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Abstract

Performing hyperparameter tuning in federated learning
is often prohibitively expensive due to the substantial com-
munication overhead associated with training a single con-
figuration, especially with a large hyperparameter search
space. To overcome this challenge, recent works explored
reward-based approaches to learn a policy distribution over
a set of hyperparameter configurations. These approaches
enable the concurrent exploration of multiple hyperparam-
eter configurations within a single communication round,
thereby accelerating the search process.

In this paper, we take a deeper look at the reward-based
strategies and systematically analyze them, uncovering sev-
eral issues and challenges associated with their adoption in
practice. Furthermore, motivated by the insights from our
analysis, we propose an in-depth evaluation of policy dis-
tribution with metrics that capture rankings of standalone
configurations. We contribute this critical examination and
proposed evaluation metrics in order to raise awareness
about the challenges and hidden issues that reward-based
federated hyperparameter optimization might face and to
enable a more rigorous evaluation and therefore a faster
progress in this research area. We expect that the identi-
fied challenges will serve as inspiration for the development
of more robust and hyperparameter-free federated hyperpa-
rameter tuning approaches.

1. Introduction
Federated Learning (FL) [11] is a distributed training
framework where a shared model is trained collaboratively
on decentralized data. While FL has enjoyed a high inter-
est across several industries, it still requires the careful and
expensive selection of hyperparameters to achieve the best
performance [4, 12, 20], making its adoption in real-world
applications more challenging. While hyperparameter opti-
mization (HPO) [5, 6, 21] has been extensively researched
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in the literature for centralized machine learning settings,
these solutions are still prohibitively costly in the FL set-
ting due to the large communication cost for training and,
as a result, are not scalable to a large high-dimensional hy-
perparameter search space.

To address the challenging problem of federated hyper-
parameter optimization (FedHPO), researchers in [3, 10]
proposed a framework well-suited to the decentralized set-
ting. These approaches accelerate the search by several or-
ders of magnitude, thanks to the collaborative setup that al-
lows the concurrent exploration of hyperparameter configu-
rations across different clients within a single communica-
tion round. In essence, they utilize a reward-based mech-
anism to learn an optimal policy distribution over the hy-
perparameter configuration. Despite the promising perfor-
mance of these methods, a comprehensive understanding of
them is lacking, limiting their adoption in real-world prac-
tical settings.

To this end, the present paper systematically exam-
ines reward-based federated hyperparameter tuning meth-
ods, identifies challenges they face, and proposes suitable
evaluation metrics to assess the learned policy distribution
and help uncover the identified issues. Our work has two
main contributions. The first contribution consists of find-
ing that reward-based hyperparameter tuning methods de-
mand careful selection of internal hyperparameters inherent
to the algorithm such as the discount factor, the learning
rate scheduler, and the initial baseline to achieve optimal
results. Further investigations uncover that the agent is bi-
ased towards the hyperparameter configurations sampled in
the initial few rounds resulting in the under-exploration of
the full configuration space. Notably, we also discover that
there is a severe disparity in the rankings of the hyperpa-
rameter configurations derived from the policy distribution
of the agent and the ground-truth rankings of standalone hy-
perparameter configurations. These observations highlight
that reward-based hyperparameter tuning methods do not
truly discover the top-performing configurations within the
search space. Instead, they tend to rely on low-fidelity eval-
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uations and are typically biased towards the configurations
that are randomly sampled in the initial rounds, resulting in
learning sub-optimal policy distribution.

Our second contribution consists of proposing the adop-
tion of diverse ranking and correlation metrics to evaluate
the policy distribution learned by the agent during the hy-
perparameter tuning process. We argue that prior works
overlooked this evaluation aspect which is crucial for a rig-
orous assessment of the performance of the reward-based
FedHPO algorithms. Our proposed metrics are inspired by
the field of Neural Architecture Search [13, 16, 19, 28]
which shares similarities with FedHPO. By evaluating the
learned policy distribution with these metrics, we find that
the rankings of configurations obtained from the policy dis-
tribution exhibit little (Kendall Tau ¡ 0.2) to no correlation
with the rankings of standalone configurations. Our pro-
posed evaluation metrics of policy distribution offer poten-
tial for designing more efficient tuning strategies, enabling
the discovery of truly high-performing configurations. Fi-
nally, we believe that our comprehensive analysis of reward-
based tuning methods will serve as inspiration for the devel-
opment of more robust and hyperparameter-free federated
hyperparameter tuning approaches in the future.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews existing work, focusing on approaches to-
wards federated hyperparameter optimization. Section 3
presents the identified issues of existing reward-based
FedHPO methods with details about the empirical analy-
sis conducted. In Section 4, we introduce the evaluation
metrics that we propose to understand the learned policy
distribution. Finally, Section 5 concludes this work.

2. Background
Federated Learning (FL) [15, 27] and Hyperparameter Op-
timization (HPO) [2, 30] have been extensively studied as
separate fields. However, the intersection of these two do-
mains, known as Federated Hyperparameter Optimization
(FedHPO), has received relatively limited attention. This is
primarily due to the unique challenges posed by FL, partic-
ularly the high communication costs involved during train-
ing. While traditional efficient hyperparameter optimization
techniques such as Successive Halving [5] can be applied to
tune the hyperparameters in FL, the substantial communi-
cation cost for searching among a large number of configu-
rations makes it a less favorable solution in practice.

To address these issues, recent works [3, 10] have intro-
duced reward-based approaches to FedHPO, enabling con-
current exploration of multiple hyperparameter configura-
tions within a single communication round. For example,
Khodak et al. in [10] proposed FedEx for tuning the client-
side hyperparameters by concurrently exploring multiple
configurations across clients and learning the policy distri-
bution over the hyperparameter configurations through a re-

ward mechanism. Similarly, Cheng et al. in [3] introduced
a deep learning-based policy network that outputs the per-
sonalized policy distribution taking encoded data features as
input. At the core of these approaches lies a reward mecha-
nism that learns a policy distribution over the hyperparame-
ter configurations. In comparison to traditional HPO meth-
ods, the concurrent exploration of hyperparameter configu-
rations makes them highly efficient and suitable for the col-
laborative FL paradigm. Apart from these, another recent
work [24] conducts exploration using a single hyperparam-
eter configuration at each communication round. However,
this approach can incur a significant communication cost
when dealing with a larger search space.

The intention of our paper is not to introduce a new hy-
perparameter tuning algorithm but rather to delve into the
internal mechanisms of reward-based hyperparameter tun-
ing methods. We believe that a deeper understanding of
these mechanisms is crucial for addressing the challenging
problem of hyperparameter optimization in the context of
federated learning.

2.1. The FedEx Algorithm

In this paper, we conduct detailed studies on a representa-
tive framework, FedEx [10], to gain deeper insights on the
reward-based tuning methods. We argue that FedEx, being
a general-purpose reward-based tuning mechanism, makes
it a favorable choice for our analysis. In broad terms, during
each communication round t, for each client, the agent se-
lects an action, which here corresponds to choosing a hyper-
parameter configuration from a set of available configura-
tions, based on the current policy distribution, parametrized
by θ. After training the model locally with the selected hy-
perparameter configuration, the reward is computed based
on the validation loss at each client. This reward is then
used to update the policy distribution θ. Ultimately, the
agent seeks to learn an optimal distribution over the hy-
perparameter configurations that results in achieving high
model performance.

The FedEx algorithm is detailed in Algorithm 1 and is
summarized as follows. It starts in lines 1 and 2 by initializ-
ing the policy distribution θ1 with uniform weights equal to
1
k , server weights w1 and k hyperparameter configurations,
{c1, . . . , ck}, that are within a radius ϵ of each other. Then,
for each communication round t, each client i receives both
the current policy θt and global weights wt which are then
used to perform local training (lines 3-7) with a configura-
tion cti sampled from Dθt and the curret weights wt. After
the local training, the updated local weights, sampled con-
figuration, and respective model loss are sent back to the
server, as illustrated in step 8. Finally, the server updates the
policy θt using an Exponential Gradient Descent (EGD) in
lines 23 and 24, with a learning rate ηt that is dependent on
the adopted scheduler scheme S (lines 11 to 22). After these
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Algorithm 1 FedEx Algorithm Utilizing Reward-Based
Mechanisms
Input: Sample single hyperparameter configuration ck ∈

Rk from original search space; number of clients B;
number of communication rounds τ . Hyperparame-
ters: Discount factor γ; Scheduler scheme S; learning
rate η; initial baseline λ1; configuration radius ϵ

Output: Final model parameters wt and hyperparameter
distribution θt

1: Initialize policy θ1 ← [ 1k , ..,
1
k ] of dimension-k and ini-

tial server model weights w1 ∈ Rd

2: Sample k configurations {c2, . . . , ck} within configu-
ration radius ϵ from c1

3: for comm. round t = 1, . . . , τ do
4: for client i = 1, . . . , B do
5: send wt,θt to client
6: sample cti ∼ Dθt

7: wti ← Loccti(Tti,wt)
8: send wti, cti, LVti(wti) to server
9: end for

10: wt+1 ← Aggb(w, {wti}Bi=1)
11: if t > 1 then
12: λt ← 1∑

s<t γ
t−s

∑
s<t

γt−s∑B
i=1 |Vti|

∑B
i=1 LVti

(wi)

13: end if
14: ∇̃j ←

∑B
i=1 |Vti|(LVti

(wti)−λt)1cti=cj

θt[j]

∑B
i=1 |Vti|

∀ j

15: s←
∑B

i=1 |Vti|LVti
/
∑B

i=1 |Vti|
16: if S == “constant” then
17: ηt =

√
2 log k

18: else if S == “adaptive” then
19: ηt =

√
2 log k/

√∑
s≤t ∥∇̃s∥2∞

20: else if S == “aggressive” then
21: ηt =

√
2 log k/∥∇̃t∥∞.

22: end if
23: θt+1 ← θt ⊙ exp(−ηt∇̃)
24: θt+1 ← θt+1/∥θt+1∥1
25: end for
26: return model wt, hyperparameter distribution θt

updates, the algorithm returns to line 3 for the next round.
After a predefined number of rounds, the algorithm returns
the final global model weights wt and hyperparameter dis-
tribution θt.

Notably, the algorithm relies on several internal hyperpa-
rameters such as the discount factor γ, the learning rate ηt,
its scheduler S, and the initial baseline λ1. The discount
factor γ controls the aggressiveness of the policy update
through the baseline λt [18]. The learning rate ηt can be
updated through multiple schemes such as constant, adap-
tive, and aggressive, proposed in the original framework.
In short, the constant learning rate scheduler uses a fixed
value for ηt for all the training rounds. The adaptive and

aggressive learning rate schemes rely on gradient informa-
tion from previous and current rounds to update the learning
rate. Moreover, we emphasize that these hyperparameters
are not specific to the current setting but are also prevalent in
traditional reinforcement learning literature. Nevertheless,
the addition of these hyperparameters incurs an additional
burden, and should thus be robust. As such, several studies
in the literature have sought to investigate the sensitivity of
the hyperparameters involved in RL algorithms [1, 8, 18]
and provided evidence that the RL algorithms are heavily
influenced by several hyperparameters such as initial policy
distribution, reward scale, learning rate, etc.

3. Experimental Insights

In this section, we will begin by examining the sensitivity of
various hyperparameters within the context of the reward-
based hyperparameter tuning algorithm, FedEx. We will
then seek to understand the dynamics of the learning pro-
cess for the reward policy across various settings. While our
primary experimental results are centered around FedEx, it
is important to note that the insights drawn from this anal-
ysis can be applied more broadly to reward-based hyperpa-
rameter tuning methods.

Implementation. We conduct our experiments using the
CIFAR-10 dataset [14], which we split into B clients in an
i.i.d. manner, with number of clients B set to either 4 or 30.
We sample 27 hyperparameter configurations with a radius
of ϵ = 1.0, ie., from the entire search space. This means that
with B = 4, we can sample up to 4 configurations out of
the 27 to simulate the setting where the action space is large
compared to exploration space, while with B = 30, there
are more configurations than clients, allowing for extensive
exploration. Following FedEx [10] implementation, we set
the initial baseline λ1 to 0.0. Further, we set the discount
factor γ to 0.0 in all experiments unless otherwise stated.
Since the original implementation tunes γ along with the
server-side hyperparameter, we also perform ablation and
tune γ in a limited set of experiments. The number of com-
munication rounds is set to 200, and we sample all clients
in each round to eliminate potential high variances in the
observed validation loss due to different client samplings
in each round. We use FedAvg for aggregating the client
models at the server in each round. We tune 4 hyperparam-
eters that are shared at all clients: dropout-rate [25] uni-
formly in the range [0.0, 0.5]; learning rate in log-uniform
space [10−4, 10−1]; the momentum of the SGD optimizer
uniformly in the range [0.0, 1.0]; the weight-decay coeffi-
cient in the log-uniform space [10−5, 10−1]. ck is a hyper-
parameter configuration of dimension four containing hy-
perparameter values cjk, where j ∈ {0, 1, 2, 3}, sampled
from their respective search spaces.
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Impact of the LR Scheduling Scheme S

To investigate the impact of the learning rate (LR) schedul-
ing scheme S, we conducted experiments using the FedEx
algorithm with two different total numbers of clients C: 4
and 30. As illustrated in Figure 1, we observed divergent
trends with varying client sizes. When C = 4, we found
that the constant scheduling scheme outperformed the other
two schemes. However, with C = 30, we observed that
the aggressive scheduling scheme yielded the best results.
This shows the sensitivity of FedEx’s performance to the
choice of the scheduling scheme w.r.t. the experiment set-
ting (such as the number of clients), suggesting that tuning
the LR scheduling scheme S is crucial for achieving optimal
results. We draw further insights regarding agent explo-
ration and the impact of different LR scheduling schemes
on the policy training later in this section.

constant adaptive aggressive40%

45%

50%

55%

60%

42.4

64.2
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Figure 1. Performance of Different Scheduling Schemes with
Varying Numbers of Clients. We observed that the performance
of the scheduler is inconsistent across different client size settings.
When C = 4, the constant scheduler outperforms other schemes,
whereas with C = 30, the aggressive scheduler yields the best
results. In this ablation, we set the discount factor γ = 0.0.

Impact of the Discount Factor γ

The discount factor γ controls the baseline updates, a cru-
cial parameter for addressing the high variance of rewards
in reinforcement learning frameworks [7, 18]. For example,
γ = 1.0 sets the baseline as the average of all previous re-
wards, while γ = 0.0 takes the previous round reward as
the baseline. In Figure 2, we illustrate how the discount
factor affects the results under various scheduling schemes.
Notably, we observe that γ = 1.0, γ = 0.0, and γ = 0.5
yield the best performance for the aggressive, adaptive, and
constant scheduling schemes, respectively. This observa-
tion highlights the dependency of the results yielded by the
FedEx algorithm on the discount factor γ, emphasizing the
need for hyperparameter tuning within FedEx to achieve op-
timal performance.

Figure 2. Performance of Different Scheduling Schemes with
Varying Reward Discount Factor γ. We observe that the dis-
count factor affects algorithm performance inconsistently across
various scheduling schemes. In this setting, we fixed the number
of clients at C = 4.

Impact of the Initialization of the Baseline λ1

A crucial (hyper)parameter in reward-based tuning is the
initial baseline λ1. In each round, the baseline λ1 is cal-
culated based on previously observed rewards and the dis-
count factor γ (step 12 in Algorithm 1). In the first round,
the baseline λ1 is conventionally set to 0, as in the FedEx
implementation. We find that this initialization choice leads
to unintended consequences, as it pushes the policy to up-
date in the opposite direction. We illustrate this with a con-
crete case in the following.

Let’s consider a specific client i at t = 1, i.e., first train-
ing round, and assume that we measured a validation loss
LV1i(w1) of 3.0 before local training with configuration
c1i. After training with c1i, the validation loss LV1i

(w1i)
drops to 2.7, indicating that the used configuration yields
a performance improvement. However, this still results
in a negative validation performance gain of -2.7, com-
puted as (LV1i(wti) − λ1). Essentially, since the reward
becomes negative (unless the LV1i(w1i) becomes smaller
than λ1 = 0.0 in the first round), the policy weights for
all the sampled configurations {c11, .., c1B}, from the first
round undergo substantial reduction in their weights. More
importantly, non-sampled configurations have their policy
weights increased as a result of penalizing the sampled con-
figurations since θ is a probability distribution and is there-
fore normalized at the end of each communication round t
to ensure that the sum of elements remains 1. Consequently,
the action/configuration sampling in the subsequent rounds
becomes more biased towards configurations that are not
sampled in the first round.

In our experiments, we addressed this issue by setting
the initial baseline λ1 to the average of the validation per-
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formance
∑B

i=1 LV1i(w1) before starting the training. This
adjustment yielded notable improvements of 4.3% for B=4
and 5.5% for B=30 in the final performance with the adap-
tive scheduling scheme. One could explore alternative ap-
proaches, such as skipping the policy update in the first
(few) round(s). However, it’s important to emphasize that
even a simple change in the baseline of the first round sig-
nificantly impacts the search algorithm’s performance and
final results. This observation underscores the sensitivity
of the reward-based algorithms to the initialization of the
baseline.

Understanding Agent Exploration

In the following, we explore how the policy θ evolves with
different LR scheduling schemes S. In Figure 3, we exam-
ine the exploration of the agent with B = 4 using the con-
stant, adaptive, and aggressive schemes in the three rows,
respectively. The first column visualizes the ground-truth
performance of all 27 configurations, ranging from 17% to
81%. The second column displays how many times each
configuration is explored over the whole training proce-
dure. In the third column, we plot the maximum value in
the agent’s policy θ throughout the training rounds to gain
insights into the distribution of the policy weights.

Based on the results of our experiments with the num-
ber of clients B = 4 (Figure 3), we draw the following
three conclusions. Firstly, the agent tends to underexplore
the action space in the aggressive scheduling scheme. Simi-
lar under-exploration is observed with the constant schedul-
ing scheme. Secondly, the agent’s policy θi quickly con-
verges to a deterministic case where a single configuration
is sampled with a probability of 100%. This is observed
within a few rounds (< 10) in the aggressive LR schedul-
ing scheme and after approximately 70 rounds with the con-
stant scheduling scheme. Thirdly and most importantly, the
frequency of exploration of a configuration in all schemes
does not correlate with the ground-truth performance of the
configuration. For instance, the configuration with ID 4 is
the best action according to the ground truth, yet it is hardly
explored with any scheduling scheme.

To investigate whether the aforementioned issues arise
due to the fact that the agent could only explore up to 4
unique configurations out of 27 in each round, we con-
duct an additional experiment with the number of clients
B = 30. The results are presented in Figure 4. While set-
ting the number of clients to a value higher than the num-
ber of configurations is expected to yield a sufficient ex-
ploration of the 27 configurations, we observe the same
issues as in the experiment with B = 4. Namely, the
under-exploration of actions with constant and aggressive
schemes, the quick convergence of θ to a deterministic sam-
pling, and a significant disparity between ground truth and
sampled frequency of a configuration.

This experiment highlights that although aggressive
scheduling is preferred in the original implementation for
efficiency, the agent does not sufficiently explore the action
space in this case, and the learned policy is heavily biased
towards actions taken in the first few rounds. In contrast,
the adaptive scheduling scheme allows for relatively better
exploration. However, it still does not truly correlate with
the ground-truth performance. Finally, constant scheduling
scheme explores very few configurations before saturating
to a single configuration.

4. Proposed evaluation metrics for FedHPO
methods

In this section, we propose evaluation metrics suitable for
FedHPO approaches that contribute to uncovering the is-
sues identified in Section 3 early in the method develop-
ment process. While aiming to achieve higher model perfor-
mance with wt in terms of test set accuracy is the primary
goal, we propose to evaluate the policy distribution θt using
correlation and ranking metrics. This proposal is inspired
by the extensive literature in the domain of Neural Archi-
tecture Search (NAS) [13, 16, 19, 28], where architectures
sampled from a trained super-net are evaluated based on
their rankings compared to ground-truth standalone rank-
ings. We strongly believe that a wide usage of these evalua-
tion metrics across the FedHPO research community would
accelerate the progress in this area.

We argue that achieving the best test accuracy should not
be the sole goal when performing a hyperparameter search.
Having a policy distribution that correlates well with stan-
dalone performances, i.e., reflects the true performance of
each hyperparameter configuration, can be useful in various
further applications. For instance, the policy distribution
can be used as a good starting point to initialize the policy
distribution of other datasets or tasks [22]. Moreover, it is
possible to further fine-tune the model for additional rounds
with configurations sampled from the learned distribution
θt, which is common in NAS literature [17]. We hypothe-
size that this might be especially useful in the case of a data
distribution shift, where the optimal hyperparameter config-
uration before the shift might become sub-optimal after the
shift.
Metrics. We propose using three metrics: Kendall Tau [9],
Spearman rank correlation [32], and APn@k metric [19]
to better assess the learned policy distribution. Using
Kendall Tau allows measuring the correlation through pair-
wise rankings between the ground-truth ranking of the hy-
perparameter configurations, i.e., the ranking based on the
performance achieved by each configuration when it is used
separately, and the ranking of the configurations accord-
ing to final policy distribution yielded by the FedHPO al-
gorithm. We also propose to use the Spearman rank, to cal-
culate the rank correlation coefficient between the ground-

4240



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration ID
0

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

80 79

44

65

81

46

61

36

47

64

73
70

74

58

25

42
39

72

65

77

30

49
45

74
79

37

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration ID
0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

0 0 0 0 0 0 0 1 2

671

0 1 1 1 1 0 1 1 1

53

0 0 1 5

58

0 2
0 25 50 75 100 125 150 175 200

Rounds
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 v
al

ue

(a) Constant scheduler

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration ID
0

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

80 79

44

65

81

46

61

36

47

64

73
70

74

58

25

42
39

72

65

77

30

49
45

74
79

37

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration ID
0

50

100

150

200

250

Fr
eq

ue
nc

y
46 44

76

144

13 11
24

97

248

208

25 25

170

231

24

232

33
42

248

63

203

250

196

11

119

245

172

0 25 50 75 100 125 150 175 200

Rounds
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 v
al

ue

(b) Adaptive scheduler

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration ID
0

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

80 79

44

65

81

46

61

36

47

64

73
70

74

58

25

42
39

72

65

77

30

49
45

74
79

37

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration ID
0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

0 0 0 0 0 0 0 0

773

0 0 1 0 9 1 0 1 1 0 0 8 0 1 1 0 0 4
0 25 50 75 100 125 150 175 200

Rounds
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 v
al

ue

(c) Aggressive scheduler

Figure 3. Illustrating the Agent Learning Process with Different Scheduling Schemes with B = 4. The figures from left to right plot
the ground truth performance, the frequency of exploration and the maximum value in policy distribution θ.

truth ranking of configurations and the policy vector θt.
Furthermore, we propose to evaluate the policy using the
Average Precision (APn@k) metric, a key metric in rec-
ommendation literature [23, 26], to measure how much the
top elements in the ground truth and predicted configuration
rankings match. Specifically, this metric compares the top-
n configurations in the ground-truth ranking with the top-k
configurations predicted by the policy distribution in terms
of relative ranking and quantity. While the previous met-
rics give equal importance to all configurations, the APn@k
metric focuses on the top-n configurations. We set n = 4
and k = 10 for our evaluation.
Validation of the proposed metrics. In this section, we
assess the ability of the proposed metrics in reflecting the
issues of the reward-based FedHPO methods identified in
Section 3. We do this by empirically evaluating the policy
distribution θt learned by the FedEx algorithm using our
proposed metrics.

Our metrics indicate that the learned policy distribution
θt fails to capture the performance of standalone configura-
tions, i.e., experiments where a single hyperparameter con-
figuration is used, in most cases. In Figure 5, we visualize
the metrics results. The columns present the three different
LR scheduling schemes S and the rows display the results
of the different client sizes, B = 4 and B = 30, respec-

tively. The two correlation metrics lie in the range [−1, 1],
indicating a positive or negative correlation with higher ab-
solute values showcasing a stronger correlation, while the
AP ranges from 0 up to 1, with 1 being the highest perfor-
mance.

We observe that both correlation metrics present values
below 0.4 in all cases. In contrast, the AP4@10 metric with
aggressive scheduling and B = 30 (bottom-right subfig-
ure) achieves a value over 0.6. However, this metric quickly
converges to this value in less than 10 rounds and then re-
mains constant for the rest of the training. Unsurprisingly,
the other two metrics, Spearman and Kendall Tau, are still
unsatisfactory in this case. Apart from this, we observe a
slow drop in all metrics in the adaptive scheduling case as
the training progresses, reaching values lower than -0.2, in-
dicating a significant mismatch between the original rank-
ings and predicted rankings. Note that negative correlation
metric values indicate that the policy has learned a configu-
ration ranking that partly has a reverse order.

Overall, the evaluation metrics across the board suggest
that the policy distribution learned by the agent does not
capture the ground-truth ranking of the hyperparameter
configurations, nor discover the top-performing ones. It is
important to note that our primary aim is not to disprove
reward-based schemes but rather to raise awareness about
the issues they might encounter and to propose evaluation
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(a) Constant scheduler
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(b) Adaptive scheduler
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(c) Aggressive scheduler

Figure 4. Illustrating the Agent Learning Process with Different Scheduling Schemes with B = 30. The figures from left to right plot
the ground truth performance, the frequency of exploration and the maximum value in θ.
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(a) B=4
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(b) B=30

Figure 5. Evaluation of Policy distribution θt with different scheduling schemes. We visualize the metric coefficients as the training
progresses for three different scheduling schemes in three columns, respectively. The results are presented with B=4 and B=30 in the first
and second row.
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metrics to identify these issues.

Nonetheless, our observations suggest several promis-
ing directions for enhancing the learning of a more effec-
tive policy distribution. For instance, we could consider
the incorporation of maximum entropy regularization [33]
to encourage deeper exploration throughout the training
rounds, and perform action elimination [31] to remove
weak-performing configurations, or use a limited number
of landmark configurations to guide the training [29]. Nev-
ertheless, these techniques come with additional hyperpa-
rameters associated with their respective loss functions and
thus require additional tuning.

5. Conclusion

In this paper, we have conducted a systematic study of
reward-based federated hyperparameter tuning methods,
using FedEx as a representative example. Our analysis has
revealed the sensitivity of several internal hyperparameters
within reward-based strategies, highlighting the importance
of careful tuning to achieve optimal performance on the tar-
get task. This transfers the burden of hyperparameter tuning
from the original task to tuning the search algorithm. Fur-
thermore, a deeper examination of reward schemes yielded
the following insights. Firstly, the agent tends to underex-
plore the action spaces in multiple settings. Secondly, the
learned policy quickly converges to a deterministic policy
that predicts the same single configuration. Moreover, we
have observed significant inconsistencies in the rankings of
configurations learned by the agent when compared to the
ground-truth performance ranking of these configurations.
Therefore, we propose evaluation metrics suitable to assess
the policy distribution learned by the agent. In conclusion,
we hope that our work will inspire further in-depth research
in the field of federated hyperparameter tuning, ultimately
leading to more robust, effective and hyperparameter-free
methods.
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