method, as we aim
towards finding a common embedding space where face
images of the same identity are mapped to points close to
one another irrespective of the input domain. However, we
do not design specific architectural or loss components to
bridge the domain gap but find that large scale networks ex-
hibit impressive zero-shot performance and few shot learn-
ing techniques are more effective compared to the current
state-of-the-art while being significantly simpler to imple-
ment. Our proposed method could be particularly useful for
building practical HFR systems and should replace naive
finetuning as a baseline technique for future HFR research.

In the following a source FR dataset used for pre-training
in the VIS domain {z?"*V"% 1, consists of 27"V % face
images and y; associated identity labels. Similarly, a target
HFR dataset used for NIR-VIS finetuning consists of face

images and associated labels for two modalities {} /%, y/;}
and {x1® y;}. A schematic overview of the proposed

framework is presented in Fig. 3.
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Figure 3. Proposed pre-training and fine-tuning with a subspace classifier for HFR. (top) we utilize both source and target data, use
augmentation from Eq.(??) and train with a joint set of identities, (bottom) we initialize all modules from pre-trained counterparts, feed
both source and rarget data to our backbone, freeze both linear classifier weights, and train with the combined loss presented in Eq.(3.2).

3.1. Pre-training with Large Scale VIS Data

To achieve strong HFR performance a model needs to be
able to achieve feature invariance for both VIS and NIR
modalities. Current FR models trained on large-scale VIS
datasets have arguably achieved very strong performances
[9, 51]. We assume that pre-training on large VIS data
is enough to learn a robust embedding space for the VIS
modality. Thus, we focus our attention on improving down-
stream transfer ability with regard to NIR images. Each
face image can be decomposed into three color channels
x = {xf 29 2B} each of which is an intensity map of
captured light at each respective spectral range. However,
not all (R, G, B) channels share the same similarities with
the NIR channel, the spectral sensitivity of the R channel
has significantly higher overlap with the NIR spectral range
than the B, G channels as shown in Fig.1. Motivated by this
observation we are using the red channel as a means of shift-
ing VIS images closer in appearance to the NIR spectrum.
During pre-training we use the following data transforma-

tion with equal probability to augment our data towards the
NIR spectrum:

Furthermore, assuming that we have access to some NIR
FR data, we can combine the source (preVIS) and farget
(NIR-VIS) data for pre-training. In doing so it is possible to
inject some real target data knowledge during pre-training
that would force our model to learn some discriminative
NIR features during pre-training while retaining good per-
formance in the large scale in-the-wild VIS dataset. Addi-
tionally, we can extract the learnt classifiers for the set of
target identities and transfer these directly during finetun-
ing, which we find is very beneficial against downstream
overfitting in the small scale NIR-VIS data.

3.2. Fine-Tuning on Target NIR-VIS Data

Fine-tuning DNNs directly for downstream tasks has been
shown to potentially reduce performance in low data
regimes [27], an observation which is also verified in sec-
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tion 4.3 in this paper. While a pre-trained backbone trans-

fers significant prior knowledge, FR classifier weights are

typically initialized randomly and trained together with
the backbone despite potentially having a larger capacity.

This is because state-of-the-art face recognition systems are

trained as image classifiers where each facial identity is

treated as a single class. For example, training on MS1Mv3

[11, 19] which includes 100k identities with a class em-

bedding d = 512 leads to classifiers with 50/ parameters

which can be more parameters than typically used deep neu-
ral networks, e.g. a ResNet50 contains around 43M param-
eters. For smaller and more parameter efficient backbones
this discrepancy can be very significant as shown in Table

2. We propose two techniques for transferring knowledge

for FR classifiers:

1. First, given the strong zero-shot performance of preVIS
pre-trained models, it is reasonable to assume that the
encoded representations of NIR-VIS data will also form
compact clusters, the centers of which are expected to
be strong identity predictors. We thus calculate classi-
fier values for the identities found in the HFR data by
enumerating all training data and taking the mean per-
identity embedding as the class center. These embed-
ding centers are then used to classify faces as one of the
identites in the HFR data. We refer to this method as the
Mean Embedding Classifier (MEC).

2. Second, assuming both source and target data are avail-
able, we combine the source and target datasets for pre-
training. SUbsequently, we only keep the subspace of
the learnt classifier that corresponds to farget identities
for further finetuning. In doing so our target class cen-
ters fit well with respective identities and by explicitly
comparing them with large scale source centers during
pre-training we end up with a more robust target embed-
ding space. We refer to this method as the Sub-Space
Classifier (SSC).

Importantly, in both cases we opt for freezing the classifier

weights during finetuning and only update the parameters

of the backbone model.

Finally, since there is a gap in model performance be-
tween source and target data, especially so for the smaller
architectures which are of interest for deployment on mo-
bile devices, we opt for a regularization scheme that does
not penalize deviation from pre-trained parameter values as
the one proposed in [63]. Instead, in the spirit of instance
based transfer learning, we reuse the source data during
fine-tuning and learn a simultaneously good solution for
both HFR and homogeneous FR while placing no explicit
constraint on model parameters through the following com-
bined loss:

_ 7 NIR-VIS preVIS
Lfv',netune - Lcls + )‘Lcls (1)

LNIR7VIS and LpreVIS

where cls cls

are respectively FR clas-

Table 1. FR and HFR datasets used in experiments.

Database Domain  Nynages Nsubjects (eval)  Year
Oulu-CASIA [3]  NIR-VIS 7,680 80 (40) 2009
BUAA [7] NIR-VIS 2.7k 150 (40) 2012

CASIA2.0[29] NIR-VIS 17.5k 725 (358) 2013
LAMP-HQ [57]  NIR-VIS 73.6k 573 (273) 2019
MSIMv3 [11, 19] VIS 5.1M 93k 2020

Table 2. Backbone Architectures used in experiments.

Model input size params (M)  FLOPS (G)
MEN [4] 112 x 112 10.48 0.23
LC29 [56] 128 x 128 10.48 3.70
IR18 [20] 112 x 112 24.03 2.62
IR50 [20] 112 x 112 43.59 6.32
IR100 [20] 112 x 112 65.15 12.12

sification losses for the target and source data and A is a
weight applied to the source data loss used for regulariza-
tion purposes. We find that a particular value of A is not
critical for achieving strong HFR performance and simplify
our scheme by using A = 1 in all subsequent experiments.

4. Experiments
4.1. Implementation details

Datasets. We utilise the MS1Mv3 dataset [11] for pre-
training in the VIS domain. For finetuning, all models are
initialized from MS1Mv3 pre-trained parameters. The fol-
lowing publicly available HFR datasets are used for finetun-
ing our models:

e« BUAA-NIR-VIS HFR dataset consists of NIR and VIS
paired images of 150 subjects. For each individual
and modality, a single image is captured, for a set of
nine distinct poses and emotions, i.e., neutral-frontal,
left-rotation, right-rotation, tilt-up, tilt-down, happiness,
anger, sorrow, and surprise.

CASIA NIR-VIS 2.0 [29] contains images from 725 sub-
jects from different age groups captured by VIS and NIR
cameras. For each individual, CASIA NIR-VIS 2.0 in-
cludes 1-22 VIS and 5-50 NIR images with large pose,
expression, and illumination variations, with or without
accessories. We note that the different modalities of CA-
SIA NIR-VIS 2.0 are captured independently, leading to
unpaired NIR-VIS images for the same expression.
Oulu-CASIA-NIR-VIS [3] contains a total of 80 individ-
uals, each of which was photographed under three distinct
illumination environments (strong, weak, and dark) at six
different emotional states (anger, disgust, fear, happiness,
sadness, and surprise).
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Table 3. Zero-shot NIR-VIS performance after pre-training (TAR@FAR=10""). 1 fold-1, * with target train data.

Model Lamp-HQ f CASIA 2.0 ¢ Oulu-CASIA BUAA

base + red aug.  +target* base + red aug.  +target* base + red aug.  +target® base + red aug.  +target*
MEN 87.91 88.68 96.90 95.05 95.75 98.26 84.60 88.36 92.75 96.70 96.73 98.44
LC29 | 8493 86.37 98.17 95.84 95.97 99.49 89.09 89.41 93.51 96.19 96.24 99.03
IR18 93.04 93.23 98.92 97.88 98.76 99.51 92.72 94.80 95.74 98.05 98.45 99.37
IR50 99.03 99.16 99.84 99.89 99.90 99.97 99.52 98.76 99.61 99.84 99.61 100.0
IR100 | 99.60 99.65 99.89 99.93 99.97 99.98 99.82 99.87 99.75 99.92 99.81 100.0

Table 4. Performance on NIR-VIS public datasets after naive (pre-train/fine-tune). TAR@FAR=10"*.

Model Lamp-HQt

} 14 v/ VIV 4 v/

CASIA 2.0

Oulu-CASIA BUAA

VIV 4 v/ VIV I v/ VIV

MEN 0.14 8791 92.75 1.61  95.05
IR18 398 93.04 9477 | 0.73  97.88
IR50 68.47 99.03 97.72 | 50.50 99.89
IR100 | 71.52  99.60 96.85 | 52.35 99.93

Naive

* LAMP-HQ [57] contains 56,788 NIR and 16,828 high
resolution VIS images of 573 people from three distinct
races (Asian, Black, White) with large variations in pose
(0°, +£45° yaw angles, side, and bottom view), illumina-
tion (five different scenes including indoor natural light,
indoor strong light, indoor dim light, outdoor natural
light, and outdoor backlight) and accessories (different
types of glasses, headdresses, and earings).

Information on all employed datasets is summarized in Ta-

ble 1. Following common practice, we obtain normalized

face crops by aligning all faces to a pre-defined template,
as commonly followed in the FR literature [9, 32, 51], us-
ing five facial landmarks extracted by RetinaFace [12]. All
images are subsequently scaled to (112 x 112) image size.
Architectures. Information for all employed architec-
tures is summarized in Table 2. LC29 [56] has been explic-
itly proposed for HFR while remaining models have been
proposed for general discriminative feature learning.
Training. We employ ArcFace [9] as the margin based

FR loss. We pre-train for 24 epochs, batch size 512, and

learning rate 0.1 which we decay by 0.1 at epochs 10, 18

and 22. We fine-tune for 20 epochs of target data, starting

with learn rate 10~4 which we decay by 0.1 at epochs 10

and 15 and loss margin equal to 0.6. We use a batch size 64

for the finetuning data and keep the source data batch size

to 512. All training takes place on x8 Nvidia V100 GPUs.

4.2. Zero-shot performance from VIS pre-training

We begin by assessing the zero-shot performance of pre-
trained FR models in a HFR setting without further fine-
tuning. Results are presented in Table 3.

First, it is observed that larger architectures (IR50,
IR100) behave qualitatively differently from smaller ones,
having very strong performance despite the domain shift in
stark opposition to very clear performance degradation for
smaller models (MFN, LC29). This finding suggests a new

81.54 | 328 84.60 6046 | 0.15 96.70 97.58
86.10 | 820 9272 5494 | 0.19 98.05 93.80
9430 | 1259 99.52 95.1 90.81 99.84 99.61
9386 | 4.08 99.82 9276 | 89.80 99.92 99.77

perspective for solving the HFR problem. It indicates that
there exists adequate information in large-scale FR datasets
to bridge the domain gap to NIR, however, this is not typi-
cally achieved due to the inability of smaller models to learn
these features. This has critically not been observed in pre-
vious studies due to the small model capacity of employed
architectures in the HFR literature.

To bridge the performance gap for smaller architectures,
our proposed method for enhanced pre-training through
red channel augmentation offers clear performance gains,
which however are not as significant for the larger models.

Finally, we observe that including target data in the pre-
train set is enough to bridge a significant portion of the per-
formance gap between the zero-shot and fine-tuned models.

4.3. HFR Fine-Tuning Performance

In Table 4 we present experimental results on naively fine-
tuning to target HFR data through randomly initializing
classifier weights and training the model end-to-end. More
specifically, we evaluate model performance with or with-
out pre-training or fine-tuning. We observe that without
pre-training all models perform substantially worse than
pre-trained counterparts, in particular, the smaller architec-
tures fail to learn any discriminative features. Thus, pre-
training appears to be crucial for learning useful represen-
tations from small HFR datasets. Additionally, naive tar-
get set fine-tuning appears to destroy the embedding space
learned during pre-training and lead to performance degra-
dation. This is always the case for IR50, IR100, and almost
always for IR18 and MFN.

In Table 5 we present experimental results for regular-
ized fine-tuning methods. In contrast to naive finetun-
ing (Table 4), here, we observe clear performance gains as
most models reach performances close to 100% for most
datasets and no performance degradation compared to no
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Table 5. Performance on NIR-VIS public datasets (TAR@FAR=10"%) after regularized fine-tuning with either MEC or SSC, with (A = 1)

or without (A = 0) making use of source data. No target data have been used during pre-training.

Model Lamp-HQft CASIA 2.0t Oulu-CASIA BUAA
RCT [63] A=0 A=1 RCT [63] A=0 A=1 RCT [63] A=0 A=1 RCT [63] A=0 A=1
MFN 99.12 99.50 99.34 99.52 99.61  99.58 94.05 93.65 96.61 98.64 99.23  99.52
Eu) IR18 99.67 99.77  99.70 99.83 99.89  99.90 96.59 95.82  96.96 99.61 100.0  99.84
= IR50 99.91 99.93 9991 99.98 99.98  99.98 99.88 99.85  99.88 100.0 100.0  100.0
IR100 99.93 99.93  99.93 99.98 99.98  99.98 99.97 99.97  99.97 100.0 100.0  100.0
MFN 99.34 99.69  99.54 99.60 99.68  99.68 95.12 9573  97.16 99.52 99.34 9941
g IR18 99.73 99.78  99.76 99.86 99.90  99.92 96.58 96.78  99.45 99.70 99.92  99.95
© | IR50 99.91 99.95 99.93 99.98 99.98  99.98 99.88 99.90  99.96 100.0 100.0  100.0
IR100 99.93 99.93  99.94 99.98 99.98  99.98 99.97 99.97  99.97 100.0 100.0  100.0
Table 6. Comparison with state-of-the-art. LC29 architecture with MEC and A = 0. Folds 1-10.
Method CASIA 2.0 Lamp-HQ 1 Oulu-CASIA BUAA
FAR=10* 10 ° Rank-1 | FAR=10 * FAR=10° Rank-1 | FAR=10 ° Rank-1 | FAR=10 ° Rank-1
LAMP-HQ [57] 98202  99.2+0.0 - 782+3.0 97302 89.0 100.0 93.4 98.8
DFAL [24] 98.7+£02  99.1+0.2 - - - 93.8 100.0 99.2 100.0
OMDRA [23] - 99.4+02  99.6%0.1 - - 92.2 100.0 99.7 100.0
DVG-Face [16] | 99.2+0.1 99.9£0.0  99.9%0.1 - - - 97.3 100.0 99.1 99.9
LC-29 [33] 99.90 + 0.06 100.0 + 0.0 99.9 0.1 98.6 £0.4 99.4+0.3 99.1+£0.3 99.1 100.0 99.8 100.0
LC-29 (ours) 99.9 + 0.1 99.95 £0.02 100.0 99.35+0.2  99.87 £ 0.05 100.0 99.62 100.0 99.90 100

Table 7. Cross dataset evaluation (TAR @FAR=1"*). Pre-trained MFN is fine-tuned with MEC (A=0 /\=1). 1 Fold 1.

Lamp-HQ

CASIA 2.0

Evaluation

Oulu-Casia BUUA

Lamp-HQ f

ing

99.50/99.34{99.17 / 99.35

85.57/92.81/192.91/ 97.66

88.30/91.63

CASIA 201

99.61/99.58

82.35/92.88/91.27/ 98.28

Train

Oulu-Casia |74.79 / 87.37

84.49/96.88(93.65 / 96.61

87.79196.50

BUUA (86.18/88.31

96.86 /98.16

84.13/91.31{99.23 / 99.52

no fine-tune 88.68

95.75

88.36 96.73

fine-tuning. Furthermore, we note that when using MEC
and no regularization, the proposed finetuning scheme is
conceptually simple, more memory efficient and faster to
train than naive finetuning. We propose that this finetuning
paradigm to be used as the baseline for judging the perfor-
mance of future HFR research in place of naive finetuning.
We additionally find that regularization w.r.t. parameter val-
ues of pre-trained network (RCT) [63] does not help and is
almost always suboptimal compared to either no regulariza-
tion (A = 0) or our proposed regularization (A = 1). This
can be explained by the NIR-VIS discrepancy as RCT was
proposed for homogeneous data. Compared to no regular-
ization, our proposed regularization (A = 1) is found to
be somewhat less performant for the more diverse datasets
(Lamp-HQ and CASIA) but offers important gains for the
less diverse ones (Oulu-Casia and BUUA). In most cases
tested our SSC outperforms MEC, albeit at the added cost
of target-specific pre-training. As before, gains are signifi-
cantly more pronounced for the smaller backbone architec-
tures employed.

Further benefits of our regularization scheme can be ob-
served in Table 7. There, we perform cross-dataset evalua-
tion among the four HFR datasets with or without utilizing
the source data during finetuning. Similarly, we note that

apart from the more diverse datasets, Lamp-HQ and CA-
SIA, A = 1 outperforms A = 0 in every case. Importantly,
we observe very large performance gains in nondiagonal el-
ements of Table 7 that have been trained and evaluated in
different datasets. Thus, our proposed regularization can
boost model performance in two settings. First, for small
scale, low diversity datasets with limited data to finetune on
our scheme reduces overfitting. Second, comparing Tables
7 and 3, we observe that when there are no target HFR data
to finetune on, our regularization scheme can help utilize a
different HFR dataset and improve performance compared
to no finetuning.

Finally, in Table 6 we present a comparison with state-
of-the-art methods for HFR. A LC29 model is pre-trained
with red channel augmentation, no target data, and fine-
tuned with MEC and A = 0 for a fair comparison with liter-
ature. We observe similar performance for CASIA 2.0 and
significant gains for all other datasets compared to state-of-
the-art methods from the literature. Importantly, our frame-
work is conceptually much simpler than competing methods
which rely on expensive processes for generating synthetic
data or employ complex architectures for domain invariant
learning.
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5. Conclusion

In this paper, we presented a simple method consisting
of strong pre-training, followed by regularized fine-tuning,
that demonstrated robust performance in HFR. Our exper-
iments further revealed that large-scale models, in particu-
lar, showcase significant zero-shot performances compared
to their smaller counterparts. This suggests that VIS data
alone carry ample information to effectively address the
HFR problem. While knowledge distillation (KD) might
seem like a natural research avenue given these findings,
our initial experiments with this technique did not yield the
anticipated results, which could be attributed to various fac-
tors, including the intricacies of the HFR problem. Future
work might focus on refining KD techniques applicable to
HFR.
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