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Figure 1. Two adapters are added after the multi-head self-attention
layer (MSA) and the feedforward network (MLP). LN denotes layer
normalization for each block of a standard vision transformer.

A. Implementation of adapter

To increase training efficiency, we add adapters to the vision
transformer instead of fine-tuning all parameters. We adopt
the architecture in AdaptFormer [3] and define our adapter
as:

adapter(z) = s ·Wup · GELU(Wdown · LN(z)), (1)

where LN is a layer normalization layer [1], Wdown ∈
RDdown×D is the weights of down projection and Wup ∈
RD×Ddown is the weights of up projection, GELU is the non-
linear activation function [6], and s ∈ R is a learnable scal-
ing factor. Ddown is set as 384.

We added two adapters for each block of the vision trans-
former, one after multi-head self-attention (MSA) layer and
one after feedforward network (MLP). The output of l-th
block of the vision transformer is computed as:

Ẑ(l) = MSA(LN(Z(l−1))),

ˆ̂
Z(l) = adapter(Ẑ(l)) + Ẑ(l) + Z(l−1),

Z̃(l) = MLP(LN(
ˆ̂
Z(l))),

Z(l) = adapter(Z̃(l)) + Z̃(l) +
ˆ̂
Z(l). (2)

Table 1. Performance (mean average precision) of retrieval by
family species on CUB-200-2011.

CUB-200-2011

Methods 16 32 64

ITQ [5] 20.00 23.46 27.09

HashNet [2] 24.40 35.62 38.13
DTSH [11] 36.96 37.81 39.49
GreedyHash [10] 44.46 55.62 60.98
CSQ [13] 31.62 34.47 35.25
DPN [4] 34.09 36.28 36.84
OrthoHash [7] 34.16 36.95 37.61

A2-Net [12] 45.62 50.93 52.95
SEMICON [9] 43.10 53.24 56.80

ConceptHash (Ours) 60.54 63.44 67.20

See Fig. 1 for the detail of the computational graph. The
way we insert the adapters is also similar to [8].

B. Retrieval on family species

In this section, we evaluate the methods by replacing the
fine-grained labels with family labels in order to assess the
semantic ability of the hash codes. The CUB-200-2011
dataset is chosen as the benchmark. Table 1 presents two key
observations: (i) Our ConceptHash outperforms previous
methods by a significant margin, highlighting the effective-
ness of our approach. This result underscores the superior-
ity of our methods in capturing the semantic information
encoded within the hash codes. (ii) Random-center-based
hashing methods like CSQ [13] perform worse than older
hashing methods such as DTSH [11], even though they out-
perform them in fine-grained retrieval (Table 1 in the main
paper). A likely explanation is that the training objective of
random-center-based hashing primarily focuses on learning
to generate the fixed target hash codes, thereby ignoring the
semantic relationships (such as family information) between
the fine-grained classes.
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