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Abstract

Human gaze provides crucial insights into individual at-
tention during social or educational interactions. Atten-
tion systems often rely on head and facial features to pre-
dict gaze direction, but reliable gaze target detection (GTD)
requires rich contextual cues. These cues inform the sys-
tem about an individual’s position within a scene and the
surrounding objects they might be interacting with. Our
paper proposes attention measurement using GTD in ed-
ucational classrooms, leveraging a synthetic dataset called
GESCAM (Gaze Estimation based Synthetic Classroom At-
tention Measurement). This dataset was meticulously gen-
erated using 3D modelling, animation, simulation, and ren-
dering techniques comprising 60,000 images with 650,000
instances of individuals (students, teachers) engaged in var-
ious activities, including looking at blackboard, notebooks,
mobile phones etc. Our novel network trained on GESCAM
proficiently identifies gaze fixations within complex class-
room scenes, offering insights into human attention in class-
rooms across diverse contexts.

1. Introduction

Estimating the attention levels in a classroom using
computer vision is important for numerous reasons includ-
ing student engagement monitoring, identifying in-attentive
marginalised students, and optimising classroom environ-
ments. The modern educational landscape is characterized
by information overload. This necessitates the development
of effective methods for educators to gauge student engage-
ment, a crucial factor in learning outcomes. By understand-
ing engagement levels, educators can adapt their pedagog-
ical strategies accordingly. For example, if a significant
portion of the class appears disengaged, educators can im-
plement strategies to re-engage students and ultimately en-
hance learning outcomes. Promptly identifying signs of dis-
traction or disengagement allows educators to offer timely

support. This proactive approach can help prevent academic
challenges from escalating and contribute to fostering opti-
mal teacher-student engagement within an educational in-
stitution.

Figure 1. Synthetic Classroom Generation via 3D Rendering.
This figure illustrates the process of synthesizing classroom videos
using 3D assets. A suite of 3D rendering tools enables the creation
of customized classroom scenarios and animations of individuals
within those environments.

Existing attention measurement methods primarily rely
on gaze estimation and tracking techniques. These tech-
niques, such as gaze point or direction estimation [29], in-
volve identifying where a person is looking based on facial
features. However, they are prone to inaccuracies, particu-
larly in challenging real-world conditions like low lighting
or when subjects wear glasses. GTD [26] offers an alterna-
tive approach. It focuses on the relationship between a per-
son’s position within a scene and the surrounding objects
within their field of view. Unlike gaze estimation, GTD
aims to identify what a person is looking at, not just where
their gaze is directed. However, capturing specific objects
from a distance using real-world 2D gaze estimation meth-
ods often suffers from high error margins [29]. Addition-
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ally, real-world data collection for training such systems can
be expensive, time-consuming, and impractical, especially
in classrooms where privacy concerns and logistics compli-
cate data gathering. Synthetic datasets offer a solution to
these limitations. They provide a virtually unlimited source
of diverse data at a significantly lower cost and effort com-
pared to real-world data collection.

This paper introduces the GESCAM dataset, a novel re-
source facilitating groundbreaking research in educational
technology and personalized learning. GESCAM lever-
ages GTD for classroom attention estimation. Our primary
contribution lies in demonstrating the ability to synthesize
a multitude of realistic classroom environments. This al-
lows for a comprehensive understanding of student inter-
actions with objects and the quantification of attention lev-
els across diverse settings. Fig. 1 showcases the generation
process of realistic 2D images and depth maps using 3D as-
sets. We meticulously designed intricate classroom scenes
with various objects, textures, and lighting conditions (de-
tailed tool descriptions are provided in Section 3). This ap-
proach offers complete control over scene composition, ob-
ject placement, camera viewpoints, and viewing angles, re-
sulting in synthetic images that closely resemble real-world
classrooms.

The synthetic data within GESCAM is meticulously an-
notated with bounding boxes, masks, class labels and gaze
fixation points. This labeled ground truth facilitates the
training and evaluation of GTD and attention measurement
algorithms. The inherent flexibility and scalability of our
data generation process enabled the creation of a robust
dataset specifically tailored for classroom attention mea-
surement tasks. Section 4 provides further details on train-
ing and evaluation of various algorithms with GESCAM
dataset. The proposed GESCAM dataset empowers re-
searchers to make significant advancements in the field of
classroom attention measurement. It facilitates the devel-
opment and validation of automated attention estimation
systems, enabling deeper investigations into the relation-
ship between gaze patterns and specific learning outcomes.
This knowledge can be harnessed to design adaptive learn-
ing environments that react to individual student attention
levels. Ultimately, GESCAM paves the way for personal-
ized instruction, optimizing student engagement, compre-
hension, and ultimately revolutionizing our understanding
of learning and enhancing the effectiveness of educational
practices. Some example images from the dataset are shown
in Fig. 2.

Our proposed neural network tackles the challenges of
discerning head pose, gaze orientation, and pinpointing ob-
jects of interest within the scene. These objects can range
from tablets and mobile phones to blackboards, teachers,
and student interactions. Notably, our method exhibits rea-
sonable accuracy in predicting gaze targets even when pre-

sented with the challenge of only seeing the back of a head
from a distance. Our two-pathway architecture for GTD
combines head information with the scene itself. This fa-
cilitates robust training and evaluation within an end-to-end
inference pipeline. By enabling dense measurements of nat-
ural gaze behavior, our approach offers a promising avenue
for understanding human attention measurement in educa-
tional settings.

The remainder of this paper is organized as follows.
Sec. 2 reviews state-of-the-art attention estimation (AE) and
gaze Estimation (GE) using GTD methods with focus on
synthetic datasets. Sec. 3 walks through GESCAM dataset
including our proposed architecture for synthetic data con-
struction using various characters and artefacts orchestra-
tion and rendering technologies. Sec. 4 discusses our pro-
posed neural network in greater detail. Sec. 5 discusses
experimental requirements and evaluation criteria of a syn-
thetic dataset based on established benchmarks using Area
Under the Curve (AUC), Distance and Angular metrics etc.
In Sec. 6, we summarize our research findings and, Sec. 7
sets out our goals for extending this work in the future.

2. Related Work

2.1. Gaze Estimation

Several research studies have explored the use of gaze
estimation for measuring classroom attention. One of the
challenging problems in attention estimation based on gaze
target detection (GTD) and gaze estimation (GE) methods
is that there is a reality gap between the physical and ren-
dered data. To address the issue, various approaches have
been proposed. Matching the simulated data with physical
reality using high-quality rendering is one approach pro-
posed by [32]. However, [14] suggests that using realis-
tic RGB rendering alone has had limited success for trans-
ferring to real tasks. However [25] points out that incor-
porating realistic simulation of depth information can al-
low models, trained on rendered images to transfer reason-
ably well to real-world scenarios. Concomitantly, combin-
ing data from high-quality simulators with other approaches
like fine-tuning can also reduce the number of labelled sam-
ples, required in the real-world data [28] specifically in a
classroom environment.

Research on automatic gaze analysis can be categorized
into two main areas: GE and GTD [4] [7] [27]. GE esti-
mates the direction of a person’s gaze, typically in 3D, and
does not necessarily focus on precisely locating the object
of their interest [37] [13]. Methods such as [24] estimate
the gaze direction and do not identify the objects that are
being attended to. On the other hand, [20] uses a head-
mounted eye-tracker to estimate the user’s point of gaze.
Likewise, [31] detail a technique for determining the gaze
direction of individuals in a scene by integrating video data
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Figure 2. Diverse Classroom Scenarios in the GESCAM Dataset. This figure showcases a selection of samples from the GESCAM
dataset, highlighting the variety of classroom environments captured. The images depict classrooms with different seating arrangements,
lighting conditions, and student attention states. Notably, the diverse gaze directions demonstrate the dataset’s ability to capture real-world
classroom dynamics, where students may not always focus solely on the teacher.

with Inertial Measurement Unit (IMU) data. However, it’s
important to note that both of these methods primarily con-
centrate on GTD from a first-person perspective. In this
paper, we focus on GTD with in-the-wild images, captured
from a third-person viewpoint.

Similarly, [22] presented a new publicly available eye
tracking video dataset to facilitate the research in point of
gaze detection or any other related eye-tracking application.
However, the dataset lacks the projection of 2D objects in
terms of location and/or movement in 3D space which re-
stricts the tracking to be carried out by a human eye alone.
GTD has undergone significant advancements with the inte-
gration of computer vision technologies into human gaze re-
search. It is increasingly recognized that in fields where pre-
cise iris or eye tracking is impractical, head pose emerges
as a crucial feature for determining the human focus of at-
tention, alongside other semantic cues. [7] have pinpointed
three significant issues in previous research.

Initially, many research endeavors focus on analyzing
gaze direction solely within a 2D framework, neglecting
to incorporate depth information. A dataset lacking this
dimensionality could severely hinder the effectiveness of
algorithms trained on such data. Additionally, developing
mapping functions solely from head position to gaze direc-
tion, without accounting for the interplay between eye and
head movements, may compromise the overall generaliza-
tion capability of attention measurement applications uti-
lizing GTD. Therefore, a holistic comprehension of atten-
tion environments becomes imperative to recognize poten-
tial objects situated across multiple layers (using multiple
modalities) along the subject’s line of sight.

While many approaches learn the mapping function
from head features to gaze direction using 2D visual
cues [26] [3] [4] [27], estimating depth information from
a RGB image is essential to accurately predicting the gaze

target. We have covered this in-depth in our research
work [21], and have provided this feature in the GESCAM
dataset, being presented in this paper.

Moreover, prevailing datasets in gaze target detection
and attention estimation, primarily emphasize individuals
in the foreground for detecting gaze targets, resulting in
gaze vectors of markedly larger scales. Conversely, class-
room contexts typically entail gaze vectors of reduced mag-
nitude owing to the close proximity of focal points. To rec-
oncile this disparity, and fill the gap, we have addressed
this issue in the GESCAM dataset. This pioneering re-
source is tailored to confront the intricacies of gaze tar-
get detection within controlled classroom settings. By en-
compassing an array of classroom layouts, character pro-
files, and activities, GESCAM provides a more authentic
and domain-specific training environment for gaze estima-
tion models. The dataset’s configuration addresses the de-
ficiencies of current resources by featuring densely popu-
lated classrooms, diminished gaze vector magnitudes that
align with conventional classroom viewing behaviours, and
the potential for interaction with multiple objects. We an-
ticipate that GESCAM will serve as a catalyst for advance-
ments in gaze target detection research within the realm of
educational technology.

2.2. Gaze Estimation Datasets

Several datasets have been developed for gaze estimation
tasks, each with its unique characteristics and limitations.
EYEDIAP, created using Kinect sensors and HD cameras,
features a few participants and synchronized RGB-D and
HD streams [10]. OpenEDS is a large-scale collection of
eye images obtained from VR head-mounted displays, com-
prising 12759 images with pixel-level annotations from 152
participants [11]. GazeCapture, focusing on first-person
gaze estimation, includes data from 1450 participants cap-
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tured using mobile phones, tablets, or other sensors [17].
MPIIGaze, another first-person gaze dataset, consists of
213,659 images collected from laptops used by 15 partic-
ipants over three months [39]. Gaze360 offers a large-scale
dataset for gaze tracking with 238 subjects and 3D gaze an-
notations across various head poses and distances [16].

ETH-XGaze is notable for extreme pose and gaze vari-
ation, featuring over one million images from 110 sub-
jects captured using custom hardware and 18 SLR cam-
eras [38]. RT-GENE addresses issues of subject-to-camera
distance and head pose/gaze angle variations using eye-
tracking glasses [9]. iSUN, deployed on Amazon Mechan-
ical Turk, predicts saliency from 20608 webcam images
[35]. CAT2000 focuses on eye movements across various
image categories with 4000 images and 120 participants [1].
SALICON provides saliency annotations on the MSCOCO
dataset [15]. GazeFollow and GOO datasets offer third-
person perspectives, with GazeFollow curated from diverse
sources like movies and social media [26], while GOO fo-
cuses on closed retail scenes with single-person gaze on ob-
jects [30]. VideoAttentionTarget includes gaze from mul-
tiple persons in video settings [2], but lacks CCTV angles.
Our proposed GESCAM dataset aims to address these lim-
itations, providing synthetic data covering varying subject-
to-camera distances, head poses, illumination, and multiple
gaze estimations within a scene.

2.3. Classroom Gaze Estimation

Various research endeavours have investigated gaze esti-
mation’s role in gauging classroom attention. For instance,
a study utilized eye-tracking glasses to scrutinize student at-
tention during presentations, shedding light on gaze data’s
utility in assessing teaching methodologies [12]

Gaze estimation using camera-based models in class-
rooms: [23] investigated the potential of using standard
cameras instead of specialized eye trackers to estimate stu-
dent gaze, offering a more scalable and cost-effective ap-
proach to assessing attention. Similarly, [34] combined
gaze tracking with object detection algorithms to identify
what are students looking at in the classroom, providing
insights into the specific sources of their attention and po-
tential distractions. Addressing the shortcomings of exist-
ing datasets for classroom attention analysis, our proposed
dataset aims to provide a vast, diverse, and openly accessi-
ble resource, facilitating advancements in this crucial field.

3. GESCAM Dataset

This section details the comprehensive workflow em-
ployed for generating the Gaze Estimation based Synthetic
Classroom Attention Measurement (GESCAM) dataset.
An overview of the dataset generation process can be seen
in Fig. 3

Figure 3. GESCAM dataset creation flowchart

3.1. Dataset Generation and Annotation

Constructing the Classroom Stage - 3D Modeling
with Blender: Blender, a robust 3D modelling software,
was used to meticulously design lifelike classroom settings.
Its open-source nature, rich features, and strong commu-
nity support make it a cost-effective and flexible option for
crafting realistic environments. Leveraging Blender’s ex-
tensive toolkit, a wide array of classroom elements was cre-
ated, including furniture, walls, and windows. A core set
of 3D models representing common classroom components
served as the foundation, allowing for the generation of
20 distinct classroom layouts. These variations considered
factors like furniture arrangement, visual stimuli, teaching
methods, and lighting conditions to enhance dataset diver-
sity and capture potential influences on student gaze pat-
terns.

Populating the Classroom - Character Design with
Unreal Engine: Diverse human characters were de-
signed within Unreal Engine, a game development platform
renowned for its industry-standard character creation tools.
This software facilitated the development of characters en-
compassing a variety of ages, skin tones, genders, and cloth-
ing styles. This deliberate variation aimed to enhance the
generalizability of the dataset’s findings to real-world class-
rooms. Beyond the visual design, meticulous character rig-
ging was performed within Unreal Engine. This process
equipped the characters with the ability to perform natu-
ral and realistic movements, crucial for simulating authentic
classroom behaviors within the animations.
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Breathing Life into the Classroom - Animation and
Rendering with Maya and Arnold: Autodesk Maya,
a widely used 3D animation software, was employed to
craft animations that mirrored common classroom scenar-
ios. These animations depicted activities such as following
a teacher’s lecture, interacting with classmates, or glancing
out the window. For each animation, the Arnold rendering
engine, known for its high-fidelity output, was utilized to
generate visually stunning and realistic classroom scenes.

Dressing the Characters - Attire Design and Simula-
tion with Marvelous Designer: The attire for the charac-
ters was designed and simulated using Marvelous Designer,
a software specifically designed for creating and simulat-
ing clothing and fabrics. This involved creating virtual gar-
ments and simulating their movement on the designed hu-
man characters. Costumes were designed and simulated
to complement and blend in with the character animations
seamlessly. This entailed careful coordination between the
character rigging and the simulated clothing to ensure natu-
ral movement.

Capturing Different Perspectives - Multi Viewpoint
Video Rendering: To provide researchers with the flexibil-
ity to analyze gaze patterns from various angles, each class-
room scene was rendered from five distinct camera view-
points. These viewpoints were strategically chosen to cap-
ture the environment from a range of perspectives, thus pro-
viding more versatility in the dataset.

Standardizing the Dataset - Video Specifications: For
consistency, all videos adhered to identical specifications:
1-minute duration, 1920x1080 resolution (HD), and 10
frames per second. Adobe Premiere Pro then compiled ren-
dered images from each viewpoint into final video files.

This meticulously designed workflow for generating the
GESCAM dataset resulted in a rich resource for researchers
investigating gaze patterns within classroom environment.
The dataset generation process involved a combination of
3D modeling, animation, simulation, and rendering tech-
niques. The dataset’s diversity in classroom layouts, char-
acter profiles, animation scenarios, and camera viewpoints
fosters its generalizability.

The GESCAM dataset provides comprehensive anno-
tations for eye-gaze analysis. These annotations include
hand-labeled bounding boxes for heads and gaze lines for
all individuals within the dataset. Additionally, bounding
boxes and classification labels are provided for all objects
present in the scene. Depth maps are also available for each
RGB image, enriching the data for potential 3D gaze esti-
mation tasks. Some examples from the dataset alongside
annotations are shown in Fig. 4. Our dataset consists of
60,000 images containing 650,000 samples of individuals
with corresponding gaze targets. This data was collected
across 20 distinct classroom layouts and under various cam-
era viewing angles. Fig. 5 shows plots of metrics extracted

from the GESCAM dataset.

3.2. Comparison to other datasets

Current gaze target detection datasets primarily focus
on generic scenarios captured through in-the-wild images
or videos. Examples include GazeFollow [26], which
leverages images from diverse sources such as SUN [34],
MS COCO [19], Actions 40 [36], and PASCAL [6] to
train models for general gaze target detection. Similarly,
VideoAttentionTarget [5] was created for video gaze target
modeling using videos of interviews, sitcoms, reality shows
and movies. While both GazeFollow (with 160,000 head
bounding box annotations) and VideoAttentionTarget (with
164,541 annotations) offer considerable data size, they lack
domain-specificity. Models trained on these datasets of-
ten perform well for general applications but require fine-
tuning for adaptation to specific use cases. Addressing this
limitation, datasets like Gaze On Objects (GOO) cater to
specific domains like retail environments. GOO includes
192,000 synthetic images (GOO-Synth) and 9552 real im-
ages (GOO-Real) depicting humans gazing at various gro-
cery items. Each image is annotated with head bound-
ing boxes, gaze lines, object class labels, and segmentation
masks for the observed items. However, the retail setting
in GOO differs significantly from classrooms. Classrooms
typically involve denser arrangements of people interact-
ing with multiple objects simultaneously, unlike the sparser
scenarios found in GazeFollow or VideoAttentionTarget.
While the GOO dataset boasts a larger number of objects
compared to others, it maintains a one-to-many person-to-
object mapping. This may not accurately represent real-
world classroom scenarios, where many individuals often
interact with multiple objects simultaneously. Additionally,
existing datasets often prioritize people in the foreground
for gaze target detection tasks. This can lead to a bias to-
wards larger gaze vector magnitudes. However, classroom
settings involve a unique mix of near and far interactions,
resulting in a wider range of gaze vector magnitudes.

GESCAM bridges the gap in gaze target detection for
classrooms. It offers a realistic and domain-specific train-
ing ground by incorporating diverse layouts, characters, and
activities. Unlike existing resources, GESCAM features
densely populated classrooms, near and far gaze interac-
tions, and multi-object interactions, reflecting real-world
scenarios. This comprehensive dataset holds immense po-
tential to propel gaze target detection research in educa-
tional technology.

4. Method
4.1. Baseline Methods

Gaze target detection has benefited significantly from pi-
oneering works such as those by Recansens et al. [26], Lian
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Figure 4. Illustrative examples from the GESCAM dataset. From left to right, each column displays rendered RGB images of classrooms
captured from different viewpoints, corresponding depth maps for each RGB image, annotation of bounding boxes and labels for people
and various objects within the scene, masks highlighting individual objects for precise identification and gaze lines indicating points of
focus within the scene.

Figure 5. Visualizations derived from GESCAM dataset. The
first row depicts the head position density and gaze fixation posi-
tion density. The second row shows the normalized fixation rela-
tive to head position and average gaze direction (with directional
color code) of the rendered people within the dataset.

et al. [18], and Chong et al. [5]. These early approaches
often employed multi-stream architectures featuring sepa-
rate pathways for processing the scene image, head image,
and head location information. Building upon this founda-
tion, Fang et al. [8], Tonini et al. [33] and recently Athul
et al. [21] further enhanced performance by incorporating
depth information as an additional modality within their
network architectures.

These multi-stream architectures typically follow a com-
mon processing pipeline. The scene pathway extracts scene
embeddings from the input scene image using a dedicated
”scene backbone.” Similarly, the head pathway utilizes the

head image and head location data to extract head embed-
dings through a ”head backbone”. Fang et al., Tonini et
al. and Athul et al. additionally extracted depth embeddings
through a ”depth backbone”. Finally, the heatmap pathways
leverage the combined scene, head (and optionally depth)
embeddings to predict a gaze heatmap, where the peak point
signifies the predicted gaze fixation.

In this work, we leverage the aforementioned methods by
[26], [18], [5] as baseline models for training and evaluating
GESCAM dataset. Our evaluation focused solely on mod-
els that operate exclusively on the RGB input modality and
do not incorporate additional data streams like depth maps.
Consequently, the evaluation was limited to such architec-
tures, avoiding the introduction of supplementary process-
ing pathways that could increase computational complexity.
This selection allows us to establish a benchmark and com-
pare the performance of our proposed network against these
two-pathway techniques for gaze target detection.

4.2. GESCAM Network

Existing baseline approaches, while effective for
general-purpose tasks, necessitate more sophisticated de-
sign elements for precise gaze object capture within class-
room settings. Capturing the entire classroom often necessi-
tates high field-of-view camera systems. Notably, prevalent
neural network architectures commonly utilize a ResNet-
50 backbone accepting a fixed-size input (256 × 256).
This approach is suitable for datasets like GazeFollow and
VideoAttentionTarget, where the subject of interest occu-
pies a central position within a limited depth of field. How-
ever, this assumption is not valid in classroom scenarios due
to the broader field of view and multiple students. To ad-
dress this challenge, guiding the model towards identifying
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Figure 6. Overview of GESCAM network. Scene objects mask M conditions head pathway using a soft-attention layer. Object-attended
head embedding H ′ modulates scene pathway. The output is a 2D heatmap superimposed on the scene image for visualization.

crucial regions becomes essential, particularly for accurate
classroom attention estimation.

The model from [5] performed the best in our experi-
ments as seen in Sec. 5.2. Building upon the success of this
model, we adapted the network with minor modifications
to cater to the specific requirements of classroom environ-
ments. This modified architecture, named the GESCAM
network, demonstrates improved performance on the pro-
vided dataset. Our network incorporates scene objects mask
M into the Head pathway, and guides the model to focus on
salient objects of interest. The head embeddings H along-
side M is passed through a learable soft-attention layer A.

H ′ = A(H ⊕M) (1)

The object-attended head embedding H ′ finally modu-
lates the scene embedding S. The modulated scene embed-
ding S′ is given as :

S′ = S ⊗H ′ (2)

where ⊕ denote concatenation operation and ⊗ represent
elementwise multiplication operation.

The remainder of the network remains the same as in [5].
To improve the accuracy of the predicted gaze heatmaps, we
incorporated an angular loss term Lang in addition to the
standard mean squared error loss Lmse. The mathematical
formulation of the angular loss is provided below:

Lang = 1− (gx, gy) · (px, py)
∥ (gx, gy) ∥2 · ∥ (px, py) ∥2

(3)

where (gx, gy) is the ground-truth gaze vector and
(px, py) is the predicted gaze vector. The overall loss func-
tion is defined by:

Ltot = Lmse + Lang (4)

5. Experiments
We quantitatively and qualitatively evaluated our net-

work on the GESCAM datasets. We demonstrate that our
method surpassed the performance of prior two-pathway
methods across all metrics in Sec. 5.3.

5.1. Implementation Details

For controlled and consistent evaluation, all baseline
methods were trained and evaluated on a single Nvidia RTX
4080 GPU. Facilitating transparency and reproducibility,
we implemented them within a unified PyTorch codebase
and employed pre-training methods from the correspond-
ing publications. Standard data augmentation techniques
(random crop, color manipulation, random flip, and head
bounding box jittering) were applied during training.

5.2. Evaluation

To assess the effectiveness of each selected gaze target
prediction model from the literature, we employed a com-
prehensive suite of evaluation metrics, each offering valu-
able insights into different aspects of performance.

Area Under the Curve (AUC) assesses the model’s
ability to differentiate true gaze locations from false posi-
tives. We compare the predicted gaze distribution (flattened
output heatmap) with the ground truth heatmap (indicating
gaze presence/absence). A Receiver Operating Characteris-
tic (ROC) curve visualizes the model’s performance in cor-
rectly identifying gaze and avoiding false positives. The
AUC score (0-1) quantifies overall performance, with 1.0
indicating perfect agreement between predicted and actual
gaze distributions. L2 Distance (Dist.) measures the Eu-
clidean distance between the ground truth target location –
the actual point of gaze – and the point of maximum in-
tensity within the predicted gaze heatmap. To ensure a fair
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Figure 7. Qualitative results. The red and green lines denote ground truth and predictions respectively. The head bounding box for each
person is assigned a unique color for easier identification across the images.

comparison across images of varying sizes, we normalize
the image height and width to 1. This normalization step
accounts for potential discrepancies solely due to image di-
mensions. Angular Error (Ang.) quantifies the angular
difference between the predicted gaze direction and the ac-
tual gaze vector. The gaze vector is calculated based on the
face location and the gaze point. A lower angular error in-
dicates a closer alignment between the predicted and actual
gaze directions.

Method AUC ↑ Dist. ↓ Angle ↓
Random 0.512 0.380 66.0
Center 0.553 0.235 51.1
Recansens et al. 0.906 0.157 40.9
Lian et al. 0.935 0.125 35.5
Chong et al. 0.938 0.112 36.6
GESCAM (M only ) 0.941 0.110 33.5
GESCAM (M & Lang) 0.943 0.109 32.9

Table 1. Comparison of different methods on GESCAM dataset.
The numbers in bold represent best results

5.3. Results

Experimental results are given in Tab. 1. Random:
To establish a performance lower bound, we generated
heatmaps with random values (standard normal distribu-
tion) and evaluated them against the ground truth. This pro-
vides a benchmark for comparing more complex networks.
Networks that consistently outperform this random baseline
demonstrate the ability to learn meaningful patterns from
the training data. Center: The predicted gaze point is al-
ways fixed to be at center of the image.

Building upon the work of [5], which achieved the
best performance among all the evaluated baselines, the

GESCAM network demonstrates superior overall perfor-
mance. However, a consistent observation across all meth-
ods is the relatively high angular error. This can be at-
tributed to scenarios where individuals are positioned away
from the camera, resulting in obscured facial features. Con-
sequently, fixation point estimation becomes inaccurate for
all models in such cases. Notably, the angular error metric
amplifies this effect while distance and AUC metrics remain
less affected. Figure 7 showcases example images with gaze
point predictions from the GESCAM network.

6. Conclusion
This work presented GESCAM, a novel dataset specif-

ically designed for classroom gaze estimation. Curated
to encompass diverse classroom scenarios, GESCAM fills
a critical gap in the absence of domain-specific datasets
in the educational domain. After benchmarking exist-
ing 2-pathway models on GESCAM, it became evident
that there is room for further performance improvement.
Furthermore, we introduced the GESCAM network, a 2-
pathway architecture demonstrating better performance on
GESCAM dataset. We expect that this research will stim-
ulate further investigation and progress in gaze estimation
within the educational domain.

7. Future Work
In this paper, we focus on two-pathway networks as

baseline methods. However, GESCAM dataset (including
depth maps) allows us to explore additional modalities. Fur-
thermore, the correlation between classroom attention es-
timation and GTD warrants further investigation. Future
work could involve introducing new metrics and framing
attention estimation as a function of GTD. Additionally,
bridging the gap between synthetic and real-world settings
remains a question for future research.
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