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Abstract

This paper discusses strategies for object detection in
marine images from a practitioner’s perspective working
with real-world long-tail distributed datasets with a large
amount of additional unlabeled data on hand. The pa-
per discusses the benefits of separating the localization and
classification stages, making the case for robustness in lo-
calization through the amalgamation of additional datasets
inspired by a widely used approach by practitioners in
the camera-trap literature. For the classification stage,
the paper compares strategies to use additional unlabeled
data, comparing supervised, supervised iteratively, self-
supervised, and semi-supervised pre-training approaches.
Our findings reveal that semi-supervised pre-training, fol-
lowed by supervised fine-tuning, yields a significantly im-
proved balanced performance across the long-tail distribu-
tion, albeit occasionally with a trade-off in overall accu-
racy. These insights are validated through experiments on
two real-world long-tailed underwater datasets collected by
the Monterey Bay Aquarium Research Institute (MBARI).

1. Introduction

With the rise of the blue economy, studying ocean commu-
nity composition and their ecosystems is essential to un-
derstanding the ecological impact activities like offshore
energy and deep-sea mining will have on them. Oceano-
graphic institutes have been surveying parts of the deep
oceans using underwater vehicles fitted with video moni-
toring capabilities for many years now, resulting in a data
deluge. Automating the analysis of this video data for
biodiversity monitoring using supervised computer vision
techniques like object detection has been successful in
both ocean and land realms [9, 23]. This approach how-
ever requires expensive manual data annotations by tax-
onomists, localizing and categorizing every animal in a
frame. While these annotations are crucial for our abil-
ity to automate video analysis to any extent, this results in

the bulk of collected data, the unlabeled data, being com-
pletely unused for model training. Moreover, supervised
computer vision models exhibit suboptimal performance on
imbalanced datasets, particularly struggling with the accu-
rate classification of rare entities. Given that datasets pro-
cured from natural environments invariably exhibit a long-
tailed distribution, the shortcomings of these models be-
come more pronounced. The erroneous identification of
rare species during investigations assessing the ecological
impact on oceanic communities holds the potential for sig-
nificant repercussions. Consequently, an optimal objective
entails achieving a balanced performance across all classes
within the model’s purview.
Self-supervised learning, a machine learning paradigm
where a model is trained using implicit labels arising from
inherent structures or relationships within the input data
alone as a supervisory signal, has emerged as a viable strat-
egy for leveraging unlabeled data. These methods, demon-
strate in certain instances superior performance across var-
ious downstream tasks in comparison to their supervised
counterparts [10, 13], have been shown to scale well with
both data and model size [10], and are proficient few-shot
learners particularly when trained with extensive corpora of
unlabeled data [11]. Notably, these methods are more ro-
bust toward unbalanced datasets [17], hypothesized to re-
sult from a more uniform representation space [16]. The ef-
ficacy of self-supervised learning is most pronounced when
unlabeled data originates from the same domain, the avail-
ability of supervised data is limited, and the task granularity
is relatively coarse [8]. In the context of automated analysis
of deep-sea video footage, this methodology aligns with at
least two of these criteria.
Self-supervised learning can be broadly categorized into
two main types, task-based methods and contrastive meth-
ods [5]. Task-based methodologies involve training models
to perform a task, such as predicting the color composition
[25], sequential order of image components [19], or even
masked-out regions of an image [21]. Contrastive learning
methods minimize the distance in the representation space
between two semantically similar images, forming a pos-
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itive pair, while maximizing the distance between two se-
mantically dissimilar images, forming a negative pair. In
the absence of explicit labels, positive pairs often consist of
two augmented versions of the same image. One prominent
instance of contrastive learning is SimCLR [7], wherein
the authors show that the type of data augmentations used
is a crucial factor affecting performance. Semi-supervised
learning encompasses approaches to train models using a
combination of labeled and unlabeled data. A typical semi-
supervised strategy is to perform contrastive learning on un-
labeled data, also called contrastive pre-training, followed
by supervised fine-tuning using labeled data. Recent ad-
vances in semi-supervised learning have demonstrated en-
hanced performance and computational efficiency by using
a small subset of labeled data during the contrastive pre-
training step. This is done by the addition of an extra term
in the loss function, such as the SuNCEt loss [3], or by as-
signing and subsequently minimizing the cross entropy loss
of pseudo labels assigned to unlabeled data using a small
set of supervised support samples as demonstrated in the
PAWS method [4].
Strategies for leveraging unlabeled data to enhance bio-
diversity monitoring include task-based approaches, like
ranking pairs (original image and a crop from the image) of
unlabeled noisy sonar images based on the number of fish
in them while simultaneously predicting the density maps of
fish in a supervised manner using a subset of labeled images
[22], pseudo labeling of unlabeled data using a supervised
model [18], and contrastive learning approaches, like select-
ing positive pairs of images based on temporal or contextual
relatedness from camera trap data as opposed to the stan-
dard approach of using two augmented versions of the same
image [20]. Most contrastive or task-based pre-training
approaches are focused on improving classification perfor-
mance. Self-supervised object detection pre-training meth-
ods, wherein both the region proposal and classification
heads are pre-trained, result in only limited enhancements
compared to traditional object detection [14], often de-
mand substantial computational resources, and do not effec-
tively address the open-world problem. Conversely, a more
straightforward localization approach, exemplified by the
MegaDetector [6], a standard object detector model trained
for animal localization in camera trap images, proves ro-
bust to unseen data and finds widespread use among non-
profits and ecologists globally [2]. The MegaDetector’s ro-
bustness and practical utility stem from its training on mul-
tiple datasets, made possible by reducing all classes into
three overarching categories: ’animal,’ ’vehicle,’ and ’hu-
man.’ This model, characterized by its simplicity, low com-
putational cost, ease of fine-tuning, and adept handling of
the open-world problem, successfully localizes previously
unseen animals in novel backgrounds. Inspired by the ef-
fectiveness of this approach, we further fine-tuned a similar

single-class detection model for fish, the MegaFishDetector
[24], which has been trained using a combination of six un-
derwater datasets.
In this paper, we compare strategies for using unlabeled
data, in addition to a subset of labeled data, for biodiver-
sity monitoring in two real-world underwater datasets col-
lected by MBARI exhibiting long-tail distributions. We dis-
cuss the benefits of separating the localization and classi-
fication stages, training a single-class object detector for
the localization step taking inspiration from a widely used
and successful study on camera trap images. For the sub-
sequent classification of the localized crops, we compare
supervised, supervised iteratively, and semi-supervised ap-
proaches, showing that self-supervised and semi-supervised
pre-training using unlabeled images followed by supervised
fine-tuning results in a more balanced performance across
all classes. For both datasets, contrastive methods that use a
combination of unlabeled and labeled data for pretraining,
such as PAWS and SimCLR with SuNCEt loss, resulted in
significantly higher balanced accuracy scores in compari-
son to contrastive pretraining using unlabeled data alone,
as is the case with standard SimCLR. On both datasets we
achieved the highest balanced accuracy scores using semi-
supervised pre-training using PAWS followed by supervised
fine-tuning, however, the significant increase in balanced
accuracy score comes at a cost of decreased overall ac-
curacy. By proposing a pipeline consisting of a localiza-
tion approach that is being widely used in practice, along
with comparing classification approaches to make use of
unlabeled data ranging from straightforward iterative su-
pervision to newer methods such as semi-supervised pre-
training, we anticipate that our results on two noisy real-
world long-tailed datasets can serve as a guide for practi-
tioners working on similar problems.

2. Methods

2.1. Datasets used

Two separate datasets were used for these experiments
henceforth referred to as ROV (remotely operated vehicle)
and AUV (autonomous underwater vehicle) datasets. The
ROV dataset consists of 27,000 images collected from mul-
tiple ROV transects by MBARI. The dataset contains a mix
of images taken in the benthic and midwater zones and was
annotated by the video lab at MBARI with bounding box
coordinates and label assignments (varying degrees of tax-
onomic assignment level). The ROV dataset contained 100
different animal labels. This resulted in a total of 41,000
localizations. The images were of varying resolution and
consisted of animals of different sizes, ranging from small
views of animals in the distance, to zoomed-in close-up
shots of animals. The AUV consists of a high-resolution
(2k) camera and moves at a speed of about 1 m/s underwa-
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Figure 1. Long-tailed training data distribution and example images from two different underwater datasets collected by MBARI. (1A
and 1B) Number of instances per class (class indices shown in place of taxonomic assignments for data embargo reasons) sorted from
highest to lowest number of instances in the training splits of the ROV and AUV datasets respectively. These are the extracted crops from
both datasets for classification. (1C and 1D) Example images from the ROV dataset with overlaid boxes for localization predictions with
confidence scores from our trained single-class animal detection model. (1E) Example image from the AUV dataset with overlaid boxes
for localization predictions with confidence scores from our trained single-class animal detection model.

Model Test set Precision Recall mAP50

Megafishdetector ROV test split 0.541 0.445 0.39
Megafishdetector fine-tuned on ROV train split ROV test split 0.74 0.74 0.783
Megafishdetector fine-tuned on ROV train split AUV test split 0.719 0.512 0.647
Megafishdetector fine-tuned on ROV + AUV train split AUV test split 0.689 0.687 0.739

Table 1. Comparison of localization performance of single-class animal detection models (YOLOv5 medium) on ROV and AUV test sets
showing that initialization from Megafishdetector weights followed by fine-tuning on the respective training sets yields the best results.

ter. The AUV dataset consisted of 11,000 fully annotated
images and 75000 localizations. The AUV dataset con-
tained 70 different label assignments at different taxonomic
levels. Annotations were done by Danelle E. Cline using
a combination of manual labeling, heuristic methods such
as blob detection and unsupervised methods such as clus-
tering and manual verification. The larger field of view of
the AUV camera, higher resolution, and higher speed of the
vehicle, resulted in many more animal captures per frame,

including those that are fast enough to escape the ROV. The
large number of animals per frame along with the typically
small size of localizations in this dataset made the anno-
tation task very laborious. For both datasets only the first
50 animal labels, sorted from highest to lowest number of
instances in the training split (discussed below), were re-
tained and the remaining labels were grouped together as
the ‘unknown’ class, resulting in 51 classes. This was done
to study the effect of novel classes in the unlabeled data, as
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Figure 2. Comparison of supervised and semi-supervised approaches for classification on ROV and AUV datasets. (2A and 2B) Per-class
recall scores on the ROV and AUV test splits respectively using supervised learning (fine-tuning on training splits starting from Imagenet
weights). Classes are sorted in the same order (highest to lowest instances in the training set) as Fig. 1A,B except the unknown (-1) class
which is at the end. The dotted line reflects the balanced accuracy score for each dataset. Supervised performance follows a long-tailed
distribution. (2C) Per-class recall scores on the ROV test split comparing supervised, self-supervised (SimCLR) and semi-supervised
(PAWS) pre-training on unlabeled split followed by supervised fine-tuning on the training split. (2D) Per-class recall scores on the test set
of the AUV dataset comparing supervised, and two semi-supervised approaches (SimCLR with SuNCEt loss and PAWS) pre-training on a
combination of labeled and unlabeled data followed by supervised fine-tuning on the training set.

Classification model Overall
accuracy

Balanced
accuracy

score

Supervised only: fine-tuning using training split + retaining labels of unlabeled split (max upper
limit possible).

79.8 0.684

Supervised only: fine-tuning using training split starting from Imagenet. 64.97 0.443
Supervised iteratively - fine-tuning using training split + pseudo labels on unlabeled split thresholded
at 0.1 confidence.

64.40 0.483

Supervised iteratively: fine-tuning using training split + pseudo labels on unlabeled split thresholded
at 0.7 confidence.

68.78 0.472

SimCLR: Contrastive pre-training with NTXent loss on unlabeled split with batch size 256 for 100
epochs, followed by supervised fine-tuning using training split.

56.67 0.485

SimCLR: Contrastive pre-training with NTXent loss on unlabeled split with batch size 1028 for 100
epochs followed by supervised fine-tuning using training split.

53.03 0.473

PAWS: Contrastive pre-training on unlabeled split with unsupervised batch size 64 for 200 epochs
followed by supervised fine-tuning using training split.

66.04 0.587

Table 2. Comparison of supervised, supervised iteratively, self, and semi-supervised classification performance on the ROV test set.
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Classification model Overall
accuracy

Balanced
accuracy

score

Supervised only: fine-tuning using training split starting from Imagenet. 62.74 0.217
SimCLR: Contrastive pre-training with SuNCEt loss on unlabeled split with unsupervised batch size
64 for 100 epochs, followed by supervised fine-tuning using training split.

52.56 0.375

PAWS: Contrastive pre-training on unlabeled split with unsupervised batch size 64 for 200 epochs
followed by supervised fine-tuning using training split.

49.58 0.393

Table 3. Comparison of supervised and semi-supervised classification performance on the AUV test set.

part of future work.

2.2. Dataset splits and unlabeled data

To simulate the availability of additional unlabeled data, an-
notations (bounding box coordinates plus assigned labels)
from 75% of each dataset were removed and these images
were treated as the unlabeled split. The remaining 25% of
each dataset was split into train-val-test splits as 10-5-10%.
All training was done on the train splits of each dataset and
metrics were reported on their respective test split.

2.3. Evaluation metrics

For evaluating object detection, the standard metric of
mAP50 was used. For evaluating classification perfor-
mance, overall accuracy (OA) and balanced accuracy score
(BA) (from sklearn [1]) were used. As both datasets
were unbalanced and followed a long-tailed distribution, the
overall accuracy may be skewed by the dominance of the
majority class. Balanced accuracy score, the macro average
of recall per class ranging from 0 to 1, is a better metric
giving equal importance to performance on all classes irre-
spective of the number of instances per class.

2.4. Object detection

We trained a YOLOv5 [15] object detector model to predict
bounding boxes in a class-agnostic manner by collapsing
all classes into a general ‘animal’ class. We initialized this
model with YOLOv5 parameters from a previously general-
ized fish detector called MegaFishDetector [24], fine-tuned
on the training splits, and evaluated on respective test splits
of both datasets. Once training and evaluation were com-
plete, we were able to use the final model to extract crops of
animals for the downstream classification task. Crops were
extracted from images in the unlabeled splits only of both
datasets as we already had annotated bounding box coordi-
nates for train, val, and test splits. We evaluated the gen-
eralized object detector on its ability to correctly localize
animals as measured by the mAP50 metric. A YOLOv5
medium model was used with the long edge of the image
being 1280 pixels. A confidence threshold of 0.2 and an
IoU threshold of 0.1 was used for predictions.

2.5. Classification

The localizations from our animal detector were cropped
out, resulting in 31000 and 56000 extracted crops for the
unlabeled splits in the case of the ROV and AUV datasets
respectively. Annotated bounding box coordinates were
cropped out from the train, val, and test splits of both
datasets resulting in 4000, 2000, 4000 and 7500, 3750,
7500 extracted crops for the train, val, and test sets of ROV
and AUV datasets respectively. Crops were resized to a
size of 224 x 224 and fed into different classification mod-
els. For a fair comparison of the advantages of incorporat-
ing unlabeled data, baring small modifications (see section
4.3), the same model architecture, Resnet50 [12] trained for
200 epochs with a batch size of 128 using weighted cross-
entropy loss was used for all supervised components of the
different approaches. Models were initialized either from
Imagenet weights or weights after contrastive pre-training
on unlabeled splits.

2.5.1 Supervised (labeled data only). The baseline for
comparison is training a Resnet50 following the standard
supervised learning approach on the training split for each
dataset. Models were initialized using Imagenet weights
and were trained for 200 epochs using weighted cross-
entropy loss, with weighting based on the number of in-
stances of each class in the training split. The loss was mon-
itored on the training and validation splits. Final evaluation
metrics were calculated on the test split for each dataset.

2.5.2 Supervised iteratively. An approach that is not com-
monly compared to in semi-supervised learning papers, is
the simple approach of using a trained model (supervised
model from 2.5.1), to generate predictions on the unlabeled
data, thresholding these predictions based on confidence,
treating them as pseudo labels, and subsequently training
a new model with a combination of the known labels plus
pseudo labels on training split + unlabeled split that has
been assigned a pseudo label (depends on threshold cho-
sen). This iterative supervised approach, although simple,
is a fair comparison for approaches making use of addi-
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tional unlabeled data. Whereas ideally a confidence thresh-
old for assigning pseudo labels would be picked based on
a precision-recall curve, in this limited study we compared
thresholds at two ends, 0.1 and 0.7.

2.5.3 Self-supervised pre-training: SimCLR. The first ap-
proach explored for incorporating additional unlabeled data
was a contrastive learning approach, SimCLR. SimCLR has
been shown to benefit from large models and large batch
sizes. We compared batch sizes 256 and 1024, using a
Resnet50 backbone with a prediction head (original model
using in the SimCLR paper). Contrastive pre-training us-
ing unlabeled data was followed by supervised fine-tuning
using the labeled data. The pre-training using contrastive
NT-XENT loss was done for 100 epochs on unlabeled crops
only using 4 GPUs (a ml.p3.8xlarge AWS instance) in the
case of batch size 256 and 8 GPUs (a ml.p3.16xlarge AWS
instance) in the case of batch size 1028. We only trained
this model for 100 epochs as compared to 200 epochs due
to the high financial cost associated with high GPU memory
demands originating from the requirement of this method to
have a large batch size. Augmentations used for pre-training
were the same as in the original paper, random crop and
color distortion. Pre-trained weights were then used as an
initialization for supervised fine-tuning on the training split,
for the same number of epochs (200) as in the supervised
case.

2.5.4 Semi-supervised pre-training: PAWS and SimCLR
with SuNCEt loss. The inclusion of a subset of labeled
data during the contrastive pre-training step has been shown
to result in faster convergence without the need to have
a very large batch size, hence allowing cheaper GPU in-
stances to be used. We explored two approaches that fall
in this category, PAWS and SimCLR with SuNCEt loss.
For both approaches, we used a relatively small unsuper-
vised batch size of 64 and pre-trained for 200 epochs us-
ing 3 GPUs (a ml.g4dn.12xlarge AWS instance; there was a
weird bug when trying to use 4 GPUs). Pre-trained weights
were then used as an initialization for supervised fine-tuning
on the training split, for the same number of epochs (200)
as in the supervised case. PAWS is based on assigning soft
pseudo-labels to unlabeled images based on their distances
in feature space from a support set of labeled examples per
class. The approach minimizes the cross-entropy loss be-
tween pseudo-labels assigned to two transformed versions
of the same image. The support set of labeled examples is
only used for pseudo-label assignment in the pre-training
step. We tested the PAWS approach on both the ROV and
AUV datasets. We tested SuNCEt loss, a semi-supervised
loss that combines the SimCLR contrastive loss with an ad-
ditional term aiming to distinguish labeled examples of dif-
ferent classes, only on the AUV dataset.

3. Results
3.1. Dataset distribution

Fig. 1A,B plot the number of images per class in sorted
order from highest to lowest for the ROV and AUV train
splits respectively. The actual class names (taxonomic as-
signments at various levels) are omitted for data embargo
reasons. The top 50 classes in either dataset were retained
and the rest were clubbed into a collective “unknown” class
with an assigned index of -1 resulting in a total of 51 classes
per dataset. Both datasets, like most datasets collected in the
wild, exhibit a long tail distribution with many instances of
common classes and some rare classes consisting of 2 or 3
images only. Although not shown, the validation and test
sets also exhibit long-tail distributions.

3.2. Detection results

Tab. 1 shows the mAP50 scores of single-class (animal) de-
tection starting from MegaFishDetector weights found on-
line. Training on even a subset of data within the distribu-
tion of either dataset greatly increases performance. This
is not surprising as deep networks struggle with out-of-
distribution data. We use our final model to extract crops
from unlabeled images in either dataset. Fig. 1C,D and
Fig. 1E show examples of predicted bounding boxes on im-
ages in the ROV and AUV dataset test splits respectively.

3.3. Classification results

Once crops of animals are extracted either using our gen-
eralized animal detector in the case of unlabeled splits, or
annotated coordinates in cases of the train, val, and test
splits, they are resized to 224 x 224 and fed into a clas-
sification model to assign to one of the 51 classes. We
compared supervised, supervised iteratively, and self and
semi-supervised classification approaches incorporating ad-
ditional unlabeled data for the two datasets. Tab. 2 and
Tab. 3 present a comprehensive comparison of various clas-
sification approaches, encompassing both supervised and
semi-supervised learning methods applied to the ROV and
AUV datasets respectively.

3.3.1 Supervised only. To ascertain the upper limit of clas-
sification performance for the ROV dataset as a reference,
we conducted an experiment retaining labels for the un-
labeled split. We fine-tuned a supervised Resnet50 start-
ing from Imagenet weights on a combination of the train-
ing split (10% of the dataset) plus the unlabeled split (75%
of the dataset) and obtained a balanced accuracy score of
0.684. For the actual comparison in the limited labeled data
regime, we fine-tuned supervised Resnet50 models on the
ROV and AUV training splits each initialized from Ima-
genet weights. Fig. 2A,B show the per-class recall scores on
the ROV and AUV test splits respectively. The class indices
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are sorted in the same order as Fig. 1A,B, i.e from highest
to lowest number of instances in the training split. It is not
surprising to see that the per-class performance also follows
a long tail, as we know that deep networks perform poorly
given a lower number of training examples. The dotted line
shows the balanced accuracy score in either case, scores of
0.443 and 0.217.

3.3.2 Supervised iteratively. This assessment was exclu-
sively conducted for the ROV dataset. To ensure a fair com-
parison with semi-supervised methodologies utilizing addi-
tional unlabeled data, we leveraged the trained supervised
model (on the 10% training split only) from section 3.3.1 to
generate predictions on images in the unlabeled split. Pre-
dictions were subjected to a thresholding process based on
confidence, with predictions surpassing the threshold con-
sidered pseudo labels. While the optimal threshold selec-
tion typically involves a meticulous precision-recall curve
analysis on the val set, we pragmatically assessed only two
thresholds—0.7 and 0.1—for the sake of expediency. As
shown in Tab. 2, this iterative supervised approach exhibits
a modest enhancement in performance when increasing bal-
anced accuracy score from 0.443 to 0.483 or 0.472 depend-
ing on the threshold. However, it is imperative to acknowl-
edge the inherent risk of perpetuating biases learned dur-
ing the initial supervised stage. Furthermore, any bias as-
sociated with the long-tailed nature of the dataset will be
further emphasized, as only predictions with confidence ex-
ceeding the chosen threshold, usually the head classes, will
contribute to additional pseudo labels.

3.3.3 Self-supervised pre-training: SimCLR. This as-
sessment was exclusively conducted for the ROV dataset.
For self-supervised contrastive pre-training approaches, we
tested SimCLR using the original NT-Xent loss function.
Contrastive pretraining was performed using the unlabeled
split of the ROV dataset followed by supervised fine-tuning
on the ROV training split and evaluation using the ROV
test split. As we can see from Tab. 2 and Fig. 1C, this
approach yielded only a modest improvement on the bal-
anced accuracy score in comparison to the supervised only
approach, improving balanced accuracy score from 0.443 to
0.485 while leading to a decrease in overall accuracy from
64.97 to 56.67 when using a batch size of 256. Increasing
the batch size from 256 to 1024 did not result in significant
gains. Pre-training was done for 100 epochs as opposed to
200 because of the limited improvements going from batch
size 256 to 1024, along with the high financial cost associ-
ated with GPU memory requirements for this method that
requires large batch sizes.

3.3.4 Semi-supervised pre-training: PAWS and SimCLR
with SuNCEt loss. To test semi-supervised contrastive

learning methods, we compared two approaches, SimCLR
using SuNCEt loss, and PAWS on both the ROV and AUV
datasets. These approaches use a combination of unlabeled
data and a subset of labeled data for the pre-training step.
Pre-training was followed by supervised fine-tuning as in
3.3.3. As we can see from Tab. 2 and Tab. 3, perform-
ing semi-supervised contrastive pre-training on the unla-
beled split, followed by supervised fine-tuning on the train-
ing split results in a significantly higher balanced accuracy
score sometimes at a cost of overall accuracy. This is also
evident from the per-class performance of these models in
Fig. 2C,D. We see a much more balanced performance,
higher performance on rare classes plus slightly lower or
the same performance on head classes. In the case of the
ROV dataset, PAWS resulted in a significantly higher bal-
anced accuracy score of 0.587 compared to standard Sim-
CLR and supervised only methods yielding balanced accu-
racy scores of 0.485 and 0.443 respectively. In the case of
the AUV dataset, we observe a similar significant gain in
balanced accuracy score, nearly doubling the balanced ac-
curacy score of supervised only approaches from 0.217 to
0.375 and 0.393 for SimCLR with SuNCEt loss and PAWS
respectively, emphasizing the efficacy of these methods in
handling dataset imbalances. In summary, for both the ROV
and AUV long-tailed datasets, PAWS pre-training followed
by supervised fine-tuning resulted in the highest balanced
accuracy scores sometimes at the cost of overall accuracy
(AUV dataset only and not ROV).

4. Discussion

We demonstrate that in the case of image classification in
underwater datasets consisting of a subset of labeled data
and a large amount of unlabeled data, semi-supervised pre-
training methods such as SimCLR with SuNCEt loss and
PAWS, followed by supervised fine-tuning using the la-
beled data, results in a significantly higher balanced perfor-
mance across classes (Fig. 2C,D and Tab. 2, Tab. 3) when
compared to supervised only baselines. This is especially
apparent in cases of real-world datasets exhibiting a long-
tailed distribution (Fig. 1A,B) as is most often the case with
datasets collected in the wild. We make the case that split-
ting the localization and classification steps allows for train-
ing a robust generalized single-class detector (Fig. 1C-E and
Tab. 1) which also helps address the open-world problem
for localization. This subsequently allows training a suite of
different classifiers depending on the task at hand, either su-
pervised only for the best results on common classes, semi-
supervised for the most balanced performance, classifiers
focusing on few-shot learning for rare classes or classifiers
addressing the open-world problem for classification.
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4.1. Advantages of separating detection and classi-
fication stages

The deliberate separation of the localization step from the
classification step presents several advantages compared to
the conventional integration of these stages in standard ob-
ject detectors, whether single-stage or two-stage. Training
a single-class detector allows for the amalgamation of train-
ing data from diverse datasets by consolidating labels into
a singular ’animal’ class. This approach substantially en-
hances the model’s generalizability and robustness. The
widespread adoption of Megadetector, a generalized ani-
mal detector for camera-trap data on land, underscores the
efficacy of this methodology. Beyond facilitating the inte-
gration of multiple datasets, this approach proves advanta-
geous in the context of open-world detection. In scenar-
ios involving previously unidentified species, a plausible
occurrence in deep ocean exploration, our generalized de-
tection model exhibits a higher likelihood of localizing the
animal, having encountered diverse animal types from dif-
ferent backgrounds. Subsequently, the classification model
can address the open-world scenario for classification, em-
ploying anomaly detection methods. In contrast, standard
multi-class object detectors may entirely miss the animal
due to a lack of resemblance to a limited training set of
animal classes. Unlike self-supervised object detection ap-
proaches, which can be computationally intensive and offer
marginal improvements over standard object detectors [14],
the segregation of localization and classification steps not
only capitalizes on the robustness of a single-class detec-
tor but also enables the exploration of self-supervised and
semi-supervised learning strategies for utilizing unlabeled
data for classification. These approaches are typically less
computationally demanding and have demonstrated promis-
ing results. An additional benefit arising from the use of a
single-class detector is the potential improvement in down-
stream tasks such as tracking, attributed to the absence of
label switches from a multi-class object detector.

4.2. A more robust and balanced performance from
pre-training

The utilization of unlabeled data for pre-training exposes
models to the specific imaging domains they are intended
to be trained on, enabling the acquisition of general features
unique to marine imaging and marine animals. Incorporat-
ing random crop augmentation further facilitates the associ-
ation of disparate segments of animals, even those that may
exhibit gelatinous and structureless characteristics. In con-
trast to learning exclusively with labeled data, as observed
in supervised cases, which compels the model to focus on
features for maximal class distinction, incorporating unla-
beled data is more likely to foster the learning of more
general and robust features. Notably, prior studies have
demonstrated that off-the-shelf semi-supervised models ex-

hibit enhanced robustness to class imbalance compared to
their fully supervised counterparts [17]. These models also
demonstrate improved performance in out-of-distribution
scenarios, cross-task settings, and rare class identification,
and exhibit a balanced feature space equidistant from all
classes and not dominated by the majority class as in super-
vised learning [16]. Our findings, based on two real-world
underwater imaging datasets characterized by long-tail dis-
tributions, align with these observations. Notably, our re-
sults indicate a doubling of balanced accuracy in the case
of the AUV dataset, which, despite the relatively small size
and the blob-like appearance of individual animals due to
their distance from the vehicle, underscores the efficacy of
our approach. Compared to supervised learning which can
perpetuate biases, our approach yields more balanced re-
sults and is particularly beneficial when data are limited.

4.3. Model architectures differ slightly

As detailed in the methods section, it is crucial to note
that the original models employed in the SimCLR and
PAWS studies, as well as the models utilized for our semi-
supervised pre-training, deviate from the standard Resnet50
configuration. Specifically, they feature a Resnet50 ar-
chitecture augmented with an additional prediction head.
While the ideal comparison involves assessing identical ar-
chitectures across both supervised and semi-supervised ap-
proaches, it is improbable that the observed improvement
in balanced accuracy scores can be solely attributed to the
presence of the supplementary feedforward prediction layer
in these models. The exploration of a direct comparison
using identical architectures is an ongoing aspect of our re-
search.

4.4. Semi-supervised pre-training works better than
self-supervised pre-training for imbalanced
datasets

From section 3.3.4, it is clear that semi-supervised pretrain-
ing approaches that use a combination of unlabeled and la-
beled data for pretraining, such as SimCLR with SuNCEt
loss and PAWS, result in significantly higher balanced ac-
curacy scores on the long-tailed distributed test sets for both
the ROV and AUV datasets. These approaches also require
significantly lower compute cost and time in comparison to
self-supervised pretraining approaches like SimCLR. One
can see how providing some supervisory signal by using a
subset of labeled data, can result in faster convergence. We
have shown that the weights converged onto by using the ad-
ditional supervisory signal, result in a greater robustness to
dataset imbalance, leading to significantly higher balanced
accuracy scores after supervised fine-tuning in comparison
to self-supervised pre-training approaches, supervised only
and supervised iteratively on two real-world long-tailed un-
derwater datasets.
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