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Abstract

Synthetic data is gaining increasing relevance for train-
ing machine learning models. This is mainly motivated due
to several factors such as the lack of real data and intra-
class variability, time and errors produced in manual la-
beling, and in some cases privacy concerns, among others.
This paper presents an overview of the 2nd edition of the
Face Recognition Challenge in the Era of Synthetic Data
(FRCSyn) organized at CVPR 2024. FRCSyn aims to in-
vestigate the use of synthetic data in face recognition to ad-
dress current technological limitations, including data pri-
vacy concerns, demographic biases, generalization to novel
scenarios, and performance constraints in challenging sit-
uations such as aging, pose variations, and occlusions. Un-
like the 1st edition, in which synthetic data from DCFace
and GANDiffFace methods was only allowed to train face

recognition systems, in this 2nd edition we propose new sub-
tasks that allow participants to explore novel face genera-
tive methods. The outcomes of the 2nd FRCSyn Challenge,
along with the proposed experimental protocol and bench-
marking contribute significantly to the application of syn-
thetic data to face recognition.

1. Introduction
Face biometrics is a very popular area in the fields of Com-
puter Vision and Pattern Recognition, finding applications
in diverse domains such as person recognition [13, 47],
healthcare [4, 17], or e-learning [10], among others. In
the last years, with the rapid evolution of deep learning,
we have witnessed a considerable performance improve-
ment in areas such as face recognition (FR) [12, 23], out-
performing the state-of-the-art on established benchmarks.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1. Examples of synthetic identities and variations for different demographic groups using GANDiffFace [27].

However, FR technology has still room for improvement in
several research directions, such as explainability [9, 11],
demographic bias [28, 42], privacy [29, 32], and robustness
against challenging conditions [23], e.g., aging, pose varia-
tions, illumination, occlusions, etc.

Synthetic data has recently appeared as a good solution
to mitigate some of these drawbacks, allowing the gener-
ation of i) a huge number of facial images from different
non-existent identities, and ii) variability in terms of de-
mographic attributes and scenario conditions. Several ap-
proaches have been proposed in the last couple of years
for the synthesis of face images, considering state-of-the-art
deep learning methods such as Generative Adversarial Net-
works (GANs) [36, 51], Diffusion models [6, 20, 24], the
combination of GAN and Diffusion models [27], or alter-
native methods [3, 49]. Examples of synthetic face images
generated using GANDiffFace are shown in Figure 1.

However, beyond the generation of novel and realistic
synthetic faces, a critical aspect lies in the possible applica-
tion and benefits of synthetic data to better train FR tech-
nology. Recent preliminary studies in the literature have
shown the existence of a performance gap between FR sys-
tems trained solely on synthetic data and those trained on
real data [24, 36]. Nevertheless, the results achieved in
the 1st edition of the Face Recognition Challenge in the
Era of Synthetic Data (FRCSyn) demonstrate the impor-
tance of using synthetic data by itself or in combination
with real data to mitigate challenges in FR such as demo-
graphic bias [30, 31]. It is important to highlight that in the
1st edition of the FRCSyn Challenge, only synthetic data
from DCFace [24] and GANDiffFace [27] methods was al-
lowed to train FR systems. In addition to novel generative
methods, another possible improvement of the FR technol-
ogy could be related to the specific design and training pro-
cess, taking into account the domain gap between real and
synthetic data in some scenarios. For example, we observed
in the 1st edition of the FRCSyn Challenge that the ma-
jority of the teams considered the same deep learning ar-
chitectures (e.g., ResNet-100 [18]) and loss functions (e.g.,

AdaFace [23]), popularly considered in FR systems trained
with real data.

To promote the proposal of novel face generative meth-
ods and the creation of face synthetic databases, as well
as specific approaches to better train FR systems with syn-
thetic data, we have organized the 2nd edition of the FRC-
Syn Challenge as part of CVPR 20241. In this 2nd edition,
we introduce new sub-tasks enabling participants to train
FR systems utilizing synthetic data obtained with the gen-
erative frameworks of their choice, offering more freedom
compared to the 1st edition [30, 31]. In addition, we also
consider new sub-tasks featured with different experimen-
tal settings, to investigate how FR systems can be trained
in both constrained and unconstrained scenarios concerning
the amount of synthetic training data. The FRCSyn Chal-
lenge aims to answer the following research questions:
1. What are the limits of FR technology trained only with

synthetic data?
2. Can the use of synthetic data be beneficial to reduce the

current limitations in FR technology?
These research questions have gained significant impor-
tance, particularly after the discontinuation of popular real
FR databases due to privacy concerns2 and the introduction
of new regulatory laws3.

The remainder of the paper is organized as follows. Sec-
tion 2 focuses on the databases considered in this 2nd edi-
tion. Section 3 explains the experimental setup of the chal-
lenge, including the different tasks and sub-tasks, the exper-
imental protocol, metrics, and restrictions. In Section 4, we
describe the approaches proposed by the top-6 participating
teams. Section 5 presents the best results achieved in the
different tasks and sub-tasks of the 2nd edition, emphasiz-
ing the key results of the challenge. Finally, in Section 6,
we provide some conclusions, highlighting potential future
research directions in the field.

1https://frcsyn.github.io/CVPR2024.html
2https://exposing.ai/about/news/ (March, 2024)
3https://artificialintelligenceact.eu (March, 2024)
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2. FRCSyn Challenge: Databases

2.1. Synthetic Databases

One of the main novelties of this 2nd edition of the FRCSyn
Challenge is the absence of restrictions on the generative
methods allowed to create synthetic data, unlike the 1st edi-
tion in which only synthetic data created using DCFace [24]
and GANDiffFace [27] methods was allowed. As a refer-
ence, after the registration in the challenge, we provided
all the participants with a list of possible state-of-the-art
generative frameworks, including DCFace [24], GANDiff-
Face [27], DigiFace-1M [3], IDiff-Face [6], ID3PM [20],
SFace [51], SYNFace [36], and ITI-GEN [49]. In addition,
we also motivate participants to propose novel face genera-
tive methods. In the 2nd edition of the FRCSyn Challenge,
synthetic data is exclusively utilized in the training stage of
FR technology, replicating realistic operational scenarios.

2.2. Real Databases

For the training of the FR systems (depending on the
sub-task, please see Section 3.1 for more details), partici-
pants are allowed to use only CASIA-WebFace [48]. This
database contains 494, 414 face images of 10, 575 real iden-
tities collected from the web.

For the final evaluation of the proposed FR systems, we
use the same four real databases of the 1st edition of the
FRCSyn Challenge [30, 31]: i) BUPT-BalancedFace [46],
designed to address performance disparities across differ-
ent ethnic groups; ii) AgeDB [33], including facial images
of the same subjects at different ages; iii) CFP-FP [37],
presenting facial images from subjects with great changes
in pose, including both frontal and profile images; and iv)
ROF [15], consisting of occluded faces with both upper and
lower face occlusions.

3. FRCSyn Challenge: Setup

3.1. Tasks

Similar to the 1st edition [30, 31], the challenge has been
hosted on Codalab4. In this 2nd edition we also explore the
application of synthetic data into the training of FR systems,
with a specific focus on addressing two critical aspects in
current FR technology: i) mitigating demographic bias, and
ii) enhancing overall performance under challenging con-
ditions that include variations in age and pose, the pres-
ence of occlusions, and diverse demographic groups. To
investigate these two areas, we propose two distinct tasks,
each comprising three sub-tasks considering different types
(real/synthetic) and amounts of data for training the FR sys-
tems. Consequently, the 2nd edition of the FRCSyn Chal-
lenge comprises 6 different sub-tasks. In Table 1, we sum-

4https://codalab.lisn.upsaclay.fr/competitions/16970

Task 1: synthetic data for demographic bias mitigation
Baseline: training with only CASIA-WebFace [48].
Metrics: accuracy (for each demographic group).
Ranking: average vs SD accuracy, see Section 3.3 for more details.

Sub-Task 1.1: [constrained] training exclusively with synthetic data
Train: maximum 500K face images (e.g., 10K identities and 50 images per identity).
Eval: BUPT-BalancedFace [46].

Sub-Task 1.2: [unconstrained] training exclusively with synthetic data
Train: no restrictions in terms of the number of face images.
Eval: BUPT-BalancedFace.

Sub-Task 1.3: [constrained] training with real and synthetic data
Train: CASIA-WebFace, and maximum 500K face synthetic images.
Eval: BUPT-BalancedFace.

Task 2: synthetic data for overall performance improvement
Baseline: training with only CASIA-WebFace.
Metrics: accuracy (for each evaluation database).
Ranking: average accuracy, see Section 3.3 for more details.

Sub-Task 2.1: [constrained] training with only synthetic data
Train: maximum 500K face images.
Eval: BUPT-BalancedFace, AgeDB [33], CFP-FP [37], and ROF [15].

Sub-Task 2.2: [unconstrained] training with only synthetic data
Train: no restrictions in terms of the number of face images.
Eval: BUPT-BalancedFace, AgeDB, CFP-FP, and ROF.

Sub-Task 2.3: [constrained] training with real and synthetic data
Train: CASIA-WebFace, and maximum 500K face synthetic images.
Eval: BUPT-BalancedFace, AgeDB, CFP-FP, and ROF.

Table 1. Tasks and sub-tasks for the 2nd FRCSyn Challenge and
their respective metrics and databases. SD = Standard Deviation.

marize the key aspects of the experimental protocol, met-
rics, and restrictions for each sub-task.

Task 1: The first proposed task focuses on the use of
synthetic data to mitigate demographic biases in FR sys-
tems. To assess the effectiveness of the proposed systems,
we generate lists of mated and non-mated comparisons us-
ing subjects from the BUPT-BalancedFace database [46].
We take into account eight demographic groups obtained
from the combination of four ethnic groups (White, Black,
Asian, and Indian) and two genders (Male and Female), and
keep these groups balanced in the number of comparisons.
In the case of non-mated comparisons, we only consider
pairs of subjects within the same demographic group, as
these hold greater relevance than non-mated comparisons
involving subjects from different demographic groups.

Task 2: The second proposed task focuses on utiliz-
ing synthetic data to enhance the overall performance of
FR systems under challenging conditions. To assess the
effectiveness of the proposed systems, we utilize lists of
mated and non-mated comparisons selected from subjects
from the different evaluation databases, each one designed
to address specific challenges in FR. Specifically, BUPT-
BalancedFace is used to consider diverse demographic
groups, whereas AgeDB, CFP-FP, and ROF to assess age,
pose, and occlusion, respectively.

3.2. Experimental protocol

Training: The 6 sub-tasks introduced in the 2nd edition of
the FRCSyn Challenge are mutually independent. This im-
plies that participants have the flexibility to participate in
any number of sub-tasks based on their preferences. For
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each selected sub-task, participants are required to develop
and train the same FR system twice: i) using the authorized
real database exclusively, i.e. CASIA-WebFace [48], and
ii) following the specific requirements of the chosen sub-
task, as summarized in Table 1. According to this protocol,
participants must provide both the baseline system and the
proposed system for the specific sub-task. The baseline sys-
tem plays a critical role in evaluating the impact of synthetic
data on training and serves as a reference point for compar-
ing against the conventional practice of training solely with
real databases. To maintain consistency, the baseline FR
system, trained exclusively with real data, and the proposed
FR system, trained according to the specifications of the se-
lected sub-task, must have the same architecture.

Evaluation: In each sub-task, participants received the
comparison files comprising both mated and non-mated
comparisons, which are used to evaluate the performance
of their proposed FR systems. Task 1 involves a single
comparison file containing balanced comparisons of differ-
ent demographic groups of the BUPT [46] database, while
Task 2 comprises four comparison files, each corresponding
to each of the specific real-world databases considered (i.e.,
BUPT, AgeDB [33], CFP-FP [37], and ROF [15]). During
the evaluation of each sub-task, participants are required to
submit via Codalab three files per database: i) the scores of
the baseline system, ii) the scores of the proposed system,
and iii) the decision threshold for each FR system (i.e., base-
line and proposed). The submitted scores must fall within
the range of [0, 1], with lower scores indicating non-mated
comparisons, and vice versa.

3.3. Evaluation Metrics

We evaluate FR systems using a protocol based on lists of
mated and non-mated comparisons for each sub-task and
database. From the scores and thresholds provided by par-
ticipants, we calculate the binary decision and the verifica-
tion accuracy. Additionally, we calculate the gap to real
(GAP) [24] as follows: GAP = (REAL − SYN) /SYN,
with REAL representing the verification accuracy of the
baseline system and SYN the verification accuracy of the
proposed system, trained with synthetic (or real + synthetic)
data. Other metrics such as False Non-Match Rate (FNMR)
at 1% False Match Rate (FMR), which are very popular for
the analysis of FR systems in real-world applications, can
also be computed from the scores provided by participants.
Due to the lack of space, comprehensive evaluations of the
proposed systems will be conducted in subsequent studies,
including FNMRs and metrics for each demographic group
and database used for evaluation. Next, we explain how
participants are ranked in the different tasks.

Task 1: To rank participants and determine the win-
ners of Sub-Tasks 1.1, 1.2, and 1.3, we closely examine
the trade-off between the average (AVG) and standard de-

viation (SD) of the verification accuracy across the eight
demographic groups defined in Section 3.1. We define the
trade-off metric (TO) as follows: TO = AVG − SD. This
metric corresponds to plotting the average accuracy on the
x-axis and the standard deviation on the y-axis in 2D space.
We draw multiple 45-degree parallel lines to find the win-
ning team whose performance falls to the far right side of
these lines. With this proposed metric, we reward FR sys-
tems that achieve good levels of performance and fairness
simultaneously, unlike common benchmarks based only on
recognition performance. The standard deviation of verifi-
cation accuracy across demographic groups is a common
metric for assessing bias and should be reported by any
work addressing demographic bias mitigation.

Task 2: To rank participants and determine the winners
of Sub-Tasks 2.1, 2.2, and 2.3, we consider the average ver-
ification accuracy across the four databases used for evalu-
ation, described in Section 3.1. This approach allows us to
evaluate four challenging aspects of FR simultaneously: i)
diverse demographic groups, ii) pose variations, iii) aging,
and iv) presence of occlusions providing a comprehensive
evaluation of FR systems in real operational scenarios.

3.4. Restrictions

Regarding the FR system, participants have the freedom
to choose any architecture for each sub-task, provided that
the system’s number of Floating Point Operations Per Sec-
ond (FLOPs) does not exceed 50 GFLOPs. This threshold
has been established to facilitate the exploration of innova-
tive architectures and encourage the use of diverse models
while preventing the dominance of excessively large mod-
els. Participants are also free to utilize their preferred train-
ing modality, with the requirement that only the specified
databases are used for training. This means that no addi-
tional databases can be employed during the training phase,
such as to adapt the verification thresholds. Participants are
allowed to use non-face databases for pre-training purposes
and employ traditional data augmentation techniques using
the authorized training databases. Regarding the synthetic
data used to train the FR system in each sub-task, we allow
participants to use any existing/novel database and face gen-
erative framework, regardless of how the model is trained.

To maintain the integrity of the evaluation process, the
organizers reserve the right to disqualify participants if
anomalous results are detected or if participants fail to ad-
here to the challenge’s rules.

4. FRCSyn Challenge: Systems Description
The 2nd edition of the FRCSyn Challenge received signif-
icant interest, with 78 international teams correctly regis-
tered, comprising research groups from both industry and
academia. These teams work in various domains, includ-
ing FR, generative AI, and other aspects of computer vi-
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Team Affiliations Country Sub-Tasks
ADMIS 4, 5 China all
OPDAI 6 China all
ID R&D 7 USA all
K-IBS-DS 8, 9 South Korea all
CTAI 10 China all
Idiap-SynthDistill 11, 12, 13 Switzerland 1.2 - 2.2
INESC-IGD 14, 15, 16 Portugal and Germany all
UNICA-IGD-LSI 16, 17, 18 Italy, Germany, Slovenia all
SRCN AIVL 19, 20, 21, 22 China 1.1
CBSR-Samsung 19, 21, 22 China 1.3 - 2.3
BOVIFOCR-UFPR 23, 24, 25 Brazil 1.2 - 2.1

Table 2. Description of the teams that ranked among the top-6 in at
least one sub-task, ordered by the average rank in all the sub-tasks.
The numbers reported in the column ‘affiliations’ refer to the ones
provided in the title page.

sion, such as demographic fairness and domain adaptation.
Finally, 23 teams submitted their scores, receiving all sub-
tasks great attention. The submitting teams are geographi-
cally distributed, with fourteen teams from Asia, six teams
from Europe, and three teams from America. Table 2 pro-
vides a general overview of the teams that ranked among
the top-6 in at least one sub-task, including the sub-tasks
in which they participated. Next, we describe briefly the
approaches proposed for each team.

ADMIS (All sub-tasks): They used an IDiff-Face-
based [6] Latent Diffusion Model (LDM) to synthe-
size face images. Specifically, they trained an identity-
conditioned LDM using ID embeddings extracted from
CASIA-WebFace [48] with a pre-trained ElasticFace [5]
IResNet-101 [14] model. As the LDM takes the ID em-
beddings as context, they employed an unconditional De-
noising Diffusion Probabilistic Model (DDPM) trained on
the FFHQ database [21] as a context generator. This pro-
duced 400K images, from which they extracted approxi-
mately 30K unique ID embeddings with a 0.3 similarity
threshold using the pre-trained ElasticFace model, creating
a context database. Furthermore, they accelerated the sam-
pling process of the LDM using a DDIM [41]. For the train-
ing of the FR model, they generated 49 images for each
context. They adopted the ID oversampling strategy from
DCFace [24] and performed it five times for each ID to en-
hance consistency. As a result, 10K contexts were utilized
for Sub-Tasks 1.1 and 2.1, while 30K for Sub-Tasks 1.2 and
2.2. For Sub-Tasks 1.3 and 2.3, they expanded Sub-Tasks
1.1 and 2.1 with the CASIA-WebFace database. They ap-
plied the ArcFace [12] loss and random cropping augmenta-
tion during training. Both the baseline and proposed models
used IResNet-101 architectures [14].
Code: https://github.com/zzzweakman/CVPR24 FRCSyn ADMIS

OPDAI (All sub-tasks): They initially used the data pro-
vided by DCFace [24], generating then 10 more face images

for each ID with large pose variations and occlusions using
Photomaker [25]. They randomly replaced these images in
the original DCFace data to ensure that the total number of
samples meets the requirement of 500K. During the Pho-
tomaker inference, they adopted a batch size of 1 and used
random prompts including age, pose, and image quality to
ensure the diversity of the generated samples. For Sub-
Tasks 1.2 and 2.2, they combined this data with the 1.2M
version of DCFace, while for Sub-Tasks 1.3 and 2.3, it was
merged with CASIA-WebFace [48]. For Sub-Tasks 1.2, 1.3,
2.2, and 2.3 they did not merge nor denoise samples from
different databases, following the Partial FC approach [1].
Also, they obtained the loss of different databases in inde-
pendent AdaFace [23] heads, calculating the final loss as the
average of the multiple heads. Both baseline and proposed
models are based on IResNet-100 [14] architectures, with
horizontal flipping.
Code: https://github.com/mightycatty/frcsyn cvpr2024.git

ID R&D (All sub-tasks): To generate the synthetic data,
they used two models trained on WebFace42M [53], one
based on Hourglass Diffusion Transformers [8] and the
other on StyleNAT [43], enhanced with a FR model [40].
They used classifier weights of the trained Prototype Mem-
ory [40] to get 50K identity vectors, of which 20K were
randomly selected and 30K were uniformly sampled from
the 1K clusters obtained using k-means, to get demographic
diversity. For each identity, they generated 5 images us-
ing each of the two generative models. This data was used
to train IResNet-200 [14] with UniFace [52] loss for 28
epochs. One network was trained with color, geometric
augmentations, and FaceMix-B [16], and the other network
used only random horizontal flipping. These two networks
were combined in an “ensemble”, where the first one re-
ceived the original image, and the second one a mirrored
copy. They used the same model for Sub-Tasks 1.1, 1.2, 2.1
and 2.2. For Sub-Tasks 1.3 and 2.3, they combined the syn-
thetic data and CASIA-WebFace, training two models, one
on the mixed data, and the other on the CASIA-WebFace.

K-IBS-DS (All sub-tasks): Inspired by Slacked-
Face [26], they made two modifications to enhance the
AdaFace [23] FR classifier. First, they made a more
reliable weight initialization for uniformity across identity
prototypes in the unit sphere and replaced the L2-norm
with the face recognizability index from [26]. Regarding
the synthetic data, they used DCFace [24] with 500K and
1.2M face images (depending on the sub-task). The train-
ing stage was in line with [24] and [3], including optimizer,
learning rate, etc. For Sub-Tasks 1.3 and 2.3, the first 10K
subjects of the CASIA-WebFace [48] were assigned for
training, and the remaining ones for performance validation
using random pairs with challenging conditions (identified
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based on the poorest L2-norm values [27]). The final score
is obtained by aggregating the comparison scores of ResNet
with Squeeze-and-Excitation (SE) blocks [19] models of
50, 100, and 152 layers, along with the horizontally flipped
instances through score fusion.
Code: https://github.com/kalebmes/cvpr frcsyn

CTAI (All sub-tasks): By analyzing popular synthetic
data, they found that intra-class and inter-class noise was
widely present. Data cleaning can effectively remove the
bad examples of synthetic data and retain important images
from a large amount of synthetic data. In order to select
the optimal synthetic data, they first trained an IResNet-
100 [14] model with Squeeze-and-Excitation (SE) [19]
blocks using CASIA-WebFace [48] to extract features of
synthetic images from DCFace [24], GANDiffFace [27],
and DigiFace [3]. Subsequently, they used DBSCAN clus-
tering to segregate intra-class noise and removed IDs with a
class center feature cosine similarity greater than 0.5. Fi-
nally, they used the cleaned synthetic data merged with
CASIA-WebFace to finetune the IResNet-100 for a second
data refinement. From the final refined synthetic dataset,
they sampled 500K face images while retaining as many
IDs as possible to build their synthetic training set. Regard-
ing the FR model, in particular Sub-Task 2.3 in which they
achieved their highest position among all sub-tasks, they
trained IResNet-100 with AdaFace [23] loss (A1) and Cos-
Face [44] loss (A2) with mask and occlusion augmentation
on CASIA-WebFace and the refined synthetic data. They
used an ensemble of A1, A2, and a model trained with only
synthetic data. Furthermore, data augmentation was em-
ployed to enhance all features.
Code: https://github.com/liuhao-lh/FRCSyn-Challenge

Idiap-SynthDistill (Sub-Tasks 1.2 and 2.2): The pro-
posed method was based on SynthDistill [38], which is an
end-to-end approach, generating synthetic images and train-
ing the FR model in the same training loop. Instead of using
the pre-trained model in a separate step, they directly used
it in the training loop for supervision, while a new student
FR model was trained fully using synthetic data generated
from a StyleGAN model. For generating synthetic images,
they trained StyleGAN2 [22] with the CASIA-WebFace
database [48] and then dynamically generated synthetic im-
ages during training based on the training loss. For the
dynamic image generation, they used the training loss to
find the most difficult synthetic image in each batch, and
then they generated a new batch of synthetic images by
re-sampling the most difficult samples. Regarding the FR
model, they used a model with the IResNet-101 [14] archi-
tecture and trained it with synthetic data using SynthDis-
till. They used the Adam optimizer with an initial learn-
ing rate of 0.001 and trained their student model with the

same loss function as in [38]. For thresholding, a subset
of DCFace [24] was used to determine the optimal thresh-
old for maximizing verification accuracy, using a 10-fold
cross-validation approach based on a random selection of
identities and comparison pairs.
Code: https://gitlab.idiap.ch/bob/bob.paper.ijcb2023 synthdistill

INESC-IGD (All sub-tasks): In all sub-tasks they
trained a ResNet-100 with ElasticCosFac-Plus loss [5] us-
ing the settings presented in [5]. For the training dataset,
DCFace [24], IDiff-Face Uniform, and IDiff-Face Two-
stage [6] datasets were merged and their images were la-
beled with ethnicity labels using a similar approach to [35].
For Sub-Tasks 1.1 and 2.1, they created a synthetic train-
ing dataset containing 500K face images by sampling 7K
balanced identities, in terms of ethnicity labels. For Sub-
Tasks 1.2 and 2.2, they created a synthetic training dataset
containing 2.1M face images by sampling 50K identities
from the training datasets. For Sub-Tasks 1.3 and 2.3, two
instances of ResNet-100 were trained on CASIA-WebFace
and a subset of synthetic datasets (400K images of 9K
identities), respectively. The synthetic datasets were sam-
pled from DCFace and IDiff-Face. During the testing phase
of Sub-Tasks 1.3 and 2.3, feature embeddings were obtained
from trained models and the weighted sum of 0.5 score-
level fusion was utilized. During the FR training of all sub-
tasks, the training datasets were augmented using the Ran-
dAug utilized in IDiff-Face and occluded augmentation [34]
with probabilities of 0.4.

UNICA-IGD-LSI (All sub-tasks): They used the DC-
Face [24] synthetic dataset as it led to remarkable perfor-
mance gains under well-known evaluation benchmarks for
face verification, while combined with real data [2]. They
trained a ResNet-100 [18] network using CosFace loss [44]
with a margin penalty of 0.35 and a scale term of 64. The
similarity mean difference between real-only and synthetic-
only samples was scaled and added to the loss value. They
trained the model for 40 epochs with a batch size of 512
and an initial learning rate of 0.1, which was divided by 10
after 10, 22, 30, and 40 epochs. During the training phase,
the synthetic samples were augmented using RandAugment
with 4 operations and a magnitude of 16, following [2, 7].
For Sub-Tasks 1.3 and 2.3, the chosen synthetic dataset was
combined with CASIA-Webface [48], obtaining a total of
1M images from 20, 572 identities.
Code: https://github.com/atzoriandrea/FRCSyn2

SRCN AIVL (Sub-Task 1.1): They selected 400K sam-
ples from the DCFace [24] database and labeled the ethnic-
ity of each subject, as they considered that the racial distri-
bution gap may lead to bad performance in testing. Based
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on this insight, they trained IDiff-Face [6] with CASIA-
WebFace [48] database generating 100K synthetic face im-
ages of specific races. Regarding the FR system, they used
two custom ResNet-101 [18] trained with AdaFace loss [23]
function. The models were trained for 60 epochs with
an initial learning rate of 0.1, which was adjusted at pre-
defined milestones. Their training data underwent further
preprocessing, including padding crop augmentation, low-
resolution augmentation, photometric augmentation, ran-
dom grayscale, and normalization. For the inference, data
preprocessing involved an MTCNN [50] and resizing all
data. After cropping and alignment, they fed the image
and the flipped image into the two models. After obtaining
the two feature embeddings, they combined them and per-
formed the similarity calculation with these embeddings.
Code: https://github.com/Value-Jack/2nd-Edition-FRCSyn

CBSR-Samsung (Sub-Tasks 1.3 and 2.3): They first
trained a FR model using CASIA-WebFace [48]. Then,
they used it to de-overlap DCFace [24] from CASIA, as
DCFace was trained using that real database. For the syn-
thetic dataset, they compared the performance of models
trained with three synthetic datasets, including GANDiff-
Face [27], DCFace, and IDiffFace [6], and finally selected
DCFace as the only synthetic training set. They created a
validation dataset including three subsets for three differ-
ent testing scenarios: i) random sample pairs from DCFace;
ii) randomly positioned vertical bar masks to the images to
simulate the self-occlusion due to pose; and iii) add a mask
and sunglasses to images by detecting the landmarks [45].
All validation subsets consist of 6K positive pairs and 6K
negative pairs. Finally, they concatenated these subsets as
the validation set. Subsequently, they conducted an intra-
class clustering for all datasets using DBSCAN (0.3 thresh-
old) and removed the samples that were separated from the
class center. They merged the refined datasets and trained
IResNet-100 [14] with AdaFace loss [23]. In addition, they
adopted two augmentation strategies, i.e., photometric aug-
mentation and rescaling. After that, they trained two FR
models using occlusion augmentation with 10% and 30%
probability, respectively. Finally, they submitted the aver-
age similarity score of the two models.

BOVIFOCR-UFPR (Sub-Tasks 1.2 and 2.1): They
chose DCFace [24] as the synthetic dataset and ResNet-
100 [18] as the backbone, trained with the ArcFace [12] loss
function. The images used for training were augmented us-
ing a Random Flip with a probability of 0.5. They also ap-
plied random erasing and RandAugment as additional aug-
mentations. The model was trained using the Insightface
library for 20 epochs within a batch size of 128, running for
approximately 78K iterations.
Code: https://github.com/PedroBVidal/insightface

Sub-Task 1.1 (Bias Mitigation): Synthetic Data (Constrained)
Pos. Team TO [%] AVG [%] SD [%] GAP [%]

1 ID R&D 96.73 97.55 0.82 -5.31
2 ADMIS 94.30 95.10 0.80 1.47
3 SRCN AIVL 94.06 95.12 1.07 -0.54
4 OPDAI 93.75 94.92 1.17 1.02
5 CTAI 93.21 94.74 1.53 -0.63
6 K-IBS-DS 92.91 94.11 1.20 1.58

Sub-Task 1.2 (Bias Mitigation): Synthetic Data (Unconstrained)
Pos. Team TO [%] AVG [%] SD [%] GAP [%]

1 ID R&D 96.73 97.55 0.82 -5.31
2 ADMIS 95.72 96.50 0.78 -0.56
3 OPDAI 94.12 95.22 1.11 0.71
4 INESC-IGD 94.05 95.22 1.17 1.04
5 K-IBS-DS 93.72 94.88 1.16 0.77
6 CTAI 93.21 94.74 1.53 -0.63

Sub-Task 1.3 (Bias Mitigation): Synthetic + Real Data (Constrained)
Pos. Team TO [%] AVG [%] SD [%] GAP [%]

1 ADMIS 96.50 97.25 0.75 -1.33
2 K-IBS-DS 96.17 96.92 0.75 -1.37
3 UNICA-IGD-LSI 96.00 96.70 0.70 -5.33
4 OPDAI 95.96 96.80 0.84 -0.03
5 INESC-IGD 95.65 96.33 0.67 -0.12
6 CBSR-Samsung 95.57 96.54 0.97 -24.43

Sub-Task 2.1 (Overall Improvement): Synthetic Data (Constrained)
Pos. Team AVG [%] GAP [%]

1 OPDAI 91.93 3.09
2 ID R&D 91.86 2.99
3 ADMIS 91.19 2.78
4 K-IBS-DS 91.05 2.60
5 CTAI 90.59 -1.94
6 BOVIFOCR-UFPR 89.97 3.71

Sub-Task 2.2 (Overall Improvement): Synthetic Data (Unconstrained)
Pos. Team AVG [%] GAP [%]

1 Idiap-SynthDistill 93.50 -0.05
2 ADMIS 92.92 0.21
3 OPDAI 92.04 3.00
4 ID R&D 91.86 2.99
5 K-IBS-DS 91.61 1.96
6 CTAI 90.59 -1.94

Sub-Task 2.3 (Overall Improvement): Synthetic + Real Data (Constrained)
Pos. Team AVG [%] GAP [%]

1 K-IBS-DS 95.42 -2.15
2 OPDAI 95.23 -0.52
3 CTAI 94.56 -6.01
4 CBSR-Samsung 94.20 -4.40
5 ADMIS 94.15 -1.10
6 ID R&D 94.05 0.07

Table 3. Ranking for the six sub-tasks, according to the metrics
described in Section 3.3. TO = Trade-Off, AVG = Average accu-
racy, SD = Standard Deviation of accuracy, GAP = Gap to Real.

5. FRCSyn Challenge: Results

Table 3 presents the rankings for the different sub-tasks con-
sidered in the 2nd edition of the FRCSyn Challenge. In
general, the rankings for Sub-Tasks 1.1, 1.2, and 1.3 (bias
mitigation), corresponding to the descending order of TO,
closely align with the ascending order of SD (i.e., from less
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to more biased FR systems). Notably, the winner of Sub-
Tasks 1.1 and 1.2, ID R&D (96.73% TO), exhibits a con-
siderable negative GAP value (-5.31%), indicating higher
accuracy when training the FR system with synthetic data
compared to real data (i.e., CASIA-WebFace [48]). Fur-
thermore, when the limitation in the number of synthetic
images is removed (i.e., Sub-Task 1.2), the TO value of
most FR systems increases, obtaining a performance im-
provement and fairness simultaneously. For example, for
the ADMIS team (top-2) the TO value increases to 95.72%
(i.e., 1.42% TO general improvement from Sub-Tasks 1.1
to 1.2), with a GAP value of -0.56%. These results high-
light the advantages of synthetic data, including the poten-
tial for generating an infinite number of face images to re-
duce bias in current FR technology. Finally, for complete-
ness, we analyze in Sub-Task 1.3 the case of adding real
and synthetic data to the FR training process. In general,
we can observe better TO values, in addition to negative
GAP values for all the top-6 teams, e.g., ADMIS (96.50%
TO, -1.33 GAP), K-IBS-DS (96.17% TO, -1.37% GAP),
and UNICA-IGD-LSI (96.00% TO, -5.33% GAP). These
results prove that the combination of synthetic and real data
achieves higher FR performance compared to training only
with real data. In addition, it is also interesting to compare
the best results achieved in Sub-Task 1.2, i.e., unconstrained
synthetic data, and Sub-Task 1.3, i.e., constrained synthetic
+ real data. The ID R&D team achieves 96.73% TO in Sub-
Task 1.2 whereas ADMIS achieves 96.50% TO in Sub-Task
1.3, proving that it is possible to obtain better results using
only unlimited synthetic data than including real data.

For Task 2, the average accuracy across databases in the
different sub-tasks is lower than the accuracy achieved for
BUPT-BalancedFace [46] in Task 1, emphasizing the addi-
tional challenges introduced by AgeDB [33], CFP-FP [37],
and ROF [15] real databases considered for evaluation.
Also, although good results are achieved in Sub-Task 2.1
when training only with synthetic data (e.g., 91.93% AVG
for OPDAI), the positive GAP values provided by most of
the top-6 teams are the greatest from all the sub-tasks, indi-
cating that synthetic data alone currently struggles to com-
pletely replace real data for training FR systems. Neverthe-
less, in Sub-Task 2.2 in which there are no restrictions in the
number of synthetic images to use, the Idiap-SynthDistill
team (top-1) achieves much better results (93.50% AVG)
with a GAP value of -0.05, proving that unlimited synthetic
data by itself can even outperform limited real data. Finally,
in Sub-Task 2.3, most of the teams report better AVG and
higher negative GAP values (e.g., 95.42% AVG and -2.15%
GAP for the K-IBS-DS team, top-1), which suggests that
synthetic data combined with real data can mitigate exist-
ing limitations within FR technology.

Finally, analyzing the contributions of all eleven top
teams, a notable trend emerges, showing the prevalence

of well-established methodologies. ResNet [18] or IRes-
Net [14] backbones were chosen by all the teams for
their wide adoption in state-of-the-art FR approaches. The
AdaFace [23] and ArcFace [12] loss functions were widely
used, featuring in the approaches of most of the teams, ex-
cept for ID R&D which used the recent UniFace [52] or
UNICA which used CosFace [44]. Notably, all the teams
used DCFace [24] alone or combined with other databases
like GANDiffFace [27], DigiFace [3], or IDiffFace [6], con-
sidering also interesting approaches based on synthetic data
cleaning and selection for some teams such as CTAI and
CBSR-Samsung. ID R&D and Idiap-SynthDistill were the
only teams that used different approaches to generate the
synthetic data. In particular, an Hourglass Diffusion Trans-
former [8] and StyleNAT [43] by the ID R&D team, and
dynamic image generation using StyleGAN2 [38] by the
Idiap-SynthDistill team.

6. Conclusion

The 2nd edition of the FRCSyn Challenge has presented a
comprehensive exploration of the applications of synthetic
data in FR, effectively addressing existing limitations in the
field. In this 2nd edition, two additional sub-tasks have been
introduced, showing that impressive results can be achieved
using unlimited synthetic data, even outperforming in some
cases the scenario of training with real data. With an in-
creased number of participants in this edition, we have wit-
nessed a considerable performance improvement in all sub-
tasks in comparison to the 1st edition [30, 31]. This has been
possible thanks to the proposal of novel methods to generate
and select better synthetic data, as well as FR models and
loss functions. These approaches can be compared across a
variety of sub-tasks, with many being reproducible thanks
to the materials made available by the participating teams.
Future works will be oriented to a more detailed analysis
of the results and comparison with recent challenges in the
topic, such as SDFR [39]. We also plan to transform the Co-
daLab platform into an ongoing challenge, similar to what
we did in the 1st edition [31].
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