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Abstract

Metric learning for images has so far focused over-
whelmingly on a class-based definition of similarity: two
images are similar if they belong to the same class and
dissimilar otherwise. Impressive results were achieved on
datasets for fine grained categorization, but performance
is nearing saturation. Recent work in neuroscience and
psychology produced datasets with other types of similar-
ity labels, e.g. the outlier in a group of three, but tradi-
tional metric learning methods are ill-suited to such data
because of low density of labels. To overcome this diffi-
culty, we propose a novel approach in the teacher-student
learning paradigm. Multiple teacher models learn to em-
bed images based only on relations with other images, and
then a student model learns to embed images based on both
content and dense relations provided by the teachers. We
show significant improvement over existing triplet based
metric learning methods, both in result quality and in train-
ing efficiency. Additionally, through experiments on class
based datasets, we show the generality of approaching met-
ric learning via knowledge transfer. Code is available at
github.com/greenfieldvision/tdml.

1. Introduction
Metric learning is the problem of learning a mapping from a
perceptual space to a latent space that reflects semantic sim-
ilarity. The problem has been studied extensively in com-
puter vision, as many application domains stand to benefit
from good visual embeddings: face verification [31], im-
age retrieval [32] and few-shot learning [37] are just a few
examples. The advent of deep learning made it possible
for metric learning methods to achieve impressive results
on three widely used datasets, CUB-200 [40], CARS-196
[19] and SOP [33]. Numerous publications have targeted
the datasets and state of the art has been nearing 90% recall
at 1 on all three. However, this also indicates saturation and
raises the question of using qualitatively different data.

The three datasets, which we will refer to as standard,
define similarity via classes: two images are similar if they

Figure 1. Commonly used metric learning datasets such as CUB-
200 and CARS-196 (top row) define similarity via class labels and
miss some nuances expressed via triplet labels in the THINGS and
Imagenet-HSJ datasets (bottom row). According to class labels,
all three birds are different, despite the first two having the same
color pattern. Again according to class labels, the first car is sim-
ilar to the second but different from the third, despite the first and
third having roughly the same viewing angle. Triplet labels allow
stating that the vise and hydrant are more similar to each other than
to the hyena, and the grey cats are more similar to each other than
to the orange cat. Border colors indicate classes and the order of
images in triplets is anchor, positive, negative.

belong to the same class and dissimilar if they belong to dif-
ferent classes. In this work, we study the problem of metric
learning with similarity defined via triplet labels - groups of
three images in which the first is more similar to the second
than to the third. Datasets in the psychology, neuroscience
and human-computer interaction literature contain relative
similarity judgments that are not determined by classes and
that can be transformed without loss of information into
triplet labels. For the THINGS [8] dataset, the task for hu-
man annotators was to choose the image least similar to the
others from a group of three; for the Imagenet-HSJ [27] and
Yummly [41] datasets, the task was to select two images
from a group of eight that are most similar to a query im-
age. In the triplet odd-one-out task, the images belong to
exactly three different classes, while in the 8-rank-2 task,
the images can be from one to nine different classes. The
new datasets capture similarity nuances beyond what can be
expressed via classes, see figure 1.

Datasets with triplet labels pose two major challenges.
First, the number of triplets grows cubically with the num-
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ber of images, so the labels collected given a reasonable
budget can only cover a very small fraction of the possi-
ble triplets (e.g. 1.46M labels are only 0.14% of total for
THINGS [8]). Second, batches of B images have O(B) la-
beled triplets, considerably lower than theO(B2) orO(B3)
needed by the existing triplet based metric learning meth-
ods [32] [39] [31] [23] for the purpose of batch mining.
The methods cannot select the most informative triplets in a
batch and must use small and arbitrary sets of triplets, which
leads to suboptimal results and inefficient training.

We propose a new knowledge transfer approach for met-
ric learning on triplet labeled datasets. Multiple teacher
models are trained without using image features, and then
the knowledge of the ensemble is transferred to a student
model that does use image features. A teacher model maps
image indexes to the embedding space, so its batches have
many more triplets than if its input domain were images
(e.g. thousands vs a hundred). The student model maps
images to the embedding space and in each of its batches of
size B the teacher ensemble predicts all the O(B3) triplet
labels. By decoupling the task of learning object rela-
tions from the task of learning the visual embedding, our
approach makes the supervision 100% dense for the lat-
ter task, addressing the challenge of low label density in
batches. We show that our approach outperforms exist-
ing triplet based metric learning methods on the THINGS
dataset, on a variant of Imagenet-HSJ and on Yummly.

Further, we apply our knowledge transfer approach to
class based datasets. Knowledge distillation losses used
with one-hot class encodings match state-of-the-art metric
learning losses, suggesting that our approach viably gener-
alizes metric learning on standard datasets.

2. Related Work

2.1. Metric Learning

We categorize metric learning papers by their stance to-
wards class information.

Class-agnostic methods. The methods that do not as-
sume the existence of classes can be roughly split accord-
ing to the type of loss they use: pairwise, triplet or a com-
bination thereof. Pairwise losses [5] operate on pairs of im-
ages, pulling together the similar ones and pushing apart
the dissimilar ones. Triplet losses [31] operate on anchor-
positive-negative image triplets, pulling together the an-
chor and the positive and pushing apart the anchor and the
negative. The N-pair loss [32] operates on image tuplets
of the form anchor-positive-negative1-...-negativeN−1,
pulling the anchor and positive closer together than the an-
chor and closest negative. Randomly selected pairs and
triplets are typically not informative (i.e. have 0 loss) and
occasionally noisy (i.e. have wrong label), so a central con-
cern in class-agnostic methods is batch sampling and min-

ing [31] [23] [6] [38]. Many methods actually make use of
class labels for this purpose, despite not explicitly incorpo-
rating them in loss expressions. For example, the authors of
[23] choose five images per class, form all the pairs involv-
ing them and finally complete triplets with negatives from
the other classes in the batch. Optimizing sampling with-
out class information requires knowing all the triplet labels,
which is infeasible beyond small datasets (100s of images).

Class-aware methods. These methods assume the exis-
tence of prototypes in the data (which roughly correspond
to classes, but the mapping is not necessarily 1:1) and learn
their positions in the latent space together with those of the
images assigned to them. A seminal paper [24] essentially
performs classification and then discards the prototype/class
information, keeping only the embedding from images to
the latent space. Further improvements have employed an-
gular margins [2] and a sophisticated way to represent data-
to-data relations, pushing prototypes apart based on the rel-
ative hardness of examples [12]. [43] computed soft data-
to-prototype assignments with an optimal transport layer
and thus captured more nuanced data-to-data relations. [3]
mapped embeddings obtained with vision transformers to
the hyperbolic space, while [15] used an unsupervised clus-
tering loss term to better reflect the latent data hierarchy.
The class-aware methods have consistently ranked among
the best on CUB-200, CARS-196 and SOP, not surprising
given that the three standard datasets are class oriented.

Class-skeptical methods. A number of papers identi-
fied shortcomings inherent to the use of class labels and
highlighted the importance of investigating similarity across
class boundaries. [4] built a hierarchy of classes to guide the
search for hard examples for a triplet loss. [45] used hier-
achical labels to learn embeddings at progressively coarse
semantic levels. [11] explored a setting in which the sim-
ilarity of two images is continuous rather than binary and
employed a triplet loss that preserves similarity ratios. [20]
also recognized the need to represent degrees of similarity
and focused on batch decorrelation within an active learning
framework for triplets. Two works noticed a compression
effect in which images from the same class cluster tightly in
the embedding space and the representation loses detail [29]
[21]. The solutions involved adapting the sampling proce-
dure and the loss respectively, but it is not clear that they
fully resolved the large intra-class variation of some classes
in the three standard datasets. Finally, [30] accounted for
class similarities by incorporating language knowledge.

2.2. Psychology and Neuroscience

The psychology and neuroscience literatures offer rich per-
spectives on visual similarity. A well known early paper
defined similarity in terms of measures over sets of qualita-
tive properties [34] and highlighted the role of context. An-
other early paper hypothesized object recognition through a
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Figure 2. Direct training with existing triplet based methods (dashed line) vs training in our approach (continuous lines). Direct training
sees very few informative triplets per batch because the dataset has low labeled triplet density, so it is slow and its results have low quality.
Our approach first trains teachers whose input domain is integers instead of images, which enables using batches with very many labeled
triplets. Then, a student is trained with batches with all triplets labeled (by the teachers), which is fast and has high quality results.

fixed set of components, which can also serve to define sim-
ilarity [1]. Recent research has been data-driven: large sets
of similarity judgments have been collected and have served
to infer high level similarity properties using machine learn-
ing [8] and to evaluate state-of-the-art visual representation
models [27]. Both datasets are essentially triplet based: in
the first, the labeling task is to pick the odd image out from a
group of three, while in the second, it is to pick the two most
similar images to a query from a group of eight reference
images (interestingly, the latter setup had been verified to
be more cost effective from a metric learning point of view
[41]). It is worth noting the absence of large-scale pairwise
datasets; compared to triplet labels, pair labels lack context
[8] and have higher levels of noise [10].

2.3. Knowledge Distillation

Our approach follows the teacher-student learning
paradigm, as it trains teacher models and then transfers
their knowledge to a student model. It is not pure knowl-
edge distillation because the teachers have a different input
domain than the student, but parallels can be drawn with
knowledge distillation methods. An early work [28] dis-
tilled a wide and deep teacher into a thin and deep student
by linearly predicting the teacher network’s intermediate
layers. This is easily adaptable to metric learning by
moving the constraints to the embedding layer, but methods
that transferred instance relations (e.g. pairwise distances)
achieved better performance [25] [26]. A disadvantage of
these methods is not accounting for sample importance,

which is addressed in [13] and extended to unsupervised
metric learning [14]. Among the first works to investigate
transferring knowledge from multiple teachers, [42] pro-
posed voting on the positive and negative elements given
the anchor element in a triplet. The scheme is robust but it
ignores the important detail of how close the positive and
negative are to the anchor.

The paper that inspired our work transferred the knowl-
edge in a metric learning model via pairwise similarities
[13] for purposes of self-distillation and model compres-
sion. The key difference with respect to our approach is
that our teacher models are trained on image relations as
opposed to image data. While [13] do self-distillation for
metric learning on class based datasets, we use a variant of
distillation to enable effective and efficient metric learning
on triplet labeled datasets. Also, while [13] focus on a spe-
cific loss, we investigate knowledge transfer more broadly
and reveal its suitability to standard metric learning.

3. Proposed Approach
Our approach divides the process of learning an embedding
for images from general triplet labels into two steps. In the
first step, it learns an ensemble of teacher models that em-
bed images based on their relations to other images and not
their content. In the second step, it learns a student model
that embeds images based on both their content and the
dense relations predicted by the teacher models. By con-
trast, the existing triplet based methods learn an embedding
for images directly from image triplets, see figure 2.
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(a) 1 undirected triplet from each odd-one-out task

(b) 12 directed triplets from each 8-rank-2 task

Figure 3. The two triplet label types. Each loss used to train
teacher models is defined in two corresponding versions.

Embedding task. We learn an embedding function f
from either integers or images to a latent space, f : Zn →
RE or f : RH×W×3 → RE whereE is the embedding size.
We denote the value of the function for an input i with fi,
the dot product of two embedding vectors with si,j and the
Euclidean distance between them with di,j .

Triplet label types. Note that we differentiate between
two types of triplet labels. The first type comes from a
triplet odd-one-out task, which produces information of the
form images i and j are closer to each other than to image k
- this is called an undirected triplet. The second type comes
from 8-rank-2 tasks, which produce information of the form
image j is closer to image i than image k - this is called a
directed triplet. See figure 3 for details.

3.1. Teacher Models

The first step in our approach is to train teacher models with
labeled triplets of indexes (each image in a labeled triplet of
images is replaced with its index). A teacher essentially
takes in an integer representing the image index and pro-
duces an embedding vector. A single layer network suf-
fices, as it can specify embedding vectors independently for
all the images. We train with the STE loss [36]:

L(i, j, k) = − log
e
si,j
τ

e
si,j
τ + e

si,k
τ + e

sj,k
τ

(1)

where τ is a temperature parameter. This is for undirected
triplets: the fraction under the logarithm expresses the prob-
ability of the pair (i, j) being the closest of the three pairs
in the (i, j, k) triplet. For directed triplets, the loss is

L(i, j, k) = − log
e
si,j
τ

e
si,j
τ + e

si,k
τ

(2)

as the fraction under the logarithm expresses the probability
that i is closer to j than to k.

It is also possible to employ margin based losses for
teachers. For undirected triplets,

L(i, j, k) =
[m+ di,j − di,k]+ + [m+ dj,i − dj,k]+

2
(3)

while for directed triplets,

L(i, j, k) = [m+ di,j − di,k]+ (4)

where [.]+ denotes the positive part function and m is a
margin parameter. However, these losses produce slightly
worse models on two of the three datasets considered in this
paper, see section 4.3.

Embedding vectors are L2 normalized. To keep the
teacher models as close as possible to psychological the-
ories of human similarity [8], we constrain the embedding
coordinates to be positive and use L1 regularization to en-
courage as many weights to zero as possible. Unlike [8], we
do not postprocess the embeddings after training.

Since [27] argue that the process of learning an embed-
ding from relative similarity labels has high variance, we
used a small ensemble of teacher models trained on the
same data. We note that in practice the benefit of using
multiple teachers is small, see section 4.3.

3.2. Student Model

The second step in our approach is to train a student model
with continuous supervision from the teacher ensemble, e.g.
the degree of similarity between two images. The student is
an image classification backbone [7] with the softmax layer
replaced by a simple linear projection layer for the embed-
ding. Embedding vectors are L2 normalized.

To train the student, our approach can utilize knowledge
distillation losses like [25] or relaxed versions of metric
learning losses like [13]. Both the relational knowledge
distillation loss and the relaxed contrastive loss have pair-
wise terms, which are not necessarily optimal for transfer-
ring triplet based knowledge. Therefore, we investigated
relaxations of other popular metric learning losses and also
a new knowledge distillation loss tailored to our problem.

In this section we use the term triplet loss to mean any
loss defined on three data points, as opposed to the specific
expression in equation 4, which we call triplet margin loss.
In the definitions that follow, we use dti,j and sti,j to denote
the distance and dot product predicted by teacher t between
images i and j, and dti,j and sti,j the average of these quan-
tities over the teacher ensemble.

Relaxed Triplet Margin (RTM). A well known loss in
the discrete label case is the triplet margin [39]. We define
its relaxed version by

yrtm(i, j, k) = σ((dti,k − dti,j)/τ)
lrtm(i, j, k) = [m+ di,j − di,k]+
Lrtm(i, j, k) = yrtm(i, j, k) lrtm(i, j, k) (5)
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where σ is the logistic sigmoid function and τ and m are
temperature and margin parameters respectively. The larger
the teacher distance between i and k compared to that be-
tween i and j, the harder the student has to push k apart and
i and j together, if k is within distance m+ di,j of i.

Relaxed Facenet (RF). To address the issue that hard
cases and label noise can corrupt the gradient, [31] allow
only semihard triplets (triplets where the negative is at least
as far away from the anchor as the positive) to contribute to
the loss. We define a relaxed version of the Facenet loss as

yrf (i, j, k) = σ((dti,k − dti,j)/τ)
lrf (i, j, k) = δ(di,k ≥ di,j)[m+ di,j − di,k]+
Lrf (i, j, k) = yrf (i, j, k) lrf (i, j, k) (6)

where δ and σ are the indicator and logistic sigmoid func-
tions, and τ and m are temperature and margin parameters.
In the original implementation of [31], only the positive
pairs with the largest semihard loss contribute. We modify
the loss expression accordingly:

y′rf (i, j) = e−
dt
i,j
τ

l′rf (i, j) = max
k

yrf (i, j, k) lrf (i, j, k)

L′rf (i, j) = y′rf (i, j) l
′
rf (i, j) (7)

The closer the teachers place i and j, the harder the student
has to push k apart and i and j together, for the k whose
distance to i comes closest to the thresholdm+di,j without
exceeding it.

Relaxed InfoNCE (RI). While the InfoNCE loss [35] is
not a triplet loss, a relaxed version of it can easily be defined
and a comparison against it is meaningful. We define the
relaxed InfoNCE loss as

Lri(i, j) = − log

1+sti,j
2 e

si,j
τ

1+sti,j
2 e

si,j
τ +

∑
k

1−sti,k
2 e

si,k
τ

(8)

where τ is a temperature parameter. The more similar a pair
is according to the teachers, the harder the student will pull
it together while keeping dissimilar pairs far apart.

Soft Triplet Margin Regression (STMR). The RKD
loss [25] attempts to preserve the distances between pairs
and the angles formed by the points in triplets. Given our
problem setting, it is worth considering another invariant:
the difference between the i-k distance and the i-j distance
in a triplet (i, j, k). We observe that if the difference in the
teacher is very large, the student does not need to match it
exactly. It suffices for the student difference to be somewhat
large, as this still captures dissimilarity. We define the soft

Figure 4. The STMR loss as a function of the student distance
difference, for multiple values of the teacher distance difference.
STMR is the Huber loss with a more lenient slope for one branch.

triplet margin regression loss as

α(i, j, k) = σ((dti,k − dti,j)/τ1)
γ(i, j, k) = log(1/α(i, j, k)− 1)/τ2

dd(i, j, k) = (dti,k − dti,j)− (di,k − di,j) + γ(i, j, k)

Lstmr(i, j, k) = α(i, j, k)ζτ2(ddi,j,k) +

(1− α(i, j, k)) ζτ2(−ddi,j,k) (9)

where ζ is the softplus function and τ1 and τ2 are tempera-
ture parameters. The distance difference dd(i, j, k) is offset
by the factor γ(i, j, k) to zero out the gradient of the loss
when dti,k−dti,j = di,k−di,j . The student will push points
to match the difference of the teacher predicted distances,
but not so strongly if both its difference and the teacher dif-
ference are large. See figure 4 for an illustration.

4. Results
4.1. Datasets

We tested our approach on three image datasets labeled
with triplets: THINGS [8], a variant of ImageNet-HSJ [27]
which we call IHSJC, and Yummly [41]. In its raw form,
THINGS consists of 26,107 images from 1,854 classes,
with 1.46M class level triplets. ImageNet-HSJ consists of
50,000 images from 1,000 classes, with 384K 8-rank-2 tri-
als at image level. Each trial specifies a query, two posi-
tives and six negatives, and we converted this information
into twelve class level triplets by taking all the combina-
tions with the class of the query, of a positive and of a nega-
tive. We filtered out the triplets with less than three classes
and those involved in contradictions, eventually arriving at
2.4M class triplets. Yummly consists of 100 food images
not associated with classes and has 189K triplets.
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We cannot simply split the triplet set of a dataset ran-
domly into training, validation and test because the same
image may appear in different subsets, e.g. both in training
and test. This is fine for teacher models, but not for directly
trained or student models, which use image data. We fol-
lowed a different protocol for each model type:

1. Teacher protocol. First, we randomly distributed
the classes (images for Yummly) into two subsets, train-
ing/validation and test, in an 80%-20% ratio. Then, we
placed the triplets with all three classes/images from the
same subset into the triplet version of that subset, discard-
ing the triplets that did not meet this condition. For exam-
ple, we put (i, j, k) in the training/validation triplet subset if
i,j,k were training/validation classes; we discarded (i, j, k)
with i and j training/validation classes and k test class.

2. Direct training (regular) protocol. For Yummly, this
was identical to the teacher protocol. For THINGS and
IHJC, we transformed each class triplet into image triplets
by randomly sampling images from the three classes. We
generated a fixed number of image triplets per class triplet,
chosen to cover the entirety of the dataset images (2 for
THINGS and 3 for IHSJC).

3. Student protocol. We first randomly distributed the
classes (images for Yummly) into three subsets, training,
validation and test, in a 60%-20%-20% ratio that respected
the teacher split. Since the teachers can predict the relation
between any three classes/images, we formed all the pos-
sible triplets with training classes/images and put them in
training, and did the same for validation and test.

The three protocols guarantee correct assessment of
model quality, as test images do not appear in the training
or validation data. Additionally, the teacher split allows the
student model to access supervision on the validation sub-
set. See the supplementary material for dataset statistics.

Unless otherwise stated, all evaluation results below are
reported on the test subset of the regular split.

4.2. Model Settings

In the main experiments, we finetuned both the student and
directly trained models from a ResNet-50 backbone pre-
trained on ImageNet [7]. We employed a standard aug-
mentation and preprocessing scheme: flip horizontally with
probability 50%, take a random square crop with at least
50% overlap with the original image and resize to 224 x
224. At test time, images were resized to 256 on the shortest
edge and center cropped to 224 x 224. All three model types
(direct, teacher and student) were trained with the Adam op-
timizer [16] and used an embedding of size 128.

We trained 5 teacher models on each dataset. On
THINGS and Yummly the batch size was set to 3,333
triplets and on IHSJC to 100,000. Each teacher was trained
to convergence for 100 epochs with learning rate 10−3.

For student models, the batch size was set to 249 on

THINGS and IHSJC, except for the RKD loss [25], for
which 172 was the largest value that fit the triplet angle con-
straints in GPU memory. On Yummly, the batch size was set
to 60, the size the training set. Each student was trained to
convergence for 100 epochs with learning rate 10−6.

The directly trained models used batch size 249, 10
epochs and learning rate 10−4, ensuring convergence.

4.3. Quantitative Evaluation

Baseline. We compared our approach against representa-
tive triplet based metric learning methods [39] [23] [32] and
methods whose input can be derived from labeled triplets
[5] [38]. On the new datasets, these methods collapse to
simply using a loss on fixed triplets, which we call direct
training. Note that the subset of labeled triplets is arbitrary
and small compared to the set of all triplets, which prevents
mining. Further note that high performing class based meth-
ods, e.g. [12] [15] [18], do not apply to the new datasets, as
similarity does not follow from class information.

Results. To optimally configure our approach, we com-
bined it with a wide range of losses, both from section 3.2
and from the existing literature. We present results in table
1. The metric used was the fraction of correct triplets (FCT),
where a directed triplet (i, j, k) is correct if the model pre-
dicted distances follow di,j < di,k and an undirected triplet
is correct if both di,j < di,k and dj,i < dj,k. The table
shows the FCT average and standard deviation over 5 ran-
domly initialized training runs; since the Yummly dataset
only has 100 images, we also used 5 different splits into
training, validation and test for it. On the THINGS dataset,
the FCT for random guessing is 33.33% and the inter-rater
agreement measured by [8] is 67.22%; on both IHSJC and
Yummly, the FCT for random guessing is 50% but inter-
rater agreement was not estimated. Thus, the FCT values
must be interpreted relative to the 33-67 and 50-100 ranges,
respectively. Our approach yields higher quality models
than direct training with existing triplet based methods: the
scaled gains are 8% on THINGS, 12% on IHSJC and 16%
on Yummly. The optimal loss for our approach is RKD [25],
as it does best on two datasets and is statistically close to
best on the third (p > 0.8 with Welch’s t-test).

It is insightful to compare direct training vs. our ap-
proach when they use the discrete and relaxed version of
the same loss respectively. The pairs of rows D+Contrastive
and TS+RC, D+Triplet and TS+RTM, D+InfoNCE and
TS+RI, and D+MS and TS+RMS in table 1 show similar
gains for our approach as in the overall comparison: at least
7% on THINGS, 12% on IHSJC and 14% on Yummly. The
teachers do not learn perfect embeddings, but the fact that
they provide dense supervision has a bigger impact on the
quality of the student model.

Efficiency. During training, our approach sees each im-
age once per epoch, while direct training on average sees
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Method THINGS IHSJC Yummly
FCT[%]

Random guessing 33.33 50.00 50.00
D+Contrastive [5] 43.95 53.68 55.60
D+Triplet [39] 50.67 57.51 63.55
D+Margin [23] 51.28 59.77 59.79
D+InfoNCE [32] 52.20 60.28 62.40
D+MS [38] 47.05 53.56 63.66
TS+RC [13] 55.79 ± 0.08 66.47 ± 0.15 70.90 ± 5.34
TS+RTM 55.85 ± 0.10 66.02 ± 0.07 70.77 ± 4.45
TS+RF 55.80 ± 0.11 66.17 ± 0.08 71.27 ± 5.25
TS+RI 55.69 ± 0.12 66.24 ± 0.13 72.07 ± 5.98
TS+RMS [13] 56.05 ± 0.07 66.06 ± 0.04 71.32 ± 5.92
TS+MTT [42] 55.80 ± 0.06 65.93 ± 0.09 71.25 ± 5.28
TS+RKD [25] 56.17 ± 0.18 66.48 ± 0.08 71.27 ± 4.32
TS+STMR 56.00 ± 0.08 66.31 ± 0.06 71.12 ± 5.73
Inter-rater agreement 67.22 not available not available

Table 1. Results across datasets, approaches and losses with a ResNet-50 backbone. Our teacher-student approach (the TS+ rows) outper-
forms direct training with triplet based metric learning losses (the D+ rows). The optimal loss for our approach is RKD, as it does best on
two datasets and is statistically indistinguishable from best on the third dataset.

Type of THINGS Imagenet-HSJ Yummly
method overall time [h] (im. reps. per epoch)
D+ 23.7 (56) 61.4 (48) 1.4 (1,903)
TS+ 1.7 (1) 2.6 (1) 0.15 (1)

Table 2. Efficiency data. Direct training repeats each image a few
tens of times or more during an epoch, so it takes significantly
longer to converge than our approach. In addition to repetitions,
the time is affected by triplet directedness and batch size.

an image a few tens of times or more, see table 2. The
large difference comes from how batches are formed: direct
training samples labeled triplets of images, while student
model training samples images. There are many more la-
beled triplets than images (e.g. 1.46M vs 26K for THINGS)
and these triplets cannot be packed densely in batches due
to their low density. The teacher models train at negligible
cost as they are single layer networks with scalar inputs, so
overall our approach is much faster than direct training.

Teachers. Good teachers are crucial to the success of our
approach. We report results for teacher models in table 3.
Note that the numbers are for the triplets in the validation
set, as the instances in the test set do not appear in train-
ing. For THINGS, the FCT is close to the value obtained
by [8] when training an embedding on a slightly more for-
giving dataset split: ours 62.8% vs. theirs 63.7% [44]. We
show results on ImageNet-HSJ instead of IHSJC, as a sim-
ilar evaluation was conducted on the former dataset [27].
The authors did not split the dataset into training, valida-
tion and test, but they report a triplet accuracy of 80.7%,

Method THINGS Imagenet-HSJ Yummly
FCT[%]

STE Teacher 62.81 90.16 81.98
Margin Teacher 62.34 86.27 82.01

Table 3. Evaluation of single teacher models. The values effec-
tively upper bound our approach, as it transfers knowledge from
teacher models to a student model. Teacher models in the litera-
ture are close in quality or worse, see text.

clearly lower than our 90.1%. While neither comparison is
apples-to-apples, the numbers do prove the effectiveness of
our teacher training method.

We show the dependence of the student model quality on
the number of teachers in figure 5. Five teachers do better
on IHSJC and Yummly, but overall the difference between
one and multiple teachers is marginal. See the supplemen-
tary material for the dependence on teacher embedding size.

Backbones. A transformer backbone does not affect the
ranking of the losses, see the supplementary material.

4.4. Qualitative Evaluation

In figure 6, we compare direct training with the teacher-
student paradigm by examining the nearest neighbors of a
few query images. The images are from the test subset of
THINGS and the two models compared are trained with
the best performing losses on that dataset, InfoNCE and
RKD. Whenever one model looks consistently better than
the other, it finds neighbors with higher semantic similarity
with the query, e.g. they are both containers, as opposed
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(a) THINGS (b) IHSJC

(c) Yummly

Figure 5. Student model quality w.r.t. the number of teachers.
For all datasets, the difference between 1 vs 5/10/50 teachers is
marginal, with a slight advantage for 5 teachers.

Method CUB-200 CARS-196 SOP
R@1

HIER384 [15] 85.7 88.3 86.1
TS+RKD384 83.7 82.7 80.0
TS+STMR384 84.7 87.7 84.4

Table 4. Knowledge distillation losses on standard datasets.
STMR is within 2% of state of the art, showcasing the competitive-
ness of knowledge transfer as a framework for standard datasets.

to sharing low level features like shininess. See the supple-
mentary material for an analysis of the embedding spaces.

4.5. Evaluation on Standard Datasets

Our approach is designed for datasets with triplet labels.
Standard datasets can be converted to this format by taking
all the groups of three images where only two share a class,
so our approach can still be applied. Note that it becomes
a traditional method if a metric learning loss is used: the
teachers converge to rotated one-hot class encodings and
this supervision turns the relaxed loss into the original loss.
Interestingly, one-hot supervision makes knowledge distil-
lation losses new metric learning losses. Our approach thus
generalizes the class based formulation of metric learning,
both to more datasets and to more losses.

We computed results on standard datasets for the top
two knowledge distillation losses, RKD and STMR. For fair
comparison with the state of the art, we used a ViTS back-
bone [17] and embedding size 384, training with AdamW
[22] for 100 epochs with learning rate 10−5. Both RKD and
STMR were combined with a triplet mining scheme [23]
complementary to the focus of our approach on increasing

Figure 6. THINGS dataset: queries and search results with the best
directly trained model (D+InfoNCE) vs. the best teacher-student
trained model (TS+RKD). TS+RKD does better in the first four
cases and worse in the last two. The superior model captures se-
mantics better, e.g. soft round object in a room, or crawling insect.

label density. RKD did not fully benefit from triplet mining,
as it operates both on triplets and on pairs, but STMR did
and its recall at 1 is within 2% of the state of the art, see
table 4. The good results with STMR on both the standard
and the new datasets suggest the generality of knowledge
transfer as a framework for metric learning.

5. Conclusion
We presented a novel metric learning approach for triplet
labeled datasets that define similarity in a more general
way than class based datasets. In a teacher-student learning
paradigm, we trained multiple teacher models based only
on image relations and then transferred their knowledge
to a student model that uses image data. By focusing the
teachers on relations and the student on visual features, we
were able to use very large batches for the teachers and to
provide dense supervision to the student, two important
aspects impacting model quality and training efficiency.
Our approach showed clear improvement over direct train-
ing with existing triplet based metric learning methods;
additionally, we highlighted the wide applicability of
knowledge transfer as a framework for metric learning.
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