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Abstract

We introduce a new method, called the Gaze Scanpath
Transformer, for predicting a search target category dur-
ing a visual search task. Previous methods for estimating
visual search targets focus solely on the image features at
gaze fixation positions. As a result, the previous methods
are unable to take into account the spatiotemporal infor-
mation of gaze scanpaths and lack consideration of the se-
mantic interrelationships between objects on gaze fixations.
In contrast, our method can estimate a visual search target
based on the spatiotemporal information of a gaze scan-
path and interrelationships among image semantic features
at gaze fixation positions. This is achieved by embedding
the position and the duration of each fixation, and the order
of fixations into the image semantic features, and by using
the model’s attention mechanism to facilitate information
exchange and emphasis on image semantic features at gaze
fixation positions. Evaluation using the COCO-Search18
dataset demonstrates that our proposed method achieves
significant performance improvements over other state-of-
the-art baseline models for search target prediction.

1. Introduction

Deducing a person’s attributes, behavior, and intentions
based on their gaze behavior is a challenging and important
task for various research areas, including human-computer
interaction, cognitive science, and behavioral psychology.
Significant research efforts have been made on the analysis
of gaze behavior for various purposes such as estimating in-
dividuals’ states [23, 26, 40], assessing skill levels [9, 10],
measuring concentration [45, 49, 50], determining interests
and intentions [4, 7, 31], inferring drivers’ intentions [44],
and enhancing interactions with robots [18, 25]. Model-
ing the relationship between gaze behavior and the seman-
tic characteristics of the objects viewed in images or videos
[19, 20, 36, 37] is essential for these applications, and there
is a significant demand for its further advancements.

Our study focuses on search target’s category inference
from gaze scanpaths during a visual search task. Visual
search is a task where a person tries to answer whether or
not a target object of a given category exists in an image
within a limited time frame [12, 22, 47, 51]. Some previous
studies have addressed the problem of estimating a search
target from gaze fixations where the search target exists in a
given image [3, 33, 38]. However, the existing methods fo-
cus solely on image features at gaze fixation positions and,
as a result, fail to incorporate the spatiotemporal informa-
tion of gaze scanpaths and lack mechanisms for capturing
interrelationships of image semantics among different im-
age regions.

In this study, as visual search target inference, we tackle
the problem of estimating the search target category in situ-
ations where it is unknown whether the target exists within
the image or not. We handle a multitask learning model that,
in addition to estimating the category of the target, simul-
taneously estimates the presence or absence of the target in
the image and infers the subject’s judgment regarding the
target’s presence or absence.

In this paper, we introduce a novel method, named the
Gaze Scanpath Transformer (GST), for predicting the cat-
egory of the visual search target. The GST integrates spa-
tiotemporal embeddings such as the position, duration of
each fixation, and the order of fixations, along with a mech-
anism to capture the interrelationships between semantic
features at gaze fixation positions. Inspired by prior re-
search [3], the GST first extracts semantic features from an
input image using the off-the-shelf panoptic segmentation
model [21]. Then, the GST explicitly embeds these features
with the position, duration, and order of gaze fixations. Fol-
lowing this, Feature Mixer, equipped with a multi-head at-
tention mechanism, facilitates the exchange of information
between the semantic features of gaze fixations and high-
lights the interrelationships among these features. Finally,
this process yields features that encompass the spatiotempo-
ral information of gaze and the semantic interrelationships
between fixations, which are then used to predict the target.

Our method was evaluated on the COCO-Seacrh18
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dataset [12, 47] for visual search. In experiments, our
method demonstrated significant superiority in performance
and outperformed existing methods. Through ablation stud-
ies, we show the effects of embedding of gaze fixations and
the impacts of Feature Mixer that exchanges and highlights
the interrelationships between semantic features at gaze fix-
ation positions. Furthermore, we evaluated our method’s
performance under various conditions where the target is
present, absent, or mixed in visual search target inference.
Through this evaluation, we identified the limitations of
evaluation within the existing problem setting where the
target is present in the image, as well as issues regarding
dataset bias and the generalizability of the methods.

The main contributions of this work are summarized as:
1. We propose a new visual search target inference model

that embeds spatiotemporal information for semantic
features at gaze fixation positions and captures the in-
terrelationships of semantic features.

2. Through comprehensive evaluations and ablation stud-
ies, our research demonstrated the superiority of our pro-
posed method over existing methods and found the lim-
itations of problem settings.

2. Related Work
Task estimation from gaze behavior. Previous studies
have demonstrated that gaze behavior can vary significantly
depending on the tasks assigned to subjects, such as esti-
mating the richness or the age of people in a painting, ini-
tially observed by Yarbus [48]. Follow-up experiments by
Borji et al. confirmed the feasibility of classifying tasks
by utilizing effective gaze features [5]. The research field
experienced remarkable progress as the scope of datasets
widened and the variety of tasks increased. For instance,
Bulling et al. created a dataset designed for action classifi-
cation using first-person videos and wearable eye trackers,
showcasing the potential of integrating gaze data with vari-
ous modalities [8]. Additionally, recent efforts have focused
on creating datasets and a model for identifying user tasks in
VR environments by utilizing eye-tracking data from head-
mounted displays [17].
Scanpath prediction and analysis during visual search.
The study of scanpath prediction, aiming to forecast where
people look while viewing images or videos, has expanded
from not only free-view settings [1, 2, 15, 39] but also to
task-related scenarios [11, 28, 32, 46]. The creation of the
COCO-Search18 datasets [12, 47] has played a key role,
providing a way to capture eye movements during visual
searches and facilitating a deeper examination of gaze be-
havior. Leveraging these datasets, researchers have pro-
posed several models to predict gaze scanpaths in visual
searches, considering the image and target object’s cate-
gory [13, 24, 28, 32, 46]. Conversely, this paper proposes
a new method for predicting the category of a target object

in visual search, given an image and a scanpath as input, by
analyzing the spatiotemporal semantics of the scanpath.
Visual search target inference from gaze behavior. Pre-
vious studies have explored models for estimating visual
search targets. Zelinsky et al. demonstrated that objects’
features at gaze fixation positions might resemble those of
the target during a visual search, utilizing a classifier based
on SIFT features [27] and local color histograms to discern
the target among various distractions [52]. Building on this
concept, Borji et al. employed hand-crafted features like
RGB histograms, gist features [30], and local binary pat-
terns (LBP) [29] for inference [6]. Satter et al. introduced
a method using the Bag of Visual Words (BoVW) [14]
as a method for encoding visual features of fixated im-
age patches [33]. Stauden et al. further extended this
method by implementing the Bag of Deep Visual Words,
utilizing deep visual words from a pre-trained CNN model,
achieving higher performance [38]. Following this pro-
gression, Barz et al. also reported significantly improved
performance when creating Visual Words based on seman-
tic segmentation results instead of Deep Visual Words [3].
Extending beyond merely estimating a user’s search target
from gaze data, some methods have also been developed to
create a visual representation of the search target categories,
further enriching the application of gaze information in vi-
sual search tasks [34, 35].

However, existing methods have solely focused on the
image features at gaze fixation positions, failing to incorpo-
rate the spatiotemporal information of gaze scanpaths and
lacking mechanisms to capture the semantic interrelation-
ships among objects within a given image. In contrast, the
GST proposed in this paper integrates information on the
position, duration of each fixation, and the order of fixations
as well as the interrelationships among semantic features.

In evaluating this method, we found limitations in the
problem settings of existing research. Existing problem set-
tings allow for the signal of a target’s presence within an
image, enabling the estimation of the target from clues ob-
tained from the entire image without focusing on gaze be-
havior, thus not adequately assessing the model’s perfor-
mance. Therefore, this paper employs a problem setting fo-
cusing on estimating the category of the search target during
a visual search under the condition that the presence of the
search target within the image is not predetermined. We
compared and analyzed the model’s performance using this
problem setting to appropriately evaluate its effectiveness.

3. Gaze Scanpath Transformer

3.1. Problem formulation and training objective

We consider the problem of identifying the category of a
search target from an image feature and gaze fixations dur-
ing visual search. This problem assumes a scenario where
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Figure 1. Overview of the proposed method. In the first stage, the entire image is extracted from the features processed by the panoptic
segmentation model. Each feature is then embedded with the fixated position and gaze order, and Feature Mixer is used to emphasize the
relationship between all features. The features are then used for class classification by MLP Head.

it is unknown whether the target object is present or absent
in the image. The expected output of the model for this
problem is a set of three labels: the category of the target
object, a binary state indicating the presence or absence of
the target in the image, and a binary state reflecting the sub-
ject’s judgment on whether the target is present or absent.
While the primary aim of this task is estimating the tar-
get category, the estimation of the target’s presence and the
subject’s judgment are performed simultaneously to capture
gaze behavior.

For training, we assume a set of N images Ii, and corre-
sponding gaze scanpaths Gi and sets of labels li are given
as {Ii,Gi, li}Ni=1. The gaze scanpath Gi = [xi,yi, ti]

T is
a combination of m gaze positions (xi,yi) and their fixa-
tion durations ti. To ensure the input gaze data matches the
maximum gaze fixation count n, the missing parts of the
gaze scanpath are padded with n − m zeros at the end of
each vector. The set of labels is defined as li = {lti , lsi , l

j
i },

where lti represents the target category, lsi indicates the state
of target presence, and lji reflects the subject’s judgments.

Let l̂i be the output obtained from the trained visual
search target inference model GST is given as

l̂i = GST (Ii,Gi). (1)

For visual target category inference as multi-class clas-
sification, we utilize categorical cross-entropy loss for de-
termining the specific task label from multiple classes
Lt(l̂t, lt). Moreover, for binary classification tasks, such
as determining the state of target presence and the correct-
ness of subject’s judgment, we use binary cross-entropy loss
functions Ls(l̂s, ls) and Lj(l̂j , lj). The total loss function,
combining the three loss functions with balance factors α
and β, can be represented as follows:

Figure 2. This figure illustrates the Embedding Module, which ap-
plies embeddings to semantic features extracted through panoptic
segmentation. After flattening these features into patches, a 2D
Spatial Embedding is applied to every patch to incorporate spatial
information. For patches at gaze positions, two additional embed-
dings are applied: the Gaze Sequence Embedding, representing
the order of gaze, and the Gaze Duration Embedding, capturing
the duration of gaze.

Ltotal = Lt + αLs + βLj (2)

3.2. Model

As shown in Figure 1, the Gaze Scanpath Transformer
model first extracts semantic features from an input image
Ii. Then, all features are flattened, and features embed-
ded with gaze information from gaze features gi are sent
to Feature Mixer. Finally, the MLP classifier predicts labels
li = {lti , lsi , l

j
i } by using the resulting features. The follow-

ing paragraphs describe each component of the proposed
model.
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Feature extraction Building upon insights from prior re-
search [3], our model uses the result of panoptic segmenta-
tion [21] as semantic features for visual search target infer-
ence, obtained by first conducting panoptic segmentation on
images of size (H , W ), and then downsizing the segmen-
tation results to (h, w). After this downsizing, the results
are transformed into one-hot encoded vectors for each la-
bel, thereby expanding the channel dimension to D. The
final processed features are semantic features whose size is
(D,h,w), where D is the channel count from the one-hot
encoding, and h and w represent the height and width of the
downscaled feature map, respectively.

These semantic features are then transformed into a se-
quence of feature patches of size P × P , resulting in[
f1i ; f

2
i ; · · · ; f

hw/P 2

i

]
∈ RP 2D×hw/P 2

. Each patch cap-
tures localized semantic information, enabling the model to
focus on specific segments of the scene. Subsequently, the
feature sequence undergoes a flattening process, and a class
token fclass is appended to generate a comprehensive feature
set and is given as follows:

falli =
[
fclass; f

1
i ; f

2
i ; · · · ; f

hw/P 2

i

]
(3)

Embedding Module This module integrates the position,
duration, and order of gaze fixations into the semantic fea-
tures of the image, enhancing the model’s capability to in-
terpret the spatiotemporal and semantic aspect of gaze scan-
path.

Following the Vision Transformer [16], we apply 2D ab-
solute positional embeddings (PPE) to all patches. Along-
side, we incorporate Gaze Duration Embedding (GDE)
and Gaze Sequential Embedding (GSE), which are specifi-
cally designed to embed gaze information into the semantic
features. The encoding process for both GDE and GSE is
inspired by traditional 1D absolute positional encoding and
given as follows:

For GDE, encoding the duration of fixations t:

GDE(pos, 2d) = sin

(
t

100002d/D

)
(4)

GDE(pos, 2d+ 1) = cos

(
t

100002d/D

)
(5)

where pos represents the position of the gaze fixations(x, y)
in the gaze scanpath, d is the dimension index. Similarly,
for GSE, encoding the order of fixations k:

GSE(pos, 2d) = sin

(
k

100002d/D

)
(6)

GSE(pos, 2d+ 1) = cos

(
k

100002d/D

)
(7)

Figure 3. Example of images on COCO-Search18 [12, 47].These
datasets are comprised of subsets for different task scenarios: the
”Target Present (TP)” subset includes tasks where the search ob-
ject is present within the image, and the ”Target Absent (TA)” sub-
set is designed for tasks where the search object is not present in
the image.

These embeddings are added to each patch embedding
falli and introduced to Feature Mixer as shown in the equa-
tion below:

zi = falli +PPE+GDE+GSE (8)

Feature Mixer Feature Mixer is designed to exchange in-
formation between each semantic feature at gaze fixation
position and enhance the interrelationship of each seman-
tic feature during visual target search tasks. The underly-
ing concept is based on the premise that the gaze behavior
in visual search is not random but influenced by complex
interactions among the features of different gaze fixations.
To implement this concept, we utilize the multi-head atten-
tion mechanism in [16]. The multi-head attention mech-
anism emphasizes the semantic features of each gaze fix-
ation, allowing the model to capture complex interactions
among the features at gaze fixation positions. This leads to
achieving a comprehensive semantic representation of the
gaze scanpath during a visual search task.

Afterward, as described by the following equation, MLP
heads corresponding to each label output the labels.

l̂i = MLPheads(FeatureMixer(zi)) (9)

4. Experiment
4.1. Experimental settings

Dataset We used the COCO-Search18 datasets [12, 47]
that recorded the gaze information during the task where
subjects searched for a specific target in an image and an-
swered whether it was present in the image (e.g., search-
ing for a fork and answering whether it was present). Fig-
ure 3 shows some examples of the dataset. The COCO-
Search18 datasets consist of two subsets: the Target Present
(TP) dataset for tasks where the search object is present
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in the image and the Target Absent (TA) dataset for tasks
where the search object is absent from the image. Each sub-
set consists of 3101 images. The COCO-Search18 datasets
contain 18 target categories, with 40558 training samples,
6155 validation samples, and 12238 test samples in total. In
our research, both subsets were employed for training and
evaluating the models.

Baseline In our comparative analysis, we prepared two
baseline methods: the BoVW-based model and GazeGNN,
both serving as baselines for evaluating our proposed
method’s performance. The existing visual search tar-
get inference model, BoVW-based model [3], uses a Bag
of Visual Words (BoVW) representation of semantic fea-
tures extracted from gaze positions and Support Vector Ma-
chines (SVM) for classification. We investigated the rela-
tionship between the number of Visual Words and perfor-
mance, and set it to 500, which showed the highest value.
GazeGNN [42], which is originally introduced for gaze-
informed X-ray image diagnosis, has been adapted and re-
trained for search target inference tasks. The inputs for both
methods use semantic features converted from segmenta-
tion results in the same manner as the proposed method.
Additionally, gaze information that has been formatted us-
ing each model’s original preprocessing method is also in-
cluded in the inputs.

Evaluation settings In this study, we utilize a compre-
hensive evaluation framework across three experimental
settings: TP (Target Present), TA (Target Absent), and
TP+TA (combined), to thoroughly assess our model’s per-
formance as follows.
• TP/TA experiments: These experiments are aimed to

test the model’s performance on inferencing one of 18 tar-
get categories, using accuracy as the metric on each of the
two subsets (TP and TA) of the COCO-Search18.

• TP+TA experiment: To evaluate the performance of the
visual search target inference in situations where the pres-
ence of the target in the image is unknown, the TP (Target
Present) and TA (Target Absent) subsets are merged. We
use the accuracy of the model’s inference on the target
category (Target), the accuracy of estimating the presence
of the target (Presence), and the accuracy of estimating
the subject’s judgment (Judgment) as metrics.

Implementation details For the extraction of seman-
tic features, our model employs the Detectron2 frame-
work [43], utilizing PanopticFPN [21] as the backbone. The
size of the input images(H,W ) is the maximum size of the
original images. The size of the semantic features is set to
(D,h,w) = (400, 19, 30) and patch size is set to P = 1.
Feature Mixer is composed of L = 6 layers of transformer
blocks [16], the number of multi-heads is set to 16 and the

Table 1. Performance evaluation in the TP+TA experimental set-
ting using accuracy (%) as the metric: the GST surpasses baseline
models. Scores achieving the highest metric are emphasized in
bold font. Random represents performance at chance level.

Model Target Presence Judgment

Random 5.16 50.23 92.20
BoVW [3] 27.38 78.59 92.21
GazeGNN [42] 38.77 73.28 92.02

GST 46.45 84.99 92.47

dimension of MLP is set to 2048. The maximum length of
the gaze scanpath is set to n = 20. For the training pro-
cess, we employed the Adam optimizer. The learning rate
was set at 1.0× 10−4, with momentum set to 0.9, through-
out 10 epochs. In this method, we did not apply any data
augmentation. The balance factors for the loss function, are
α = 1 and β = 1. The model’s performance was evaluated
against the validation dataset at the end of each epoch, and
the iteration with the highest validation score was selected
for testing and analysis.

4.2. Model comparison

Quantitative comparison Table 1 presents the perfor-
mance obtained after training on the TP+TA dataset and
subsequent testing on the TP+TA test set. The results show
the superior performance of our proposed method compared
to the baselines. Notably, the GST demonstrates the high-
est Target accuracy at 46.45% and Presence accuracy at
84.99%, which are substantial increments from the base-
lines. This shows that our method demonstrates a signifi-
cant superiority of the visual search target inference in the
TP+TA Experiment, underscoring the robustness and suit-
ability of the proposed model.

Visual comparison The confusion matrices presented in
Fig.4 offer a clear visual comparison of the proposed
method and baselines. Compared to the BoVW model [3]
in (a) and the GazeGNN [42] in (b), the proposed method in
(d) demonstrates accurate classification performance, high-
lighted by a distinctly bright diagonal.

Fig.5 presents visual comparisons of the proposed
model’s intermediate results, along with the input images
and their respective gaze scanpaths. The upper row illus-
trates the TP setting where the target object (a microwave)
is present in the image, whereas the lower row illustrates
the TA setting with a clock as the target. Moreover, this
figure includes outcomes from the panoptic segmentation
performed by the feature extractor alongside the attention
weights generated by the GST’s attention mechanism. A
grid overlay highlights the size of the input patches. As
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(a) BoVW [3] (b) GazeGNN [42]

(c) GST w/o all embeddings (d) GST w/ full embeddings

Figure 4. Visual comparison of confusion matrix. (a) and (b) show
the baseline performances, whereas (c) and (d) show how various
embeddings of the GST influence performance.

shown in the center and right image, the attention weights
are noted to mirror the contours of the semantic features fed
into the Feature Mixer. This is due to the high similarity
among the semantic features of each patch from panoptic
segmentation. Comparing the left and right of both TP and
TA scenarios in Fig.5, it is demonstrated that patches in the
right images corresponding to the gaze scanpaths in the left
images are highlighted. This observation suggests that Fea-
ture Mixer’s multi-head attention mechanism focuses on ar-
eas embedded with the duration and order of gaze fixations.
Additionally, in the TP scenario, target objects (e.g., the mi-
crowave in the image) are emphasized by the multi-head at-
tention. This indicates that Feature Mixer captures image
semantic features and embeddings of gaze fixations.

4.3. Ablation study

Effect of position embedding The ablation study de-
tailed in Table 2 provides an insightful examination of the
GST full model’s performance, with a particular focus on
the integration of embeddings, including both gaze and
patch embeddings.

Comparing the full model in the bottom row of Table 2
with the model that lacks all embeddings in the top row,
it is evident that incorporating embeddings significantly
enhances the model’s performance, with Target accuracy
increasing to 46.45% and Presence accuracy to 84.99%.
Furthermore, comparing the performance between the full
model and the model that includes only PPE and lacks gaze

Table 2. Ablation study on the TP+TA experiment: Demonstrat-
ing the effectiveness of 2D absolute positional embeddings to all
patches (PPE), Gaze Duration Embeddings (GDE), and Gaze Se-
quential Embeddings (GSE) described in equation (8). The highest
score for each metric is highlighted in bold font.

PPE GDE GSE Accuracy (%)

Target Presence Judgment

✗ ✗ ✗ 37.75 67.90 92.32
✓ ✗ ✗ 39.05 70.75 91.78
✗ ✓ ✗ 38.62 69.88 92.32
✗ ✗ ✓ 44.36 84.09 92.32
✗ ✓ ✓ 46.76 85.50 92.43
✓ ✗ ✓ 43.51 84.19 91.95
✓ ✓ ✗ 41.45 81.64 92.29
✓ ✓ ✓ 46.45 84.99 92.47

Table 3. Ablation study of Feature Mixer on the TP+TA exper-
iment with Accuracy (%) as the metric: Showcasing the Trans-
former’s effectiveness. The highest score for each metric is high-
lighted in bold font.

Comparison Target Presence Judgment

MLP-Mixer [41] 33.18 62.91 91.78
Transformer [16] 46.45 84.99 92.47

embeddings, it is shown that the impact of gaze embed-
dings is significant. The performance difference due to the
presence or absence of gaze embeddings is visually evident
in the confusion matrices of Fig. 4, especially between (c)
GST w/o all embeddings and (d) GST w/ full embeddings
is also visually reflected in the confusion matrices of Fig. 4,
between (c) GST w/o all embeddings and (d) GST w/ full
embeddings.

This ablation study revealed that all embeddings are ef-
fective, with varying impacts. Gaze Duration Embeddings
(GDE) had a minor effect, slightly less impactful than Patch
Position Embeddings (PPE) or Gaze Sequential Embed-
dings (GSE). GSE, encoding the sequence of gaze fixations,
significantly enhanced accuracy over other methods.

Furthermore, it is found that combinations of embed-
dings can either enhance or degrade performance. For in-
stance, PPE alone or in combination with GDE improved
performance, but combining it with GSE led to a decrease
in performance. On the other hand, the coexistence of two
types of gaze information embeddings, GDE and GSE, is
observed to enhance model performance. This suggests that
both GDE and GSE include critical features for estimating
the search target and the presence of the target, leading to
the conclusion that they are both important for the task.
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Figure 5. Visual examples of model inputs and intermediate features. The top row shows a sample from TP, and the bottom row displays
a sample from TA. For TP, the search target is a microwave, and for TA, it’s a clock. The left images are input images with corresponding
gaze scanpaths, where the size of each circle represents the duration of fixation, and numbers indicate the order of fixations. The middle
images show the results of panoptic segmentation, with each area’s category and its confidence level denoted numerically. The images on
the right illustrate the attention weights from the GST’s attention mechanism, where brighter colors indicate areas the model focused on
more intensely.

Effect of feature mixer To evaluate the superiority of the
multi-head attention mechanism within Feature Mixer mod-
ule, we compared its performance against a version where
the components of each layer of Feature Mixer, specifically
Transformer Blocks [16], were replaced with Mixer Lay-
ers from MLP-Mixer [41]. The MLP-Mixer utilizes MLP
layers instead of the multi-head attention mechanism to ex-
change and emphasize information between features, mix-
ing them within the spatial domain. For a fair comparison,
the number of Mixer Layers and the dimensions of input
feature and output feature of each layer were set identical to
those in the GST.

The TP+TA experiment, as shown in Table 3, reveals that
the feature mixing technique employed by MLP-Mixer is
less effective than that of the multi-head attention mecha-
nism of the Transformer utilized in the GST. This differ-
ence in performance suggests that the GST’s Feature Mixer
significantly contributes to the improvement in accuracy for
both Target and Presence inference.

Effect of number of fixations Table 4 shows that the
number of fixation points significantly affects performance.
As fixation points increase from 3 to 11, there’s a general
trend of improved Target accuracy and Presence accuracy,
indicating that more gaze fixation points contribute to bet-
ter performance. However, when the number of fixations
surpasses 7, the enhancement to performance from further
fixations is minimal.

Table 4. Ablation study of the GST in the TP+TA experiment,
comparing performance differences due to the number of fixations
(fix num) using accuracy (%) as the metric. Bold font indicates
the performance of the default setting of the GST.

fix num Target Presence Judgment

3 39.43 70.04 91.92
5 44.66 84.70 92.34
7 46.45 84.99 92.47
9 47.18 85.06 92.45
11 47.74 85.12 92.48

Table 5. Ablation study of the GST in the TP+TA experiment,
comparing performance differences of balance factor (α, β) using
accuracy (%) as the metric. The highest score for each metric is
highlighted in bold font.

Parameters Target Presence Judgment

(0, 0) 37.92 - -
(0.1, 0.1) 38.43 67.89 92.24
(0.1, 1) 38.42 68.22 92.30
(1, 0.1) 47.09 85.10 92.39
(1, 1) 46.45 84.99 92.47

Effect of balance factor of loss function The tuning of
the balance factor of loss function (2), (α, β) plays a piv-
otal role in model performance. α and β are balance fac-
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Table 6. Performance comparison on TP / TA experiment using
accuracy (%) as the metric. The datasets during training and test-
ing are identical. The highest score for each metric is highlighted
in bold font.

Model TP → TP TA →TA

BoVW [3] 30.57 28.35
GazeGNN [42] 62.96 40.82

GST 60.05 42.57

Table 7. Performance comparison across different training and
testing scenarios. In addition to TP+TA, which utilizes both Target
Present (TP) and Target Absent (TA) datasets, we also introduce
TP+TA multi, trained within a multi-task learning framework. The
bold font highlights the performance of the GST’s default setting.

Training → Testing Accuracy (%)

TP → TA 7.30
TA → TP 11.54
TP → TP+TA 33.67
TA → TP+TA 27.06

TP+TA → TP 44.00
TP+TA → TA 31.85
TP+TA → TP+TA 37.92

TP+TA multi → TP 54.38
TP+TA multi → TA 38.51
TP+TA multi → TP+TA 46.45

tors that illustrate the degree of emphasis on estimating the
presence of a target and the subject’s judgment, respec-
tively. As shown in Table 5, setting (α, β) to (0, 0), which
means not emphasizing either loss, results in decreased per-
formance, highlighting the importance of these balance fac-
tors in the model’s learning process. Adjusting (α, β) to
(1, 1) achieves almost optimal results, reflecting a balance
in the impact of Target and Presence accuracy. This demon-
strates the importance of the model considering not only the
target category inference that can be inferred from the im-
age alone but also inferences of gaze behavior, such as the
presence of the target and the subject’s judgment, in visual
target category inference. However, the finding that β has
a relatively minor impact suggests that prioritizing the in-
ference of a target’s presence over the subject’s judgment
could lead to better performance outcomes.

4.4. Discussion and Limitation

As shown in Table 6, training and testing on the same
dataset (TP → TP, TA → TA) generally results in higher
accuracy. Notably, in the TP scenario, models like
GazeGNN [42] and the GST, which utilize semantic fea-
tures from the entire image, outperform BoVW [3] that

utilizes only semantic features from gaze fixation positions.
This is because, in the (TP → TP) experiment, the target can
be identified without gaze information since it is present in
the image. Therefore, it can be argued that evaluating mod-
els like GazeGNN and the GST, which utilize features from
the entire image, may not be appropriate in the setting (TP
→ TP) used in the previous studies [3].

Due to the availability of clues from the entire image,
high performance is achieved because of dataset bias, but
there is still a certain effectiveness in focusing on gaze infor-
mation. Comparing the performance when training solely
on search target category inference (TP+TA) versus when
training on related gaze behavior tasks as well in a multi-
task learning framework (TP+TA multi) in Table 7, the
(TP+TA multi) setup showed higher performance in all test
patterns (TP, TA, TP+TA). This indicates that gaze infor-
mation assuredly contains clues for estimating the search
target.

This study relies on datasets collected under specific
conditions, potentially causing the model’s predictions to be
influenced by biases inherent in the dataset. Observations of
the model’s performance on the same environment (TP →
TP, TA → TA) and the performance of the GST without em-
beddings reveal that it is possible to estimate the target using
only the features within the image, without heavily relying
on gaze information. The model appears to overly depend
on the semantic features of images without fully utilizing
gaze information.

Furthermore, as observed from the results of experiments
conducted on the same environments (TP → TP, TA → TA)
and across different environments (TP → TA, TA → TP, TP
→ TP+TA, and TA → TP+TA), there is a significant gap be-
tween performance within the same environments and per-
formance in cross-environments settings. This suggests that
gaze behavior is highly susceptible to changes across differ-
ent environments, potentially impacting the generalizability
of the proposed method.

5. Conclusion
In this work, we proposed the Gaze Scanpath Transformer,
a novel method that predicts search target categories
from image semantic features and gaze scanpath. Unlike
previous methods, the GST integrates spatiotemporal and
semantic information of gaze scanpath, improving the
accuracy of visual search target inference. The effec-
tiveness of this method has been demonstrated through
evaluation on the COCO-Search18 dataset. We hope
that our research contributes to a deeper understanding
of gaze behavior in visual search targets and serves
as a stepping stone for future models of visual search
target inference. Acknowledgement This work was
supported by JST Adopting Sustainable Partnerships for
Innovative Research Ecosystem (ASPIRE), Grant Number
JPMJAP2303, and SPRING Grant Number JPMJSP2108.
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