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Abstract

Hyperspectral imaging is a widely used method in re-
mote sensing, particularly for use in airborne and satellite-
based land surveillance. Its versatility is, however, much
larger and has also seen usage in everything ranging from
food processing and surveillance to astronomy and waste
sorting. It is also gaining inroads with agricultural re-
search. With most available datasets focusing on per-
pixel classification, there is, however, a potential for hy-
perspectral whole-image analysis, but there is a severe
lack of datasets for whole-image analysis. To help fill this
gap and facilitate methodological development in whole-
image hyperspectral image analysis, we introduce the Hy-
perLeaf2024 dataset. The dataset consists of 2410 hyper-
spectral images of wheat leaves, along with associated clas-
sification and regression targets at both the leaf level and
the plot level. In addition to the dataset, we also provide ex-
periments showing the importance of pretraining and high-
lighting the future research direction in whole-image hyper-
spectral image analysis.

1. Introduction

There is a need for large, high-quality, curated datasets to fa-
cilitate the development of deep learning-based algorithms
for hyper-spectral imaging data. Existing publicly avail-
able datasets [6, 19, 28] are mainly for per-pixel classifi-
cation tasks and are acquired from satellite [14, 38] or air-
borne [16, 23] imaging systems. There is great potential for
using hyperspectral imaging in whole-image analysis set-
tings where each imaged object has a set of derived proper-
ties rather than having properties defined on a per-pixel ba-
sis. To allow for developing deep learning-based methods
to model such systems, we have created a comprehensive
dataset of wheat leaves with associated meta-data.

Hyperspectral images contain reflectance information in
each pixel across a portion of the light spectrum, typically in
hundreds of bands across the visible or near-infrared spec-
trum, but also in mid- and long-wavelength infrared. Re-
solving the light spectrum into spectral bands reveals prop-
erties of the imaged material that may not be obtained from
RGB images. Hereby, hyperspectral imaging provides in-
sights into the physical and chemical properties of various
materials, which has shown to be an effective tool for visual
inspection. It has seen use in everything ranging from coun-
terfeit detection [21], astronomy [7] and surveillance [44]
to food safety [10], cancer detection [27] and waste sort-
ing [24]. Hyperspectral imaging is also quite often used in
agricultural research with investigations into drought stress
[36] and disease detection [45], yield prediction [35] nutri-
ent and water stress detection [36] among others.

Several challenges arise in computer vision method de-
velopment in the field of hyperspectral image analysis com-
pared to analyzing RGB images. Due to the difficulty in
acquiring hyperspectral images (and labels) at scale, many
of the existing hyperspectral imaging datasets suffer from
a number of issues. Most datasets are either too small, not
publicaly available and accessible, or lack whole-image la-
bels. Method development for whole-image tasks is diffi-
cult without a large benchmark dataset for this use.

To facilitate method development of whole-image hyper-
spectral image analysis we introduce the HyperLeaf2024
dataset. The HyperLeaf2024 is one of the largest available
hyperspectral imaging datasets for whole-image hyperspec-
tral classification and regression. It contains 2410 images of
wheat flag leaves with associated targets for cultivar, fertil-
izer content, yield, stomatal conductance, and chlorophyll
fluorescence. It is easy to use and accessible via Kaggle.
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1.1. Related work

Hyperspectral imaging datasets provide valuable spectral
information for a range of applications. There are a num-
ber of existing datasets already available, however, most are
severely limited in their applications for whole-image anal-
ysis Tab. 1. Among the available datasets, HySpecNet-11k
[11] is one of the largest satellite-based hyperspectral imag-
ing datasets currently available. However, it lacks any la-
bels for benchmarking classification and regression models.
There is also the LIB-HSI [15] dataset for building facade
segmentation, but the labels are per-pixel and not whole-
image. Similarly, the small HS-SOD [22] dataset for salient
object detection includes only segmentation masks. The
ICVL-HSI [1] dataset contains 200 natural outdoor hyper-
spectral images but lacks labels. Its newer version, Arad1K
[2], is also unlabeled and the authors only made the spec-
trally downsampled versions of the images publicly avail-
able, even though they used a camera with a high spectral
resolution. The low spectral resolution limits the use of this
dataset e.g., for unsupervised pretraining.

A few larger datasets are also publicly available. One
of them, the DeepHS [42] fruit dataset, contains over 4600
hyperspectral images, but only a subset, 1018 of these im-
ages have associated whole-image labels relating to fruit
ripeness. HSIFoodIngr-64 [43] is one the largest datasets
we could find that had whole-image labels. It contains
nearly 3400 hyperspectral images of various cooked dishes
with associated dish names, ingredients, and segmentation
masks. The authors showed that the additional spectral in-
formation improves segmentation (per-pixel classification).
However, they omit experiments on whole-image classifi-
cation performance even though they mention it could be
used for this task. Dish [32, 34] and ingredient [4, 8] classi-
fication from RGB images can already be done effectively.
This limits the effectiveness of this dataset for whole-image
hyperspectral analysis as the spectral information is not es-
sential for the task.

2. Data
Our dataset contains hyperspectral images and physiolog-
ical measurements of wheat flag leaves as well as variety
classification and yield, from a 2023 winter wheat trial in
Taastrup, Denmark (55.671060 N, 12.303205 E). Not used
in this investigation, but available as additional data, is cli-
mate data for the trial location [41].

2.1. Field setup

The trial field was sown in the fall of 2022 and consisted
of a total of 144 plots, placed in four block repetitions, in a
randomized split plot design, each block (39 m by 20.4 m)
with 36 trial plots (each 10 m by 1.25 m) of wheat. Within
a block, three columns of 12 plots had differing nutrient ap-

Figure 1. Data collection. a.) The 36 plots in the northwestern
quadrant with visible differences in the columns due to varying
fertilizer content. b.) The current state of growth during imaging.
c.) The imaging platform with ten leaves, a bar, and a white refer-
ence. d.) Imaging setup with the camera mounted approximately
40 cm above the leaves. e.) LI-600 measurement device during
measurement of a sunlit leaf.

plications. The dataset we are releasing here includes imag-
ing acquired from only the northwestern block of the trial
Fig. 1.

Each plot is defined by three different properties: the
wheat cultivar (variety), the amount of nutrition given, and
the sowing density. The four cultivars were Heerup, Kvium,
Rembrandt, and Sheriff. The nutrient application was given
in normal amounts (for the area), half, and none. Sowing
densities were chosen to give 150, 300, and 450 plants/m2.

Fig. 1 shows an example of the crop during the data col-
lection. Data was collected over two days beginning in
the morning around 10:00 and completing late afternoon
around 16:30. There was no precipitation immediately be-
fore or during the acquisition.

2.2. Hyperspectral imaging

The hyperspectral imaging of the leaves was performed
with the leaves detached from the plant. Each leaf was
clipped onto a wooden surface (see Fig. 1) for a total of ten
leaves at a time. To minimize the effects on the reflectance
from the leaves drying out before being imaged, a plastic
tarp was kept over the leaves until all ten were ready to be
taken to the imaging station. During imaging, the leaves
were held flat against the surface by a metal rod placed
across them (see Fig. 1). Leaves were not cleaned before
imaging, so some images contain a visible insect presence.

Imaging was performed in a white tent to homogenize
the light. A white reference panel is used to radiometri-
cally calibrate the image signal to the true reflectance. It
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Dataset # of Images # of Bands Labels Whole-image Labels Task

ICVL-HSI 200 519 No No Spectral reconstruction from RGB
ARAD-1K 1000 31 No No Spectral reconstruction from RGB
HySpecNet-11k 11483 224 No No Image compression
HS-SOD 60 151 Yes No Salient object detection
LIB-HSI 513 204 Yes No Segmentation
DeepHS Fruit 4671 (1018) 224 Partial Yes Regression
HSIFoodIngr-64 3389 204 Yes Yes Segmentation and classification

HyperLeaf2024 (ours) 2410 204 Yes Yes Classification and regression

Table 1. Existing hyperspectral datasets.

was placed flat on the wooden mounting surface along with
the leaves. The camera sensor was placed approximately
40 cm above the imaging area. The camera is the SPECIM
IQ [3] (SPECIM, Specim Oulu, Finland) which delivers a
hyperspectral image of spatial dimensions 512× 512 pixels
and 204 spectral bands from 400 to 1000 nm. Each group
of ten leaves was imaged at two different exposure settings
depending on lighting conditions.

2.3. Physiological sensing

Data on stomatal conductance and chlorophyll fluores-
cence was acquired using the portable LI-600 porome-
ter/fluorometer (LI-COR Environmental GmbH, Bad Hom-
burg, Germany).

A leaf was chosen, and the LI-600 was placed with the
incident-light sensor pointing perpendicular to how the leaf
was angled (before being placed under the aperture clamp),
and the measurement was performed (see Fig. 1).

Stomatal conductance (gsw) is a measure of the plant’s
“breathing”. It is a measure of gas exchange (CO2 going
in, H2O going out) through the numerous openings on a
leaf where guard cells can control the aperture’s closing and
opening. The measure is of passage of molecules per vol-
ume per time, here in mol m−2 s−1. Changes in lighting
conditions [12], humidity, and temperature [5] can influence
gsw.

A leaf can either use light/photons for photosynthesis
and thus growth, let it shine through the leaf (transmit-
tance), reflect it (what we humans see) or change it into
heat or fluorescence. Chlorophyll fluorescence measured
as quantum yield of PSII (ΦPSII) for light-adapted leaves,
is thus a measure of how much light is absorbed by pho-
tosystem II chlorophyll [33] and used for photochemistry,
and can give not just a real-time indicator of physiology but
also depict a plant’s flexibility with regards to environmen-
tal change [12].

Both gsw and ΦPSII can give insight into how well a plant
handles different stresses [37].

2.4. Crop yield

Before harvesting, the plots were cut to 6 m length, to omit
the eastern part of each plot, where substantial destructive
leaf sampling had taken place months prior. The yield is
thus only representative of a 7.5 m2 crop area in each plot.
Grain weight yield was measured in real-time on the com-
bine harvester.

2.5. Leaf segmentation and processing

We train a multi-class U-Net model to segment the leaves,
metal bar, and white reference frame. The images are then
standardized according to the pixels in the white reference
frame to compute the true reflectance values. We then apply
connected components to separate them into individual leaf
images with spatial dimensions of 48×352 and 204 spectral
channels. All non-leaf pixels are filled with zeros to ensure
models learn only the information inside the leaf. Finally,
the hyperspectral leaf images are then clipped to the 0-1
range and converted to 16-bit tiff files.

2.6. Data split

We define the train, validation, and test split at the plot level.
The training set contains 24 plots, the validation contains 4
plots and the testing set contains 8 plots. This is done to
avoid data leakage associated with dividing the leaves from
the same image among the different sets. We also ensure
that each split has, individually, at least one of every culti-
var, seeding density, and fertilizer content.

3. Experiments
Several baseline experiments were run using a selection of
high-performing deep learning-based methods to get an un-
derstanding of how well existing methods perform on this
dataset. Each architecture is trained as classification task to
predict the cultivar (Heerup, Kvium, Rembrandt, or Sheriff)
and again as a regression task to predict the four regression
targets (fertilizer content, yield, stomatal conductance, and
chlorophyll fluorescence).
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Figure 2. Differences between 1D, 2D, and 3D variants of deep
learning architectures. The inputs are hyperspectral images with
dimensions (spectral, height, width).

We divided the experiments into three categories: con-
volutional neural networks, transformers, and unsupervised
methods. 2D and 3D variants of most architectures are
trained (see Fig. 2 b-c). The 2D variants use a single 3× 3
convolution to compress the 204 channels down to 3 chan-
nels to facilitate usage with the predefined architectures. In
some of the architectures, a 1D variant was trained as well,
where a mean was calculated with a reduction along the spa-
tial dimensions of the input data (Fig. 2a). Unless otherwise
stated, all described models were trained with a learning
rate of 10−4 using AdamW [31] optimizer, with an effec-
tive batch size of 32.

For data augmentations, we used random horizontal and
vertical flipping, random scaling (0.75, 1.25), random shift
(0.25,0.25), Gaussian blurring, and Gaussian noise. All
experiments use the same data augmentation setup. Per-
channel standardization is applied to all images using a
mean and standard deviation derived from the training set
images.

We report the classification accuracy and mean squared
error (MSE) for most models. The MSE is computed after
targets have been standardized by the training set mean and
standard deviation. This ensures an MSE of 1 is equiva-
lent to simply guessing the mean and MSE of 0 is perfect
accuracy.

3.1. Convolutional neural networks

We evaluate the performance across three different architec-
tures. ResNet [17] was chosen as it is a widely used stan-
dard in deep learning image analysis. For a more recent,

Model 1D 2D 3D

ResNet18 4.4 11.7 33.7
ResNet50 18 25.6 48.2
ResNet152 40.4 60.2 119
ConvNeXt-S 48.9 50.2 55.8
ConvNeXt-B 86.5 88.6 96.7
ConvNeXt-L 193 197 211
MobileNetV3-S 2.5 2.5 2.8
MobileNetV3-L 5.4 5.5 5.8
ViT-B —- 85.1 85.1
ViT-L —- 302 302
ViT-H —- 629 629

Table 2. Parameter counts (in millions) for the various architec-
tures.

state-of-the-art architecture we chose ConvNeXt [30]. We
also looked at MobileNetV3 [20] to get insight into what
kind of performance we could achieve with architectures
designed for limited hardware resources. We investigate
these architectures in 1D, 2D, and 3D variants. The 2D vari-
ants are tested both with and without pre-trained ImageNet
[39] weights. Each model is trained once as a classifica-
tion task for predicting cultivar, and again as a regression
task for predicting the remaining targets. Each model was
trained with an early stopping criterion of validation loss
not decreasing for 25 epochs.

3.2. Transformers

We also evaluate on the standard ViT [9] architectures in
both 2D and 3D variants. The 3D variants use cube patch-
ing and take into account all 204 spectral channels. Zero
padding is applied to images before patching to ensure di-
visibility by the patch size. ViT-B and ViT-L use patches
of 3 × 16 × 16 in the 2D variant or 1 × 16 × 16 × 16 in
the 3D variants, while ViT-H uses 3 × 14 × 14 in 2D and
1 × 14 × 14 × 14 in 3D. Positional encodings are learned
during training and we opt for average pooling over a cls
token to obtain a final set of features. We also tried all three
variants of SwinV2 [29] in both 2D and 3D but they failed to
converge, so we omit their results. Due to a higher volatility
in training the early stopping criterion was set to 50 epochs
for all transformer-based models.

3.3. Unsupervised methods

We also look into unsupervised pre-training methods with
experiments using variational autoencoders (VAE) [25] and
masked autoencoders (MAE) [18]. We train the VAEs using
3 different encoder architectures (ResNet50, ConvNeXt-
Base, and MobileNetV3-Large) in both 2D and 3D vari-
ants. After pre-training, the encoders are then fine-tuned
and evaluated on the test data. All VAEs were trained for
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300 epochs with a latent space of 1056 dimensions. Bi-
nary cross-entropy loss was used as a reconstruction loss.
For that reason, we dropped the per-channel standardization
step of image pre-processing for VAE training. We used the
KL-divergence annealing schedule with β = 0 for the first
50 epochs and β linearly increasing until reaching 10−4 at
epoch 300. The pre-trained encoders were then finetuned to
two downstream tasks: classification and regression. Both
downstream networks consisted of a fully connected layer
(1056×512) followed by batch normalization and ReLU ac-
tivation function, followed by another linear layer (512×4).
From the initial pre-trained encoder weights, each down-
stream model was finetuned end-to-end for the classification
and regression tasks for 100 epochs.

Similar experiments are done with the MAEs. The
MAEs use the 3 ViT variants in both 2D and 3D as en-
coders. They all use the same decoder architecture as de-
fined in the MAE paper. For comparison with VAE, the
per-channel standardization step is also dropped for these
experiments.

4. Results

4.1. Convolutional neural networks

The majority of CNN-based models converged and reached
the early stopping criterion, except a 3D version of Con-
vNeXt. For this ConvNeXt model, there was close to no
decrease in training and validation loss both for classifica-
tion and regression. The final test metrics for all the models
can be found in Tab. 3. The scores for models that did not
converge are excluded from the average calculation to en-
sure a fair comparison between the input data variants.

The average metric values in both prediction tasks
demonstrate that pre-trained models generally provided bet-
ter results than their non-pre-trained versions. They were
also faster to converge during training. In some cases, the
pre-trained versions converged to a higher training loss,
which wasn’t then reflected in validation or test sets, sug-
gesting stronger generalization power of these models.

In classification, the average values show a clear increase
in accuracy after increasing the dimensionality of the input
data. This is especially visible for the 1D variant, where
the main focus was placed on the spectral information. Al-
though much weaker, an opposite trend can be found in re-
gression results with the best average MSE reached for the
1D variant.

On the level of individual models, the best result in both
tasks was reached using ConvNeXt, which is considered
to be the state-of-the-art convolutional model for classifica-
tion. Importantly, it is the smallest version of this model that
provided the best result. Similar behavior is also present in
the ResNet models, suggesting that small models are a bet-
ter fit for these tasks. This behavior is no longer true for
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Figure 3. Classification confusion matrix for individual targets,
using 2D pre-trained ResNet18.

MobileNetV3 models, but their results are still comparable
to the other architectures, despite their design constraints.

We use 2D pre-trained ResNet18 model for a fine-
grained analysis of results, as it has achieved high scores
in both classification and regression. It is also simple and
small enough to provide a representation of general trends
found in the data. In classification (confusion matrix on
Fig. 3), Kvium and Sheriff have the highest accuracy. It
is also rare that other cultivars are incorrectly classified as
Sheriff. In regression (Tab. 4), the fertilizer level scores
the best, while the stomatal conductance (gsw) is clearly the
hardest to predict.

4.2. Transformers

As with convolutional architectures, the vision transform-
ers show improved cultivar classification performance and
reduced regression performance when using the 3D variant
over the 2D variants, see Tab. 3. We can see that the ViT-
H variant with 629M parameters struggles with overfitting
during the classification task. Overall, however, the results
of the transformer models are worse than the convolutional
models. Transformers are known to need a lot of training
data, which might explain this result.

4.3. Unsupervised methods

The results of the VAE models, pre-trained in an unsuper-
vised manner, can be found in Tab. 5a. Both classification
and regression tasks are better in the 3D versions than the
2D versions. Individually, the ResNet50 model outperforms
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Task/Metric Classification - Accuracy

Model 1D 2D 2D-P 3D

ResNet18 0.485 0.840 0.862 0.845
ResNet50 0.374 0.832 0.815 0.845
ResNet152 0.455 0.826 0.804 0.874
ConvNeXt-S 0.534 0.747 0.893 0.398∗

ConvNeXt-B 0.466 0.721 0.779 0.362∗

ConvNeXt-L 0.572 0.817 0.840 0.317∗

MobileNetV3-S 0.434 0.796 0.832 0.774
MobileNetV3-L 0.389 0.762 0.864 0.740

CNN Average 0.463 0.793 0.836 0.815

ViT-B —– 0.679 —– 0.617
ViT-L —– 0.715 —– 0.619
ViT-H —– 0.474 —– 0.711

ViT Average —– 0.623 —– 0.649

(a) Classification results

Task/Metric Regression - MSE

Model 1D 2D 2D-P 3D

ResNet18 0.420 0.434 0.388 0.413
ResNet50 0.464 0.421 0.451 0.388
ResNet152 0.449 0.481 0.398 0.443
ConvNeXt-S 0.383 0.431 0.406 0.645∗

ConvNeXt-B 0.421 0.433 0.395 0.626∗

ConvNeXt-L 0.401 0.445 0.402 0.592∗

MobileNetV3-S 0.471 0.393 0.442 0.524
MobileNetV3-L 0.424 0.419 0.387 0.443

CNN Average 0.429 0.432 0.409 0.442

ViT-B —– 0.437 —– 0.441
ViT-L —– 0.406 —– 0.433
ViT-H —– 0.398 —– 0.565

ViT Average —– 0.414 —– 0.480

(b) Regression results

Table 3. Cultivar classification accuracy and the average mean squared error of the four regression targets. P indicates the usage of pre-
trained ImageNet weights and * indicates that the model failed to converge and is not included in the average.

Target MSE R2

Grain weight 0.333 0.557
gsw 0.619 0.188
ΦPSII 0.446 0.546
Fertilizer 0.154 0.837

Table 4. Regression MSE and R2 scores for individual targets,
using 2D pre-trained ResNet18.

the others for classification and MobileNetV3-L is the best
for regression, while the ConvNeXt models fail to converge.
Overall, however, the VAE’s show worse results given the
same encoder network than the CNN models.

We see even worse performance in the fine-tuned MAE
models. Classification performance improves when mov-
ing from 2D to 3D and while regression performance stays
fairly consistent between 2D and 3D. The ViT-H classifi-
cation models overfit quickly, while the smaller ViT-B and
ViT-L achieve a higher accuracy. All variants perform sim-
ilarly for the regression task.

5. Discussion
5.1. Data quality

In this study, we have introduced a novel hyperspectral
imaging dataset aimed at facilitating method development
in hyperspectral image analysis with a focus on whole-
image analysis. One of the critical aspects of making a
dataset is minimizing sources of error as best as possible

during data collection. Most notably, after removing a leaf
from the plant it quickly begins to degrade altering its spec-
tral signature. To minimize this effect we did two things:
Firstly, we used a plastic tarp to cover the leaves during col-
lection, prior to imaging, to hold in some of the moisture
and prevent them from drying out too quickly. Secondly,
we made the collection as efficient as possible and thus lim-
ited the maximum time a leaf has been detached prior to
imaging to approximately 5 minutes. An investigation of
the differences in spectral reflectance between the longest
detached leaf and the most recently detached leaf in each
image suggests this impact is minimal.

The LI-600 measurements of stomatal conductance and
chlorophyll fluorescence are sensitive to both the time of
day and lighting conditions. This introduces a possible
source of noise in the dataset as well. We attempted to min-
imize the effect of varying sunlight conditions by homog-
enizing the light using a white tent covering the imaging
area. For the full and zero fertilizer plots, we completed
multiple passes across the field each day, one in the morn-
ing and one in the afternoon to ensure that we have images
taken in varying lighting conditions. Further investigation
may also benefit from including climate data such as solar
radiation, temperature, and humidity.

The accuracy of the true reflectance values is also sensi-
tive to the accuracy of the white reference frame segmenta-
tion. To minimize this possible source of error, the mask of
the white reference frame includes a binary erosion step as
a safety measure to ensure that only pixels inside the white
reference are used for white balancing. Similarly, the masks
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Figure 4. RGB reconstructions from the VAE and MAE models. Left is ground truth, middle is VAE and right is MAE. The vertical gaps
in the images are caused by the removal of the pixels corresponding to the metal bars that hold down the leaves during imaging.

Task Classification Regression
VAE Encoder 2D-P 3D 2D-P 3D

ResNet50 0.725 0.842 0.451 0.447
ConvNeXt-B 0.555∗ 0.574∗ 0.500∗ 0.587∗

MobileNetV3-L 0.757 0.677 0.445 0.415

Average 0.710 0.759 0.448 0.431

(a) VAE fine-tuning results

Task Classification Regression
MAE Encoder 2D 3D 2D 3D

ViT-B 0.498 0.653 0.432 0.441
ViT-L 0.708 0.551 0.421 0.413
ViT-H 0.309 0.432 0.445 0.435

Average 0.505 0.545 0.433 0.430

(b) MAE fine-tuning results

Table 5. Cultivar classification accuracy and average MSE regression scores for the fine-tuned VAEs and MAEs. P indicates the usage of
pre-trained ImageNet weights and * indicates that the model failed to converge and is not included in the average

for the leaves also have binary erosion applied to ensure
only leaf pixels are inside the mask. In this case, the ero-
sion operation is less aggressive to avoid losing the tips of
the leaves. Thus, there is a possibility for a few non-leaf
pixels to be included in some of the segmentation masks.

5.2. Experiments

Model pretraining seems to be important for obtaining good
results. In the CNN architectures, models pretrained using
ImageNet outperformed the non-pretrained variants quite
significantly. The highly generalizable weights from the
pretrained models provide an improved starting point for
fine-tuning using hyperspectral imaging. This suggests
that the knowledge gained by pretraining on a wide va-
riety of data can significantly help, even when we use a
naive compression method to fit the hyperspectral images
to the pretrained models. It also hints that a large-scale,
all-encompassing, hyperspectral imaging dataset similar to
ImageNet may provide an effective boost to many hyper-
spectral imaging models.

Ignoring the pretrained variants and with the exception
of 3D ConvNeXt models, which failed to train properly, it
seems the 3D CNN models outperform their lower dimen-
sional counterparts for classification, while the regression

models follow the opposite trend. It suggests that the clas-
sification task is highly dependent on the spatial informa-
tion while the regression tasks are more dependent on the
spectral information.

We found previously [26] with similar data that 3D
autoencoders outperform their 2D counterparts on down-
stream tasks. The fine-tuned VAE results here follow that
trend, despite performing worse than the classifcation and
regression models. Additional tests showed that this is
likely due to the lack of normalization. We dropped the
normalization step to facilitate reconstruction with cross-
entropy loss. The lack of normalization along with the in-
herent difficulty in training transformer-based models with
limited data also explains the poor MAE results.

In the classification task, we see that Sheriff is the most
distinctive of the four cultivars, while Rembrandt is the
most difficult to identify. Given that you can visually see
the differences between the amount of fertilizer (light to
dark green) (Fig. 1), it is expected that the easiest regression
task is predicting fertilizer content. Fertilizer usage corre-
lates with yield [40], so it is not unexpected that the grain
weight is the second easiest target to predict. The stom-
atal conductance and chlorophyll fluorescence however, are
the most difficult to predict, with chlorophyll fluorescence
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being slightly easier due to chlorophyll’s association with
reflectance [13]. A possible reason for the difficulty in pre-
dicting these two values is due to their high variability de-
pending on the time of day and lighting conditions.

Models trained on this dataset will likely not perform
well on other wheat experiments (e.g., different soil types,
cultivars, climate, etc.). However, such use is not the pur-
pose of this dataset. We provide this dataset for whole-
image hyperspectral method development. Even though we
have here a specialized agriculture research task, it func-
tions well for method development because it provides tasks
that require the integration of the spatial and spectral prop-
erties in different ways. Namely, the classification task is
more dependent on the spatial information and the regres-
sion task depends more on the spectral information. Meth-
ods that are developed to perform well on both of these tasks
will ideally perform well on a new dataset that may require
the integration of the spatial and spectral information in a
different manner.

6. Conclusion
The HyperLeaf2024 dataset presents a significant resource
for advancing whole-image hyperspectral imaging method-
ologies. With over 2400 hyperspectral images accompanied
by whole-image targets, this dataset will facilitate the de-
velopment and evaluation of hyperspectral image analysis
algorithms. Crucially, having distinct spatially-dependent
and spectrally-dependent targets for each image allows the
development of methods that excel in both aspects and that
can adapt to the varying requirements in hyperspectral ap-
plications.

Despite the naive method of compression we employ to
fit the hyperspectral images to the pretrained 2D models,
they still outperform all non-pretrained variants. These ex-
periments highlight the importance of large-scale, compre-
hensive datasets in pretraining hyperspectral imaging mod-
els. They not only demonstrate the value of pretraining in
hyperspectral image analysis but also highlight a clear path
forward for future research in hyperspectral imaging.

With HyperLeaf2024, we have a foundation for further
advancing deep learning-based analysis models for whole-
image hyperspectral imaging both for the specific use in
agricultural research, but also as a basis for the general
wider use of hyperspectral imaging.
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André Hollstein, Godela Rossner, Christian Chlebek,
Christoph Straif, Sebastian Fischer, Stefanie Schrader, To-
bias Storch, Uta Heiden, Andreas Mueller, Martin Bach-
mann, Helmut Mühle, Rupert Müller, Martin Habermeyer,
Andreas Ohndorf, Joachim Hill, Henning Buddenbaum,
Patrick Hostert, Sebastian van der Linden, Pedro Leitão, An-
dreas Rabe, Roland Doerffer, Hajo Krasemann, Hongyan Xi,
Wolfram Mauser, Tobias Hank, Matthias Locherer, Michael
Rast, Karl Staenz, and Bernhard Sang. The enmap space-
borne imaging spectroscopy mission for earth observation.
Remote Sensing, 7(7):8830–8857, 2015. 1

[15] Nariman Habili, Ernest Kwan, Weihao Li, Christfried We-
bers, Jeremy Oorloff, Mohammad Ali Armin, and Lars
Petersson. A Hyperspectral and RGB Dataset for Build-
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