
Unified Face Attack Detection with Micro Disturbance
and a Two-Stage Training Strategy

Jiaruo Yu, Dagong Lu*, Xingyue Shi*, Chenfan Qu, Fengjun Guo†

IntSig Information Co. Ltd
Shanghai, China

{jiaruo yu, dagong lu, xingyue shi, chenfan qu, fengjun guo}@intsig.net

Abstract

Face recognition systems are widely used in real-world
scenarios but are susceptible to physical and digital attacks.
Effective methods for unified detection of both physical face
attacks and digital face attacks are essential to ensure the
reliability of face recognition systems. However, how to ob-
tain a unified face attack detection model that has adequate
ability of fine-grained perception and cross-domain gener-
alization ability remains an open challenge. To address this
issue, we first propose a two-stage training strategy, which
utilizes unlabeled face images with masked image modeling
and unleashes the potential of vision transformers. Further-
more, we propose a novel method termed as Micro Distur-
bance, which successfully enriches the representation dis-
tribution of forged faces and increases the diversity of the
training data, thereby addressing the issue of cross-domain
generalization. Attribute to the effectiveness of our pro-
posed methods, our model finally wins the third place in
the 5th Face Anti-Spoofing Challenge@CVPR2024, with an
impressive ACER score of 5.511.

1. Introduction
Face recognition systems have been widely applied in vari-
ous scenarios such as face unlocking and face payment [52].
However, the rapid development of face manipulation and
face generation methods makes it easier to fool face recog-
nition systems, which poses serious risks to the security of
social media [48]. It’s crucial to develop effective methods
for face image forensic.

Existing face manipulation methods can be divided into
two categories, physical presentation and digital editing [7].
The former is mostly achieved using physical media, such
as photo printing and video replaying [20]. The latter is
mostly achieved by editing digital images with deep neural
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Figure 1. The samples from UniAttackData [13].

networks [43]. The board diversity of face manipulation
techniques makes it challenging to verify the authenticity
of face images, as shown in Figure 1.

Recently, numerous methods have been proposed for
face forgery detection, such as handcrafted features [3, 8]
and deep forensic models [51]. Various types of external in-
formation are utilized for better performance, such as depth
maps [39] and biological features [14]. Despite significant
progress has been made, there are still some problems that
have not been solved by previous work. Firstly, the chal-
lenging nature of face forgery detection. The difference be-
tween forged faces and real faces can be very subtle, posing
significant demands on the fine-grained perceptual abilities
of models [15]. Second, previous methods mostly handle
the physical presentation attack and the digital editing at-
tack separately [53], which requires large computational re-
sources and considerably increases the inference time [13].
Third, it is almost impossible to include all types of the real-
world face forgeries in the training data [41]. However, ex-
isting face forensic models trained on specific datasets gen-
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erally struggle to perform well on unseen attack types [35].
The above problems bottleneck the real-world application
of face recognition systems and cause risks for social infor-
mation security.

To address the issue of fine-grained perception and uni-
fied face attack detection, we propose to harness the power
of vision transformers. However, the vision transformers
tend to overfit the limited training data, making it difficult
to directly utilize them for face attack detection. To alleviate
the data hunger of vision transformers (ViTs), we propose
a two-stage training strategy. In the proposed strategy, we
first pre-train the ViT model with both the real faces and
fake faces in a masked image modeling manner: randomly
mask 75% of the face images and train the model to predict
the masked regions. Afterwards, we replace the original de-
coder with a single linear classifier and fine-tune the model
on the target data. Despite its simplicity, this can effectively
retain the knowledge learned in the pre-training stage and
avoid catastrophic forgetting as much as possible.

In order to simultaneously address the issue of cross-
domain generalization and fine-grained perception, we pro-
posed a novel method, termed as Micro Disturbance. In
the method, we slightly perturb both of the real faces and
the forged faces with the random combination of four ap-
proaches (color jitter, screen simulation, JPEG compression
and Gaussian blur), and relabel all the processed faces as
forged faces despite their original labels. The processed
faces can have different distributions with both of the au-
thentic faces and the existing fake faces. Therefore, with
the proposed Micro Disturbance, we significantly enrich
the representation distribution of the forged faces and in-
crease the diversity of the training data, thereby addressing
the issue of cross-domain generalization. In addition, since
the proposed Micro Disturbance only generates only sub-
tle anomalies, the models’ ability for fine-grained percep-
tion can also be considerably improved. As a result, mod-
els trained with the proposed Micro Disturbance achieve a
significant 10 points performance gain in the 5th Face Anti-
Spoofing Challenge@CVPR2024.

We conduct experiments on UniAttackData [13], the
official dataset of the 5th Face Anti-Spoofing Chal-
lenge@CVPR2024. The UniAttackData contains both
of the physical and digital attacks, and its digital at-
tacks involve digital adversarial and digital forgery at-
tacks, as shown in Figure 1. Therefore, it provides the
chance to design unified attack detection frameworks. We
win the third place in the 5th Face Anti-Spoofing Chal-
lenge@CVPR2024. This demonstrates the effectiveness of
our methods in real-world face attack detection.

In summary, our contribution is three-fold:

• We propose a two-stage learning strategy that signifi-
cantly enhances the forensic model’s generalization abil-
ity on detect unseen attack types.

• We propose Micro Disturbance, a novel method to im-
prove data diversity and address data scarcity. This
method effectively improves the model’s ability to gen-
eralize across unseen scenarios.

• Our method wins the third place in the 5th Face Anti-
Spoofing Challenge@CVPR2024. Extensive experi-
ments verify the effectiveness of our methods.

2. Related Work
2.1. Face anti-spoofing

Face anti-spoofing aims to detect the physical presenta-
tion attacks, which impersonates a specific live subject to
achieve false acceptance [10]. There are various approaches
to achieve physical presentation attack, such as photo at-
tack, video replay attack, and 3D mask attack [2, 52], which
makes the face anti-spoofing task challenging. Early works
attempted to achieve face anti-spoofing with handcrafted
features, such as LBP [8], HoG [50], SIFT [36] and SURF
[3]. More recently, deep neural networks have accelerated
the development of face anti-spoofing methods with their
strong feature extraction ability [39, 51]. Deep learning
based face anti-spoofing methods have demonstrated sig-
nificant improvements over the conventional methods [30].
Yang et al. [51] utilized deep neural network to perform
binary classification on live vs spoofed samples. Shao
et al. [39] proposed to improve face anti-spoofing with
depth information. Liu et al. [30] proposed a framework
to train an attack system and a defense system simulta-
neously with adversarial training. Liu et al. [32] intro-
duced prompt learning for generalizable face anti-spoofing.
Wang et al. [46] proposed multi-domain incremental learn-
ing and Liu et al. [27] utilized adversarial cross-modality
translation for better performance. Recently, many face at-
tack detection challenges have been held, successfully pro-
moting the development of the field of face attack detec-
tion. CASIA-SURF [54] paid attention to multi-modal face
anti-spoofing [24, 55]. CeFA [26] improved cross-ethnicity
face anti-spoofing [25]. HiFiMask [29] facilitated 3d high-
fidelity mask face presentation attack detection [28] and
SuHiFiMask [12] improved surveillance face presentation
attack detection [11, 45]. Despite the progress has been
made, effectively detecting spoofed faces of unseen types
of attack in an unified manner remains an open challenge.

2.2. Face forgery detection

Except for physical presentation attack, digital forgery at-
tack also causes serious risks for the security of face recog-
nition systems [43]. In contrast to physical presentation at-
tack that deceives with physical mediums, digital forgery
attack performs digital editing at the pixel level. There are
also various approaches for digital forgery attack, such as
deep face synthesis [18], identity swap [42], and attribute
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Figure 2. The pipeline of the two-training strategy. In the pre-training stage, we randomly mask the input image to predict raw RGB pixels
for extracting discriminative representations. In the fine-tuning stage, we fine-tune the model using target data.

manipulation [6]. Consequently, face forgery detection be-
comes another challenge that increasingly attracts attention
in the field of information security. Earlier methods for face
forgery detection focused on capturing spatial artifacts of
manipulated images, and trained a binary classifier straight-
forwardly [1, 4, 17, 47]. Subsequent work has used specific
types of artifact clues, including frequency, blending arti-
facts, resolution difference [5, 22, 37]. It is an intuitive and
common idea to synthesize and augment data in order to
improve the diversity of datasets and thus enhance gener-
alization. In face forgery detection, methods are proposed
to synthesize forgery images by blending two images, pro-
viding data for the model to learn to detect the blending
boundary artifacts [21, 40, 56].

2.3. Unified face attack detection

In the majority of existing works, the detection of physical
presentation attack and digital forgery attack are regarded
as two individual computer vision tasks, face anti-spoofing
and face forgery detection. However, due to the diversity
of real-world attacks, treating the two tasks separately re-
quires large computational resources and significantly in-
creases the inference time, making it a suboptimal choice
[13]. Recently, researchers proposed to detect both phys-
ical presentation attacks and face forgery attacks in a sin-
gle unified model. UniFAD [9] aimed to detect 25 coher-
ent attack types from three categories, adversarial attack,
digital attack, and physical attack. It employed a multi-
task learning framework together with k-means clustering
to learn joint representations for coherent attacks. Yu et al.
[53] established the first joint benchmark for face spoof-

ing and forgery detection using both visual appearance and
physiological rPPG cues. Fang at al. [13] collected UniAt-
tackData dataset used in the 5th Face Anti-Spoofing Chal-
lenge@CVPR2024, and further proposed a UniAttackDe-
tection based on Vision Language Models (VLMs).

3. Methods
In this section, we introduce our methods for unified face
attack detection, which consist of a two-stage training strat-
egy and the Micro Disturbance. The Micro Disturbance is
utilized in the last stage of our training strategy.

3.1. Two-Stage Training Strategy

Recently, Vision Transformers (ViTs) have demonstrated
strong capabilities for fine-grained perception and long-
range modeling, achieving outstanding performance in
many computer vision tasks. However, ViTs suffer from
data hunger and tend to overfit small training data. To ad-
dress this problem, we introduce a two-stage training strat-
egy, where the ViT model is first pre-trained on the face
images using masked image modeling , and then fine-tuned
on the target data, as shown in Figure 2.
Backbone. Transformer-based models have been widely
adopted due to their promising performance in computer vi-
sion tasks [19]. Transformer is known for utilizing attention
to model long-range dependencies in the data. We choose
to use the Swin Transformer [33] as our backbone model
due to its high performance and computational efficiency. It
limits self-attention computation to non-overlapping local
sliding windows and has hierarchical architecture that pro-
vides flexibility. The image is evenly partitioned with non-
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Figure 3. Masked image modeling in the pre-training stage. The
first row are original images. The second row are masked images.

overlapping sliding windows. Shifted window-based self-
attention computes self-attention within these windows,
avoiding the need for global attention computation required
by the standard Transformer architecture. This approach
also allows for cross-window connections for knowledge
interaction. The hierarchical architecture generates feature
maps in a hierarchical structure that can detect artifact cues
at different scales, which can be useful for spotting face at-
tacks. In addition, the self-attention in Swin Transformer
can help the model to pay more attention to regions with
the most forgery cues, thereby achieving robust face attack
detection.

Pre-training Stage. To avoid over-fitting, we first pre-
train the Swin-Transformer on the face images from UniAt-
tackData. Generally, the self-supervised pre-training tech-
niques can be categorized into two types: contrastive-based
(e.g. MoCo [16]) and reconstruction-based (e.g. Sim-
MIM [49]). The contrastive-based methods require the con-
struction of positive and negative pairs [16]. For face im-
ages, the negative pairs should be faces of different peo-
ple to avoid confusion. However, the UniAttackData does
not provide the necessary person-ID information. There-
fore, we can only construct positive and negative pairs with
random person-IDs. Furthermore, since the images in Uni-
AttackData are extracted from videos, many samples have
the same person-ID. As a result, many of the constructed
negative pairs have the same ID, which is not semanti-
cally meaningful and confuses the model, leading to unsat-
isfactory performance. Therefore, we adopt reconstruction-
based pre-training method Masked Image Modeling (MIM)
and utilize the SimMIM framework for implementation.

Each input image is cut into 28 × 28 patches of 8 × 8
patch size. We then randomly mask 75% of the patches,
as shown in Figure 3. The patches are then fed into the
Swin Transformer to predict the raw pixel value, where the
encoder is the Swin Transformer (Large) and the decoder is
a single linear layer.

An l1-loss is applied on the masked pixel prediction:

Dropout FCAverage
Pool

input predict

Figure 4. The decoder in the fine-tuning stage.

Lpre =
1

Ω(xM )
||yM − xM ||1 (1)

where xM , yM ∈ R3×H×W×1 are the input RGB pixel val-
ues and the predicted pixel values, respectively. H and W
are the height and width of the image. Ω(·) is the number
of pixels.
Fine-tuning Stage. In the fine-tuning stage, we initialize
the Swin-Transformer with the pre-trained weights, and re-
place the decoder with a single linear binary classifier, as
shown in Figure 4. We fine-tune the model using the target
data in UniAttackData and the data generated by the Micro
Disturbance, which is proposed in Section 3.2. The cross-
entropy loss is used to train the binary classifier:

Lcls = −
C∑
i=1

yilog(pi) (2)

where labels are converted to one-hot vectors and C = 2
stands for live face and fake face, respectively.

The key idea of this method is to alleviate the data hunger
for vision transformers by using MIM pre-training on face
images, thereby unleashing their potential. This is different
from previous works [23, 31] that utilize elaborated model
designs.

3.2. Micro Disturbance

Motivation. To improve the model’s ability for fine-grained
perception and cross-domain generalization, we proposed
Micro Disturbance, a novel method to expand the diver-
sity of the existing small training data. The key idea be-
hind the Micro Disturbance is to slightly disturb both of
the live samples and attack samples, and regard all of the
outputs as attack samples. The outputs of the Micro Dis-
turbance effectively alleviate the scarcity of diverse, high-
quality training data for face attack detection. After train-
ing with Micro Disturbance, the model can better identify
the subtle anomaly and learn a more robust representation
of live samples, thereby achieving better generalization to
unseen attacks.
Implementation. As shown in Figure 5, to implement the
Micro Disturbance, we process both of the live faces and
fake faces in the UniAttackData with the random combina-
tion of four types of image processing techniques:
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• Color Jitter. We randomly change the brightness, con-
trast, and saturation of the input sample with probability
of 0.3 for each operation.

• Sreen Simulation. We perform random moire pattern in-
sertion on the input sample, this well imitates the screen
display spoofing. In addition, we perform random gamma
correction on the input sample, which can simulate the
possible color deviation on the screen. The probability
for each method is 0.5.

• Image Compression. We perform random JPEG compres-
sion on the input image to achieve the quality degradation
and to generate anomaly clues. The probability of JPEG
compression is 0.5.

• Image Blur. We apply random Gaussian Blur to the input
image, which can also generate anomaly features. The
probability of the Gaussian blur is set to 0.5.

The above image processing methods are performed on-
line, using at least one of the methods, color jitter. After
processing, all output images are labeled as attack samples.

Advantages. Despite its simplicity, the clear advantages
and interpretability of the proposed Micro Disturbance are
manifold, as detailed below:

1. The Micro Disturbance facilitates the model’s ability for
fine-grained perception, which is essential for face attack
detection. The operations of the proposed Micro Distur-
bance only slightly change the appearance of the input
face. When a live face is processed with the Micro Dis-
turbance, the output is labeled as a fake face. The model
must improve its ability to detect the subtle anomaly dur-
ing training. Consequently, the trained model demon-
strates a strong ability for fine-grained perception and
thus achieves better performance for face forensic.

2. The Micro Disturbance increases the diversity of the
fake faces, thereby significantly alleviating the scarcity
of high quality training data. The faces processed by the
Micro Disturbance have different distributions of both
authentic and existing fake faces. Therefore, the outputs
can cover more types of artifacts, effectively improving
the model’s ability to generalize with their diversity. The
model’s cross-domain generalization ability can also be
improved with the processed samples as these samples
have diverse features and thus can prevent the model
from over-fitting specific patterns in a single domain.

3. The Micro Disturbance compresses the feature distribu-
tion of live samples, so it can help the model generalise
across unseen forgeries. By applying the Micro Distur-
bance, the features of live samples tend to be more com-
pact and robust. The feature of the unseen type of face
attack will have a more discriminative distribution than
that of the live samples, so the model is better able to
identify the unseen face attack.

Color Jitter

Screen Simualation

Gaussian Blur

JPEG  Compression

Figure 5. The pipeline of the proposed Micro Disturbance. The
random combination of the four image processing techniques is
applied to a random face, and the processed face is labeled as fake.

4. Experiments

4.1. Implementation Details

Our methods are implemented with the PyTorch framework.
We use two NVIDIA-A100 GPUs with 80GB memory to
train our model. The backbone network is Swin-Large, with
the window size set to 12 [33].

In the pre-training stage, the batch size is set to 80 on
each gpu. The initial learning rate is 3.125e-05, and the
optimizer adopted is AdamW [34] with the weight decay set
to 5e-02. The model is pre-trained for a total of 800 epochs
on the UniAttackData. All images are resized to 224×224
before being fed to the model.

In the fine-tuning stage, the batch size is set to 64 per
device, 4 devices in total. We keep using AdamW optimizer
in this stage, and adjust the initial learning rate to 1e-04 and
the weight decay parameter to 1e-02. The input image size
remains 224×224.

4.2. Datasets and Evaluation Protocols

The UniAttackData dataset is from the 5th Face Anti-
Spoofing Challenge@CVPR2024. In total, there are 35,906
images from 14 types of attacks, 2 types of physical attacks
and 12 types of digital attacks. This enables the dataset to
serve as a benchmark for unified face attack detection. The
physical attacks include the most common spoofing types,
printing attacks and replay attacks. The 12 digital attacks
include 6 digital adversarial attacks and 6 digital forgery at-
tacks. More details on the implementation of the attacks can
be found at [13].

In the 5th Face Anti-Spoofing Challenge@CVPR2024,
there are three different protocols, as shown in Table 1. In
Protocol 1, models are tested on seen forgery: both of the
training and testing sets include all types of face attacks. In
contrast to protocol 1, in protocol 2.1 and protocol 2.2 the
models are tested on unseen forgery. For example, the at-
tack in the training set of Protocol 2.1 is digital attack, while
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Pro Set Type Total#Live #Phys #Adv #Forg

P1
Train 3000 1800 1800 1800 8400
Val 1500 900 1800 1800 6000
Test 4500 2700 7106 7200 21506

P2.1
Train 3000 0 9000 9000 21000
Val 1500 0 1706 1800 5006
Test 4500 5400 0 0 9900

P2.2
Train 3000 2700 0 0 5700
Val 1500 2700 0 0 4200
Test 4500 0 10706 10800 26006

Table 1. Statistics of UniAttackData [13]. Amount of train/val/test
images of different types under three different protocols: P1, P2.1,
and P2.2. Digital attacks are divided into finer classes digital ad-
versarial attacks and digital forgery attacks.

Team APCER ↓ BPCER ↓ ACER ↓ Rank

MTFace 0.9259 3.7533 2.3396 1
SeaRecluse 0.3999 6.4737 3.4369 2

Ours 5.5185 5.5037 5.5111 3
BSP-Idiap 9.3629 23.0698 16.2263 4
VAI-Face 0.2593 34.0055 17.1324 5

Table 2. Performance in the Unified Physical-Digital Face Attack
Detection @CVPR2024. The mark ↓ indicates the lower the better.

in the testing set it is physical attack, similar to Protocol 2.2.
As a result, Protocol 2.1 and Protocol 2.2 can evaluate the
model’s ability to generalize across the unseen domain.

4.3. Evaluation Metrics

We adopt three metrics to evaluate performance, the Attack
Presentation Classification Error Rate (APCER), the Bona
Fide Presentation Classification Error Rate (BPCER) and
the Average Classification Error Rate (ACER). The defini-
tions of APCER and BPCER are formulated as:

APCER = FN/(TP + FN) (3)

BPCER = FP/(FP + TN) (4)

where TP, TN, FP, and FN stand for the number of true pos-
itive, true negative, false positive, and false negative sam-
ples respectively. The ACER is defined as the average of
APCER and BPCER:

ACER = (APCER+BPCER)/2 . (5)

No. TS MD APCER ↓ BPCER ↓ ACER ↓
1 - - 12.5851 13.3733 12.9792
2

√
- 0.84444 29.9455 15.3950

3 -
√

46.3481 26.6967 36.5224
4

√ √
5.5185 5.5037 5.5111

Table 3. Ablation Study on UniAttackData. ‘TS‘ and ‘MP‘ denote
our two-stage training strategy and our proposed Micro Distur-
bance, respectively. The mark ↓ indicates the lower the better.

4.4. Comparison Study

We compare the performance of our methods with other
teams on the testing set of UniAttackData, the comparison
study is shown in Table 2. In this table , our model achieves
APCER, BPCER and ACER by 5.5185, 5.5037 and 5.5111,
respectively. We win the third place in the 5th Face Anti-
Spoofing Challenge@CVPR2024. In Table 2, the ACER of
our method is significantly better by more than 10 points
than the fourth team, which confirms the effectiveness of
our methods.

4.5. Ablation Study

To verify the effectiveness of the proposed methods, we
conduct ablation study on the UniAttackData dataset, the
results are shown in Table 3. In this table, the model with
neither the proposed two-stage training strategy nor the pro-
posed Micro Disturbance serves as the baseline (No. 1).
Evidently, the model equipped with both of the proposed
methods (No. 4) achieves a notable 7 points lower ACER
than the baseline (No. 1). Moreover, the proposed Micro
Disturbance only works when the model is trained with our
two-stage training strategy (No.3 worse than No.2), demon-
strating the importance of the proposed strategy. To further
find out how the proposed Micro Disturbance works, we
visualize the features of the live, fake faces and the sam-
ples generated by our Micro Disturbance respectively us-
ing T-SNE [44]. As shown in Figure 6, for both protocols,
the representation distribution of the generated samples
(pink) is close to both the real physical attacks (green)
and the digital attacks (orange), and has more diversity.
This means that the generated samples obtained from our
Micro Disturbance can well simulate various types of real-
world attacks, thereby significantly alleviating the scarcity
of diverse, high-quality data. It is attribute to our proposed
simple-yet-effective methods that our model can achieve
much lower error rate than the baseline.

4.6. Visualization

Visualization with Grad-CAM. We use Grad-CAM [38],
a gradient-based visual explanation algorithm to analyse
the attention maps of our model, the results are shown in
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Protocol 2.1 Protocol 2.2

DigitalLive Physical Synthesis

Figure 6. Visualization of feature maps obtained by the trained model under Protocol 2.1 and Protocol 2.2. The samples are come from
training set of Protocol 1.

Protocol 2.1                                                                                             Protocol 2.2

DigitalLive Physical

Figure 7. Visualization of feature maps obtained by the trained model under Protocol 2.1 and Protocol 2.2. The samples are come from
training set of Protocol 1.
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Figure 8. The visualization of the results under different protocols.

Figure 8. Evidently, even in the challenging Protocol 2.1
and Protocol 2.2 where the model is tested on unseen at-
tack types, our model can pay attention to the regions that
have the most forgery clues. This indicates that our model
is robust to unseen attack types and can identify the subtle
anomaly for accurate face attack detection.
Visualization with T-SNE. In order to further demonstrate
the effectiveness of our model, we display the feature maps
of different types of samples with the T-SNE [44] algorithm
in Figure 7. In Protocol 2.1, the model is trained without
seeing any physical samples. Similarly, the model trained
in Protocol 2.2 has not been exposed to digital samples. De-
spite the absence of certain attack types, it can be observed
from the visualization in Figure 7 that the models are able
to clearly distinguish between most of the live samples and
attack samples, further demonstrating the effectiveness of
our proposed methods.

5. Conclusion

Unified face attack detection is crucial for guaranteeing
the reliability of face recognition systems and ensuring so-
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cial media security. In this paper, we analyse the exist-
ing problems for unified face attack detection and propose
two methods to improve the performance for face foren-
sic models. To address the problem of fine-grained per-
ception and data scarcity, we propose to harness the power
of vision transformers that trained with a two-stage strat-
egy. The two-stage training strategy effectively alleviates
the data hunger of the vision transformers. Furthermore, to
simultaneously address the issues of cross-domain general-
ization and fine-grained perception, we propose Micro Dis-
turbance, which compresses the representation distribution
of live faces and increases the diversity of the training data.
Attribute to our simple-yet-effective methods, our model
achieves 7 points lower ACER than the baseline method,
and we win the third place in the 5th Face Anti-Spoofing
Challenge@CVPR2024. We believe that our methods can
shed light on the community and promote the real-world
application of unified face attack detection.
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