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Abstract

The NeRF and GAN-based GIRAFFE algorithm has
drawn a lot of attention because of its controllable im-
age production capacity. However, the consistency of GI-
RAFFE rendering results from different perspectives of the
same object is not stable. The reasons are twofold: First,
the optimization goal of GIRAFFE is only concerned with
whether the generated image resembles the real image or
not. Second, GIRAFFE could learn knowledge implicitly
to complement the feature deformation of large camera an-
gle change, which may introduce uncontrollable generation
mode resulting in low consistency of the 3D object. This
limits its application in fields such as digital person gener-
ation and biometric identity. In this paper, We introduce
an additional Encoder to form a momentum-based Con-
trastive Learning with the Discriminator of GAN. In ad-
dition, we propose an AamNCE loss to train our model
which introduces an additive angular margin to the posi-
tive sample pairs. In brief, the proposed framework could
be regarded as a new paradigm of GAN and Contrastive
Learning. The Contrastive Learning improves the charac-
teristic expression ability of the model, and the AamNCE
loss makes the category boundaries of the generated im-
ages more explicit. The experimental results demonstrate
that our method maintains the consistency of face identity
well in the multi-angle rotation of the face dataset.

1. Introduction
The introduction of NeRF [28] has made implicit 3D re-
construction a popular area of research. Unlike traditional
3D reconstruction methods, its output is direct images ren-
dered through a neural rendering network. This approach
simplifies the process of 3D reconstruction. Since the pro-
posal of NeRF, several works have emerged to improve its
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Figure 1. The figure shows faces generated and rendered with
large-angle by our method. It has clear and realistic rendering
results with good variety.

limitations. For example, Deng et al.[4] introduced SFM to
address the slow training speed of a single scene in NeRF,
achieving faster training speeds. Meanwhile, Li et al.[16]
proposed Neural Scene Flow Fields to enable the modeling
of dynamic scenes, addressing NeRF’s inability to render
such scenes. However, the ability to generate images is also
a crucial aspect of computer vision, while those improve-
ments have largely focused on the theme of reconstruction.

Generative models have proven to be highly effective in
generating images, as seen in GAN [9], VAE [15], Diffusion
Model [12], among others. However, compared with regu-
lar images, 3D shapes contain a greater amount of informa-
tion, which requires more complex computations for their
generation. Recently, researchers have attempted to incor-
porate 3D representations into generative models to explore
the generation of 3D shapes based on GANs, as demon-
strated by works such as [11] and [29]. Despite success-
fully achieving this goal, the generated results lack suffi-
cient fine-grained details, which is likely due to the mod-
els’ limited ability to effectively learn features from 3D
representations such as voxels. Unlike traditional methods,
NeRF implicitly learns 3D shapes through a neural render-
ing network and directly outputs rendered images. This
approach simplifies the process of 3D reconstruction and
avoids the use of 3D representation methods such as vox-
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Figure 2. The figure presents the overall framework of our method, which comprises three main components: Generator, Discriminator, and
Contrastive Learning. The Discriminator is composed of the EncA block and the Cnn block. Simultaneously, the Contrastive Learning
is composed of the EncA block, EncB module, and Conv layer. During training, we add up the loss of GAN and the loss of Contrastive
Learning, jointly train and update all three components.

els and primitives. Therefore, the combination of GAN and
NeRF, which is called GIRAFFE [30], utilizes the powerful
representation capabilities of neural rendering networks to
achieve highly refined 3D shape generation and image ren-
dering. It introduces the NeRF technique into the generation
field and provides a new approach to 3D shape generation.

The composition of GIRAFFE is similar to GANs, con-
sisting of a Generator and a Discriminator. The Generator in
GIRAFFE is a decoder responsible for converting randomly
sample code from the latent space into implicit 3D objects,
which are rendered into multi-view images using neural ren-
dering blocks. The Discriminator is designed to distinguish
between ”real” images from the data and ”fake” images ren-
dered by the Generator. The Generator and Discriminator
engage in an ongoing adversarial training process, which
combines a joint update mechanism that enables the Gen-
erator to generate implicit 3D objects smoothly and render
multi-view images with various perspectives.

Similar to GANs, GIRAFFE is proficient at image ren-
dering, and its loss function could guide it to render im-
ages that resemble the input dataset. However, since we
aim to learn how to generate realistic 3D objects, merely
constraining the image rendering to be realistic is inade-
quate. In other words, if the Discriminator only judges
whether the rendered images are real or fake, the Generator
would only make the rendered images as ”real” as possi-
ble, without considering whether the rendered images of the
same 3D object are consistent. Due to the powerful learn-
ing and memory capabilities of the neural rendering block,
this could lead to differences between images rendered from
different viewpoints of the same object, such as changes in

gender or identity in larger rendering viewpoints of a hu-
man face, as shown in 4. This is a question that requires
careful consideration, which means that if the rendered im-
ages from the same 3D object are not consistent enough, the
Generator would render independent ”real images” rather
than learning the ”real 3D structure”. This raises concerns
about whether GIRAFFE has truly learned how to generate
reasonable ”3D structures”.

To address this issue, we introduce additional constraints
to restrict the GIRAFFE, making it not only consider
whether the rendered image is realistic but also maintain
consistency among different rendering views of the same
object to achieve the generation of realistic 3D shapes. We
use contrastive learning to constrain the training process of
GIRAFFE, due to the SimCLR [2], MoCo [10], SwAV [1]
are effective in feature extraction and classification tasks.
The contrastive learning methods focus solely on data con-
trast in the latent feature space, which makes them easier to
optimize and generalize. In this work, we follow the MoCo
to form contrastive learning in GIRAFFE. Specifically, we
regard the Discriminator in GIRAFFE as one encoder and
introduce another encoder to construct a contrastive learn-
ing framework.

For the loss function, MoCo uses InfoNCE loss, which
aims to reduce intra-class distance and increase inter-class
distance, making class boundaries clearer and improving
classification performance. In this work, we consider im-
ages rendered from the same object as intra-class relations
and images from different objects as inter-class relations.
This means that our loss function could be constructed by
InfoNCE. On this basis, we aim to propose a loss function
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that enhances the distinguishing ability of class boundaries.
And there are many effective loss functions [33] [26] [3]
have demonstrated that adding a margin could improve clas-
sification results. Inspired by the Additive Angular Mar-
gin proposed by Arcface [3], we propose the AamNCE loss
based on the InfoNCE loss. It uses the cosine angle to de-
scribe the similarity between sample pairs and applies an
additional angle penalty to positive sample pairs to enhance
intra-class compactness and inter-class differences, thereby
improving intra-class similarity and inter-class separability.
Fig. 1 shows some faces generated and rendered with large-
angle by our method.

To validate our method, we focus on the generation and
rendering of faces because of the rich details and high dis-
tinguishability. We compare the identity of rendered im-
ages and quantitatively evaluate them by the face recogni-
tion system LightCNN [35]. Experimental results demon-
strate that our method is effective in maintaining the consis-
tency of the same object. Our method is effective for any
dataset. However, other datasets cannot evaluate whether
the rendered images of the same object are consistent, we
could only judge them by the naked eye. Thus, we only
tested on face datasets in this work.

In this work, we make the following contributions:
• We propose a model that incorporates contrastive learn-

ing to optimize GIRAFFE and enforce consistency con-
straints on the shape and appearance of objects.

• We introduce an AamNCE loss, which enhances both
intra-class compactness and inter-class differences, lead-
ing to improved intra-class similarity and inter-class sep-
arability.

2. Related Work
Generative Models. In recent years, generative models
have become a popular topic in the field of computer vi-
sion, enabling the creation of new data by learning the dis-
tribution of input datasets. There are several mainstream
frameworks for generative models, including GANs [9],
VAEs [15], and diffusion models [12]. They have differ-
ent approaches, but all demonstrate strong generative ca-
pabilities. GANs have been effectively used in numerous
fields, such as CycleGAN [40], which introduces Cycle-
Consistent loss to perform style transfer between unpaired
images. The diffusion models leverage the diffusion pro-
cess to learn from the dataset. The representative models
include DALL-E 2 [31] and Stable Diffusion [32], etc.
Neural Rendering. Neural rendering has become a hot
topic in the field of 3D modeling, since the proposal of
NeRF [28]. Its ability to directly render multi-angle images
through implicit 3D modeling avoids the tediousness of tra-
ditional 3D modeling methods. Due to the model’s need to
calculate each pixel of each image during the rendering pro-
cess, the training speed of NeRF is slow. Depth-supervised

NeRF [4] and FastNeRF [8] have proposed some improve-
ments to address this issue. PixelNeRF [36] is proposed
to solve NeRF’s high requirements on the number of input
views. It implements reconstruction under a small num-
ber of view inputs by improving the generalization of the
model. And there are many other methods and directions
for NeRF such as its generative ability.
Contrastive Learning. Contrastive learning models aim
to train a feature-extracting encoder that could be utilized
in downstream tasks. It has amazing effects in the field of
feature extraction and classification and even outperforms
supervised learning on computer vision tasks. Contrastive
learning has some representative works, such as Sim-
CLR [2] which generates new samples by data augmenta-
tion to form positive and negative sample pairs. MoCo [10]
introduces two encoders to reduce computational require-
ments and sets one of them with momentum updates to al-
leviate the gap between the two encoders.
Face-Anti Spoofing. Face Anti-Spoofing (FAS) aims at
protecting the Face Recognition system (FR) from vari-
ous presentation attacks, ranging from print-attack [38, 39],
replay-attack [7, 20] and mask-attack [6, 23]. Based on
these datasets, the recent series of FAS competitions [5, 18,
19, 22, 37] have driven the development of this community.
CMA-FAS [21] consists of a Modality Translation Network
and a Modality Assistance Network to close the visible gap
between different modalities via a generative model. MA-
ViT [17] enables flexible testing of any given modal sam-
ples with a Modality-Agnostic Transformer Block (MATB).
FM-ViT [24] retains a specific branch for each modality
to capture different modal information and introduces the
CMTB to guide each modal branch to mine potential fea-
tures. MDIL [34] not only learns knowledge well from the
new domain but also maintains the performance of previous
domains stably. CFPL-FAS [25] is the first work to explore
Domain Generalization FAS via textual prompt learning.

3. Method
In this work, we propose a generative neural rendering
framework based on GIRAFFE [30]. We enhance the fea-
ture extraction capability of the Discriminator by building
momentum contrastive learning. The introduction of Aam-
NCE loss makes the class boundaries clearer when the Gen-
erator generates objects. The joint improvement of the Dis-
criminator and Generator strengthens the consistency con-
straints on the shape and appearance of the generated ob-
jects, which is equivalent to an implicit improvement in the
requirement for generating reasonable 3D shapes with indi-
vidual consistency.

In this section, we provide a detailed description of our
proposed framework. First, in Sec. 3.1, we analyze the
fundamental implementation of GIRAFFE, which is based
on implicit 3D object generation and rendering. Next,
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Figure 3. This figure shows some details of the AamNCE loss. We divide the rendered images of the Generator into Ic, I
+
a , I−a ∈ Î , and

obtain their features feac, fea+
a , and fea−

a through EncA and EncB. We define the cosine angle between feac and fea+
a as θ+ and the

cosine angle between feac and fea−
a as θ−, and the m is an additional penalty on θ+. For AamNCE, the optimization goal is to reduce the

θ+ +m and increase the θ−, which is equivalent to making feac similar to fea+
a and different from fea−

a . The AamNCE could improve
intra-class similarity and inter-class separability.

in Sec. 3.2, we explain how to add momentum-updated en-
coder to GIRAFFE to incorporate contrastive learning. We
also propose a novel loss function, AamNCE, for generating
objects with clearer class boundaries. Finally, in Sec. 3.3,
we present the overall framework of our method.

3.1. Neural Feature Generating and Rendering

The GIRAFFE [30] is similar in the overall structure to
vanilla GAN [9]. It consists primarily of a Generator and
a Discriminator. For the Generator of GANs, its inputs are
latent codes sampled from a predefined distribution, and
its outputs are the target data. In GIRAFFE, the Genera-
tor also takes samples from the latent space as input, and
the sampled codes are processed through Object Represen-
tation, Volume Rendering, and Neural Rendering to output
multi-angle rendered images of the implicitly 3D-generated
objects.

The sampling process of the Generator is divided into
three parts. The first part is the sampling for the image
content, which is similar to the sampling process in vanilla
GAN. The second part is the sampling of affine transforma-
tions. The third part is the sampling for the camera pose.
They could be expressed as follows:

zs, za ∼ N(0, I);T ∼ pT ; ξ ∼ pξ (1)

In this function, zs and za are samples from predefined
latent distributions N(0, I). The model generates image
content based on these latent codes. T represents object-
level affine transformation, which is used to guarantee the
reliability of rendering images during random transforma-
tions. The ξ is the camera pose. And the GIRAFFE de-
fines pT and pξ as uniform distributions over the dataset-
dependent valid object transformations and camera eleva-
tion angles, respectively.

After obtaining the sampling information, the Object
Representation block processes the camera parameters ξ by
Ray Casting and 3D point Sampling algorithms and gets
the 3D point x ∈ R3 and viewing direction d ∈ S2. After

that, the model represents the implicit 3D object from (x, d)
through an MLP network called hθ. Finally, we obtain the
density σ and feature f of the object.

ξ 7→ (γ(x), γ(d))

(σ, f) = hθ

(
γ
(
k−1

)
(x)

)
, γ

(
k−1(d)

)
, zs, za

(2)

The function k(x) is derived from T . GIRAFFE [30]
provides further information about this function. And the γ
is defined as follows:

γ(t, L) = (sin
(
20tπ

)
, cos

(
20tπ

)
, sin

(
21tπ

)
, cos

(
21tπ

)
,

. . . , sin
(
2Ltπ

)
, cos

(
2Ltπ

)
)

(3)
After getting (σ, f), we put them into the Volume Ren-

dering block [13], denoted as πvol, to obtain the feature
map. We express this process as Iv = πvol(σ, f). Fi-
nally, we put Iv into the final part of the Generator - the
Neural Rendering block which is denoted as πneural

θ , to
obtain rendering images I . We express this process as
Î = πneural

θ (Iv), and Î is the final output of the Genera-
tor.

So for the Generator Gθ, it could be described by:

Î = Gθ(zs, za, T, ξ);

zs, za ∼ N(0, I);T ∼ pT ; ξ ∼ pξ
(4)

We have introduced the Generator component. In GANs,
the other component is the Discriminator. The Discrimi-
nator takes the images generated by the Generator and the
images from the input dataset, and its role is to distin-
guish between the generated images and the images from
the dataset, also known as ”real” or ”fake” classification.
It assigns low scores to the generated images, letting the
Generator-generate more realistic images. GIRAFFE also
includes a Discriminator, similar to GANs, denoted as Dϕ.
It is used to distinguish between the rendering images ren-
dered by the Generator and the images from the input
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dataset. It assigns lower scores to the rendering images.
Therefore, for GIRAFFE, its overall loss function could be
expressed as follows:

J (θ, ϕ)GIRAFFE = J (θ, ϕ)GAN + J (ϕ)penalty

= Ezs,za∼N ,T∼pT ,ξ∼pξ
[f (Dϕ (Gθ ({zs, za, T} , ξ))]

+ EI∼pD

[
f (−Dϕ(I))− λ ∥∇Dϕ(I)∥2

]
(5)

This function consists of two parts: the GAN loss func-
tion and the R1 gradient penalty [27]. In addition, f(t) =
− log(1+exp(−t)), λ = 10, and pD is the data distribution.

3.2. Contrastive Learning

In this section, we describe our main contribution which
adding an extra encoder with momentum updates to GI-
RAFFE to construct contrastive learning. And we will also
introduce the AamNCE loss in this section.

In Sec. 3.1, we introduce the Discriminator of GI-
RAFFE. Like the Discriminator in GANs, it is an encoder
block. In simple terms, the Discriminator of GIRAFFE is
a simple binary classification model. One class is images
from the input dataset, and the other one is rendering images
rendered from the Generator. According to its loss Eq. (5),
we find that the GIRAFFE indeed treats all generated im-
ages as the same class, i.e. ”fake images”.

This means that during training, the optimization goal is
to enable the Generator Gθ to generate real images, with-
out considering the relation between images rendered from
the same object. If the model only judges whether an im-
age is ”real” or ”fake”, the optimization goal of the model
will shift from learning how to generate a real 3D object to
an easier task of generating some realistic 2D images. That
makes the original intention of GIRAFFE’s design not ful-
filled. The rendering results show that GIRAFFE cannot
achieve good consistency when rendering different views
of the same object, especially when rendering from larger
viewpoints. As shown in Fig. 4.

To address this issue, we aim to constrain the optimiza-
tion objective of the model, such that it not only judges a
rendered image as ”real” or ”fake”, but also ensures that im-
ages rendered from different views of the same object have
homogeneity. We consider images rendered from the same
object as the same class and aim to make them as similar
as possible. Meanwhile, we aim to make the images from
different objects as different as possible to ensure the clarity
of class boundaries.

To achieve this goal, we draw inspiration from the
MoCo [10] method in contrastive learning, aiming to train
a more powerful Discriminator to provide stronger con-
straints on the optimal direction of the Generator. The
MoCo method constructs two encoders, with one being set
for momentum updates, to achieve excellent unsupervised

feature extraction. In GIRAFFE, the Discriminator is an
encoder block that extracts features from the rendered im-
ages of the Generator and performs classification to deter-
mine whether it is generated or not, thus computing the loss
value. Therefore, to build a framework similar to MoCo,
we add encoder in GIRAFFE, which together with the Dis-
criminator forms the basis of contrastive learning, as shown
in Fig. 2.

The same as MoCo, the additional encoder is set up for
momentum updates to reduce the model’s computational
cost. For ease of distinction, we call the encoder serving as
the Discriminator Dϕ as EncA, and the momentum-based
encoder as EncB. It should be noted that Dϕ is not equiv-
alent to EncA, as we have constructed a CNN block to
classify the features extracted by EncA. The CNN block
takes the features extracted by EncA as input and outputs
a score for the features, which is used to compute the GAN
loss. Therefore, EncA and CNN block together form Dϕ.
And, during the iterative optimization of contrastive learn-
ing, EncA and EncB will eventually become very similar,
so either of them could serve as the Discriminator. In this
work, we choose EncA as the Discriminator because it up-
dates before EncB, but it does not mean that only EncA
could serve as the discriminator. And the EncA and EncB
are constructed with the same architecture. To make the
features extracted by EncA and EncB as similar as possi-
ble, we connect a shared single convolutional layer named
Conv at the end of their last layer, to avoid errors caused by
inconsistent feature representation.

To effectively train the EncA and EncB, we adopt the
InfoNCE loss proposed in MoCo. The function is:

LInfoNCE = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑
k−

exp (q · k−/τ)

(6)
In this function, q, k+, and k− are the features extracted

from the encoder of MoCo. q is a query, k+ is a positive key,
and k− is a negative key. τ is a temperature hyperparameter.
q and k+ are different augmentations from the same data,
forming a positive pair. q and k− are from different data,
forming a negative pair. The purpose of InfoNCE is to make
the query q as similar as possible to its positive key k+, and
as far as possible from its negative key k−. In other words, it
reduces the intra-class distance and increases the inter-class
distance.

In this work, we define positive and negative sample
pairs differently from MoCo. Unlike MoCo, where the
model is provided with an image dataset, we use images
generated by the Generator for contrastive learning. The
rendered images of Generator Gtheta are denoted as Î ,
which are divided into three types: Ic, I

+
a , I−a ∈ Î . Dur-

ing the rendering process, the image rendered by the cam-
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era straight to the object is set as Ic, while images rendered
from other camera angles of the same object are named I+a .
Images rendered from all camera angles of other objects
are named I−a . MoCo regards each image in the dataset
as a separate class, and positive samples are defined as the
different augmentation results of the same image. In this
work, we define positive samples as the rendered images of
the same object from different camera angles as (Ic, I

+
a ).

Our definition of negative samples is similar to MoCo. We
consider all the rendering results of different objects, which
have different face identities, as negative samples (Ic, I−a ).

Figure 4. The figure shows the rendering images of GIRAFFE,
and each row renders from the same object with different view
angles. It could be observed that it does not render satisfactory
images when the angle is large, with unclear edges and unnatural
artifacts. In addition, there are also cases of inconsistent identity.

Due to the difference in the definition of positive and
negative sample pairs from MoCo, although InfoNCE loss
can be used to train our method, there is still room for im-
provement. Inspired by ArcFace [3], we improved the In-
foNCE loss by adding an additive angular margin. Specif-
ically, in InfoNCE loss, the similarity calculation between
positive and negative sample pairs is achieved by multiply-
ing their features, as shown in Eq. (6). However, the simi-
larity between the two features could also be measured by
their cosine distance. Therefore, we use the cosine distance
to implement InfoNCE loss for the convenience of subse-
quent calculation. We let sim(a, b) = a ∗ b/||a|| ∗ ||b||,

cosθ+ = sim(q, k+) = sim(feac, fea
+
a )

cosθ− = sim(q, k−) = sim(feac, fea
−
a )

(7)

In this function, the feac is the feature of Ic extracted by
EncA with Conv. The fea+a and fea−a are the features of
I+a and I−a extracted by EncB with Conv.

The InfoNCE loss using cosine distance could be formu-
lated as follows:

L = − log
exp(cos θ+/τ)

exp(cos θ+/τ) +
∑
θ−

exp(cos θ−)/τ (8)

The optimization objectives of Eq. (8) and Eq. (6) are
similar, but they use different ways to measure the similar-
ity between features. Eq. (8) is used in our work to apply
an additional penalty to the cosine angle between intra-class
features, which adds an additive angular margin, to enhance
the intra-class compactness and inter-class discrepancy, and

then improves intra-class similarity and inter-class separa-
bility. More details are shown in Fig. 3. And the AamNCE
loss is:

LAamNCE = − log
exp(cos

(
θ+ +m

)
/τ)

exp(cos (θ+ +m) /τ) +
∑
θ−

exp(cos θ−)/τ

(9)
where m represents the additional penalty on the cosine

angle between intra-class features, which we set to 0.5.

3.3. Overall framework

According to the above introduction, we will present the
complete framework of our method in this section. Its loss
function consists of three parts: GAN loss, gradient penalty
loss, and AamNCE loss for contrastive learning, as follows:

L (θ, ϕ) = L (θ, ϕ)GAN + L (ϕ)penalty + αL (ϕ)AamNCE

(10)
The parameter α controls the weight of AamNCE loss.

In this work, we set α = 0.1.

4. Experiments
Database and Experimental Setup. We select the CelebA-
HQ [14] dataset, which consists of 30,000 high-resolution
(256x256) face images, as our training dataset without
performing any additional preprocessing. The reason for
choosing a face dataset is that faces are highly recognizable
and could more intuitively demonstrate the consistency of
our rendering images of the same object. Moreover, we
need a quantifiable evaluation system to demonstrate that
our method’s rendering images have better consistency with
multi-angle than vanilla GIRAFFE. Therefore, we chose the
CelebA-HQ as our training set, and our model learns to
generate face objects and render them into multi-view im-
ages. And we measure the effectiveness of the model by
face recognition performance with LightCNN [35].

Here are some experimental details. We form a collec-
tion of images rendered by Generator Gθ as Î and divide
the rendering images into three types which Ic, I

+
a , I−a ∈ Î .

During the rendering process, the image rendered by the
camera straight to the object is set as Ic, while images
rendered from other camera angles of the same object are
named I+a . Images rendered from all camera angles of other
objects are named I−a . To evaluate the performance of our
method, we conducted experiments with our method(with
InfoNCE), our method(with AamNCE), and GIRAFFE to
generate 1000 objects each for testing. To test the accuracy
of our model for face identification, we rendered 9 differ-
ent angles images(including 1 label image) for each object.
The 9 different angles used for rendering the images are left
60 degrees, left 45 degrees, left 30 degrees, left 15 degrees,
label(straight), right 15 degrees, right 30 degrees, right 45
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Figure 5. This figure shows the rendering images of our method (AamNCE). Each row represents the rendering images of a generated
object with 9 different angles (including the label images that are rendered by the camera straight to the object). It shows that our method
produces high-quality rendering images, and maintains high consistency during the rendering process of the same object.

degrees, and right 60 degrees. So there are 9000 rendering
images(including 1000 label images) for each model, and 1-
1 comparison identification is conducted to draw the ROC
curve with LightCNN [35]. To avoid errors caused by the
randomness of the generative model, we fixed the random
seed to ensure the reproducibility of the testing results. The
results are shown in Fig. 7.

Figure 6. The figure shows some rendering images with a 60-
degree angle by our method (AamNCE), where the objects’ eyes
are directly facing the camera, caused by the bias of the dataset.

Recognition Results of GIRAFFE. Fig. 7a shows the
identity consistency of GIRAFFE’s rendering images across
multiple angles by ROC curve, and Tab. 1 presents its AUC
values at each angle. Based on the experimental results, it
is found that GIRAFFE performs well in maintaining iden-
tity consistency when the deviation angle is small, which
is consistent with what we observed from the rendered im-
ages with GIRAFFE in Fig. 4. However, when the deviation

angle exceeds 30 degrees, the identity consistency of GI-
RAFFE significantly decreases. This is because the model
has not learned a good implicit 3D representation. When the
angle is too large, the model relies on the strong memory of
the neural network to correct the image, resulting in severe
inconsistencies in the rendering of images at large angles.
Moreover, the images even exhibit unrealistic artifacts and
blurring under a deviation angle of 60 degrees.
Recognition Results of Ours. Fig. 7b and Fig. 7c illus-
trate the identity consistency of Our methods across multi-
ple angles by ROC curve. Fig. 7b shows the experimen-
tal results using InfoNCE loss when introducing contrastive
learning into GIRAFFE. Fig. 7c shows the experimental
results using our proposed AamNCE loss when introducing
contrastive learning into GIRAFFE. And Tab. 1 compares
the face recognition performance, assessed by AUC.

For our method (InfoNCE), according to the experimen-
tal results, we found that after introducing contrastive learn-
ing, the rendered images of the same object maintain good
consistency at various angles, and high AUC can also be
achieved at large angles such as 45 degrees and 60 degrees.
This is because we enhance the Discriminator’s ability by
introducing contrastive learning. At the same time, the in-
troduction of InfoNCE improves the clarity of the generated
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Figure 7. Quantitative Comparison - ROC curves

class boundaries by the Generator. However, at small devi-
ation angles, the introduction of contrastive learning makes
the convergence of the training more challenging, resulting
in results slightly worse than the vanilla GIRAFFE.

For our method(AamNCE), according to the experimen-
tal results, we found that with the introduction of both con-
trastive learning and AamNCE loss, the consistency of ren-
dering images of the same object at various angles has
reached a higher level. The model not only achieves high
AUC at large angle rotations, such as 45 and 60 degrees
but also shows excellent performance at small angle devia-
tions. This is because applying an additional penalty on the
cosine angle of the intra-class features, i.e., adding an Ad-
ditive Angular Margin, enhances the intra-class compact-
ness and inter-class discrepancy, and then improves intra-
class similarity and inter-class separability. In other words,
for Our method(AamNCE), the construction of contrastive
learning enhances the discriminative ability of the Discrimi-
nator, while the AamNCE loss improves the generative abil-
ity of the Generator. The combination of the two balances
the game between the two modules of the GANs, resulting
in significant improvements in the model’s ability to gener-
ate objects and the consistency of rendered images.
Additional Analysis. Fig. 4 shows the images rendered by
the GIRAFFE [30]. Fig. 5 shows the effects of objects gen-
erated by our method (AamNCE) and images rendered with
multiple angles. It demonstrates that our methods achieve
significant improvement in intra-class consistency, with al-
most no unrealistic artifacts or blurring cases. It is worth
mentioning that we used the same face dataset CelebA-HQ
as GIRAFFE. It is observed that the human eyes in Fig. 4
are almost all looking at the camera, which is not natural.
This phenomenon is due to data set bias, that the images in
the dataset are primarily looking at the camera. This phe-
nomenon is severe in the GIRAFFE because its Discrimi-
nator considers such images more realistic. In our methods,
this issue is greatly alleviated. As the rendering results il-
lustrated in Fig. 5, most eyes face forward naturally at each
rendering image. However, there are still some cases of un-

Angle AUC
GIRAFFE Ours(InfoNCE) Ours(AamNCE)

left 60 0.664 0.844 0.818
left 45 0.846 0.907 0.929
left 30 0.983 0.947 0.995
left 15 1.000 0.999 1.000

right 15 0.999 0.998 1.000
right 30 0.984 0.967 0.992
right 45 0.810 0.886 0.922
right 60 0.679 0.823 0.829

Table 1. Quantitative Comparison - AUC values

natural sight directions, for example, some rendering im-
ages with a 60-degree rotation as shown in Fig. 6 with the
eyes looking directly into the camera.

5. Conclusion and Future Work

In this work, we introduce an additional momentum-based
encoder into GIRAFFE to form a Contrastive Learning
framework that enhances the Discriminator’s feature extrac-
tion ability. Additionally, we propose an AamNCE loss to
improve InfoNCE by introducing an angular margin, which
increases the intra-class similarity and inter-class separa-
bility for the Generator. Experimental results show that
our method maintains high consistency in rendering images
from the same object. With its powerful generation ability,
our method has promising applications in generating virtual
faces and other related fields. In future work, we will focus
on exploring controllable generation methods.
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