Towards Learning Image Similarity from General Triplet Labels

Supplementary Material

Dataset Protocol | Number of Image Triplets
train. val. test
THINGS | regular | 1.20M | 299.2K | 23.2K
teacher | 598.4K | 149.6K | 11.6K
student 640B 23B 23B
HSJC regular | 2.96M | 739.1K | 60.0K
teacher | 0.99M | 246.4K | 20.0K
student 4.5T 166B 166B
Yummly | regular | 77.3K | 193K | 14K
teacher | 77.3K 193K | 14K
student | 102.7K | 3.4K 3.4K

Table 5. Dataset split statistics by protocol. Through supervision
from the teachers, the student models access far more triplets than
the directly trained models.

6. Dataset Statistics

Detailed dataset statistics can be found in table 5.

Both the regular and the teacher protocol essentially par-
tition the existing set of labeled triplets, discarding some
of them. The regular protocol has 2x and 3x more image
triplets than the teacher protocol for the THINGS and IH-
SJC datasets respectively, as it creates 2 and 3 image triplets
for each class triplet. The Yummly dataset does not have
class information, so the regular protocol simply uses the
labeled image triplets, exactly like the teacher protocol.

The student protocol makes labeled triplets from all
the groups of three images that are fully in the training,
validation or test subset. Because teacher models provide
an embedding for each image, it is possible to label any
image triplet by comparing the distances between the three
embeddings. In theory, the student protocol creates many
more image triplets than the regular protocol, for example
4.5 trillion vs. 3 million for the training subset of IHSJC. In
practice, batching limits the numbers of triplets formed, but
the difference in order of magnitude remains the same.

7. Existing Triplet based Metric Learning
Methods on the New Datasets

The existing triplet based metric learning methods do batch
sampling and batch mining prior to taking a gradient de-
scent step for a batch. Typically, the methods randomly
sample B/2 different classes and then 2 images per class,
where B is the batch size. They generate O(B?) triplets
by adding to each of the B/2 same-class pairs one of the
B — 2 images of a different class. Finally, the most infor-
mative triplets are chosen according to some criterion and

Algorithm 1 Triplet based methods on standard datasets

Require: NV dataset size, B batch size; cls image classes
for b + 1to & do

compute losses for triplets
do gradient descent
end for

Algorithm 2 Triplet based methods on new datasets

Require: N dataset size, B batch size; labeled_triplets
image triplets (i, j, k) s.t. ¢ and j close and k far
forb«+ 1to % do
sample % image triplets from [abeled_triplets
compute losses for triplets
do gradient descent

end for

gradient descent is performed only based on the losses for
these triplets, see algorithm 1.

The new datasets in the psychology, neuroscience and
human-computer interaction literature are triplet labeled
as opposed to class based, so the scheme described above
does not apply. The direct way to form a batch of B images
is to randomly sample B/3 triplets from the set of labeled
triplets, see algorithm 2. Because of the very low density of
labeled triplets overall (the 1.46M labeled triplets are only
0.14% of the possible triplets for THINGS), practically no
other labeled triplets than the original B/3 can be found
in a batch. O(B) versus O(B?) is a dramatic reduction
in the number of labeled triplets in a batch (the typical B
is over 100), which makes it impossible to mine informa-
tive triplets. The existing triplet based methods collapse to
doing gradient descent on batches labeled with small and
arbitrary sets of triplets.

Another effect of the low density of labeled triplets is that
an epoch of direct training takes a large number of batches.
For THINGS, for example, it takes roughly 14,400 batches
of size 249 to go through the 1.2M labeled triplets in the
training set. By contrast, student training takes 82 batches
of size 249 to go through the 20K images in the training set.
Student training sees each image once but direct training
needs to repeat an image a large number of times to cover all
the labeled triplets it appears in. Had the density of labeled
triplets been close to 100%, O(B?) labeled triplets would

Approach THINGS IHSJC Yummly
FCT[%] FCT([%] FCT[%]
TS+RC [13] 57.87 £0.09 | 68.13 +0.12 | 76.66 &+ 3.76
TS+RTM 57.80 £ 0.09 | 68.03 + 0.06 | 76.23 £ 4.96
TS+RF 58.14 £ 0.09 | 68.00 = 0.12 | 75.46 £ 4.42
TS+RI 57.87 £0.05 | 67.57 £0.18 | 76.18 £4.53
TS+RMS [38] (asin [13]) | 57.82 £ 0.05 | 67.55 £ 0.07 | 76.13 £ 3.18
TS+MTT [42] 57.99 £0.17 | 67.67 £0.06 | 76.94 £+ 3.95
TS+RKD [25] 58.18 £ 0.12 | 68.17 £ 0.09 | 77.50 & 3.37
TS+STMR 58.16 £ 0.05 | 67.96 = 0.19 | 77.11 £ 4.08

Table 6. Results across datasets and losses with a ViTB backbone. The relative order of losses from table 1 is largely preserved.

z

e —

512
teacher embedding size

(a) THINGS (b) IHSIJC

(c) Yummly
Figure 7. The quality of the student model (trained with RKD loss)
with respect to the teacher embedding size. Larger sizes produce
slight improvements for IHSJC and Yummly and slight regression

for THINGS. The change is statistically significant only for IH-
SJC.

have been formed for any set of B images (many triplets
would have had images in common). However, since the
density is very low, e.g. 0.1%, batch formation must sample
from the set of labeled triplets to produce O(B) triplets in
a batch of size B, as few of these triplets have images in
common.

8. Dependence on Teacher Embedding Size

We show the dependence of the student model quality on
the size of the teacher embedding in figure 7. The loss
used to train the student was RKD. Larger embedding sizes
are detrimental for THINGS, but beneficial for IHSJC and
Yummly. We further observe that for IHJSC the gains are
small, ~0.3%, while for THINGS and Yummly they are not
statistically significant (Welch’s t-test yields p > 0.4 and
p > 0.7 respectively). The results of our approach are not

80

70

60

50 B BHinception-P
_ B ENMinception-TS
é 40 B Reshetso-P
3]
b Reshets0-TS

30

W viT-F

20 W viT-TS

10

0

THINGS IHSJC YUMMLY

Figure 8. Importance of the backbone. Compared to the pretrained
model (-P, dark red, green and blue bars), our approach brings con-
sistent gains. As expected, results with our approach (-TS, light
red, green and blue bars) improve for more powerful backbones.

sensitive to the number of teachers or the size of the teacher
embedding.

9. Dependence on Backbone

As transformers are becoming the dominant computer vi-
sion model architecture, we also experimented with a ViT-
base backbone [17]. The results in table 6 show that the
relative order of losses from the main results in table 1 stays
roughly the same.

Because the new datasets have not been used for met-
ric learning before, it is important to check that the meth-
ods studied are better than just using a pretrained backbone
and that better backbones lead to better results. In figure 8,
we show the performance of three pretrained models [9] [7]
[17] vs. the same models finetuned with our approach with
the RKD loss. The gains are consistent across datasets and
some are very large, e.g. 10.5% on THINGS with ResNet-
50. Also, our approach does better when a stronger back-
bone is used. There are signs of saturation on IHSJC, but
note that for this dataset the student is fairly close to the
teachers’ metrics, 66% vs 71%.

10. Analysis of Embedding Spaces

To further understand our approach from a qualitative point
of view, we analyzed how it places images in the embed-
ding space. In figures 9, 11 and 13, we show the re-
sults of TSNE on embeddings of the test images of the
three datasets. The best directly trained loss (D+InfoNCE)
and the two best losses in our teacher-student approach
(TS+RKD and TS+STMR) are compared. We also com-
pared against teachers in figures 10, 12, and 14, which show
the results of TSNE on the validation sets. In each case,
the TSNE parameters were set to the same values to en-
sure meaningful comparison. We observe that the directly
trained models tend to produce fewer and denser clusters in
the embedding space, and thus to lose detail compared with
the teacher and student models in our approach.

2
E8
2
<
3
i
&
(a) D+InfoNCE
£
o
L4 E
g = e
] @ »
:,7
=
=
L
=
) B
(b) TS+RKD student
u
2 @
e
= B
[&
m =1
= D
(c) TS+STMR student

Figure 9. Embedding spaces for the Yummly test subset (20 images). The directly trained model creates two clusters while the student
models spread images apart more. TSNE parameters: perplexity 5, learning rate 1.

i, g

(a) D+InfoNCE

W
w A

5w

-

-

(b) TS teacher

*

[~y 1

- 5
% Sler a2 =
Y g @B ‘

(c) TS+RKD student

Figure 10. Embedding spaces for the Yummly training/validation subset (80 images). The directly trained model creates two clusters,
while the teacher and student models spread images apart more. TSNE parameters: perplexity 10, learning rate 1.

(a) D+InfoNCE

(b) TS+RKD student

(c) TS+STMR student

Figure 11. Embedding spaces for the THINGS test subset (5,200 images). The directly trained model creates fewer and denser clusters
than the student models. TSNE parameters: perplexity 20, learning rate 1.

(a) D+InfoNCE

(b) TS teacher

(c) TS+RKD student

Figure 12. Embedding spaces for the THINGS training/validation subset (1,483 images, class representatives). The directly trained model
creates fewer and denser clusters than the teacher and student models. TSNE parameters: perplexity 20, learning rate 1.

(a) D+InfoNCE

(b) TS+RKD student

(c) TS+STMR student

Figure 13. Embedding spaces for the IHSJC test subset (10,000 images). The directly trained model creates denser clusters than the student
models. TSNE parameters: perplexity 25, learning rate 1.

(a) D+InfoNCE

(b) TS teacher

(c) TS+RKD student

Figure 14. Embedding spaces for the IHSJC training/validation subset (800 images, class representatives). The directly trained model
creates fewer clusters than the teacher and student models. TSNE parameters: perplexity 20, learning rate 1.

	. Dataset Statistics
	. Existing Triplet based Metric Learning Methods on the New Datasets
	. Dependence on Teacher Embedding Size
	. Dependence on Backbone
	. Analysis of Embedding Spaces

