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1. Proposed Method – Omitted Details
We provide the mathematical formulation of Dual-SAM
and Cross-SAM in Algorithm 1 and 2, respectively.

Algorithm 1 Dual-Spatial Attention Module (Dual-SAM)

Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·k

1: X ′
t−1 = [Xt−1;Xt −Xt−1]

X ′
t = [Xt;Xt −Xt−1] ∈ Rh×w×2·k

2: At−1 = σ(conv(ReLU(conv(X ′
t−1))))

At = σ(conv(ReLU(conv(X ′
t)))) ∈ Rh×w×1

3: vt−1 =
∑

h,w At−1 ⊙Xt−1

vt =
∑

h,w At ⊙Xt ∈ Rk

4: zt = [vt−1;vt − vt−1;vt] ∈ R3·k

5: return zt

Algorithm 2 Cross-Spatial Attention Module (Cross-SAM)

Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·d

1: Xt−1 = flat(conv(Xt−1) + 1h,w ⊙ P2d)
Xt = flat(conv(Xt) + 1h,w ⊙ P2d) ∈ Rh·w×d

2: Xt−1 = crossatten(Xt−1, Xt, Xt)
Xt = crossatten(Xt, Xt−1, Xt−1) ∈ Rh·w×d

3: vt−1 =
∑

h,w unflat(Xt−1, h× w)

vt =
∑

h,w unflat(Xt, h× w) ∈ Rd

4: zt = [vt−1;vt − vt−1;vt] ∈ R3·d

5: return zt

Transformer Block. Figure 1 shows the architecture of
a single transformer layer used in the temporal sequence
model of the STAGE method. MLP is a Multi-Perceptron
layer, and we use L layers stacked together in the TSM.

We incorporate learned temporal position embeddings to
enable the transformer model to discern temporal relation-
ships within the input feature sequence. These embeddings

are uniquely associated with each position, providing the
model with explicit information about the relative ordering
of elements within the sequence. The embedded features
are then passed through multiple layers, each consisting of
masked multi-head attention, LayerNorm (LN), and MLP.
Masked multi-head attention allows the transformer model
to attend to only past frame features. The output of the TSM
is a feature sequence passed through an LN layer, similar to
the GPT-2 model [3].
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Figure 1. Block diagram of transformer temporal sequence model.

2. Additional Implementation Details

The Dual-SAM consists of two convolutional layers with
kernel size 1 and output feature maps of 64 and 1, respec-
tively. The first convolutional layer has a group normaliza-
tion layer [4] applied to the output features, followed by a
dropout layer with p = 0.5. In Cross-SAM and Hybrid-
SAM, we project the incoming features to higher channels
through a convolution layer with d = 512 and a kernel size
1. After adding 2D positional embeddings to the projected
feature maps, they go through the cross-attention encoder,
which consists of four heads and two layers with an embed-
ding size of 64.

1



Method Full 180◦ 20◦

Dual-SAM(1-block)+Tx 10.13 9.93 7.23
Hybrid-SAM(1-block)+Tx 10.10 9.90 7.33
Dual-SAM(4-blocks)+Tx 12.13 11.68 9.33
Hybrid-SAM(4-blocks)+Tx 10.25 10.08 7.27

(a) Within-dataset evaluation

Method EyeDiap Full 180◦

Dual-SAM(1-blocks)+Tx 6.77 23.99 23.38
Hybrid-SAM(1-blocks)+Tx 6.54 23.77 23.17
Dual-SAM(4-blocks)+Tx 7.27 23.34 22.74
Hybrid-SAM(4-blocks)+Tx 7.55 23.52 22.91

(b) Cross-dataset evaluation

Table 1. Ablation Study: Comparison of different numbers of
SAM blocks employed in our STAGE method. Tx is transformer-
based TSM, and training is performed for within-data and cross-
data settings in (a) and (b), respectively. The metric reported is
mean angular errors (in degrees).

The TSM model has two variants: an LSTM variant and
a transformer variant. The LSTM variant consists of one
unidirectional LSTM layer with a hidden dimension of 128.
The transformer variant is based on GPT-2 [3] network with
6-heads and 6-layers, operating on a dimension of d = 128,
and initialized randomly. The gaze prediction layer consists
of two fully connected (FC) layers. The first FC layer has
a SeLU activation function and a hidden dimension of the
same size as the input dimension. The second FC layer out-
puts the 2D gaze direction angles, pitch and yaw.

Our STAGE model is implemented in PyTorch [2]. We
set λ = 0.001 for cross-data and λ = 0 for within-data
evaluations. For GP hyper-parameter optimization, we use
Adam optimizer with a learning rate of 0.001, implemented
using GPytorch [1]. Our code and trained models will be
made publicly available in the future and are zipped in sup-
plementary.

3. Ablation Study

In the ablation study, we study the impact of adding multi-
ple SAM blocks in the STAGE model, where the output of
one SAM goes as input to the next. The ablation study on
the number of Dual- and Hybrid-SAM blocks (four blocks
vs. one block) for within-data and cross-data settings are
shown in Tables 1(a) and (b), respectively. We observe no
significant improvements over a single block of SAM, indi-
cating that one SAM block is enough to provide spatial mo-
tion cues between consecutive frame features and improve
performance.

Figure 2. Comparison of Mean Angular Error (in degrees) of gaze
components (yaw or pitch) with increasing fraction of test samples
sorted with respect to the uncertainty of GP predictions. Plots ex-
hibit that GPs are more accurate when the prediction is relatively
more confident (with less variance).

4. Additional Results for GP Evaluation
For assessing the effectiveness of the GP model’s uncer-
tainty, we provide additional analysis of gaze predictions, as
illustrated in Figure 2. Our evaluation begins with an anal-
ysis of the GP’s posterior variance diagonal. We arrange
this in ascending order and then apply different uncertainty
thresholds to it. For each selected threshold, we compute
the MAE on test samples that exhibit uncertainty levels be-
low the threshold. This procedure is repeated across a range
of different thresholds to evaluate performance. Figure 2
presents a comparison of the MAE for yaw and pitch against
increasing fractions of test data samples. These samples
are sorted according to the uncertainty in the GP predic-
tion. This analysis demonstrates that GPs tend to deliver
more accurate results when their variance is lower, signi-
fying greater confidence in the predictions. Therefore, the
uncertainty measure in the GP model can act as an effective
indicator to avoid making inaccurate predictions.

We also provide additional visualizations of the predic-
tions from personalized GP on top of the STAGE model,
similar to Figure 6 in the main manuscript. Figure 3a and 3b
respectively show certain and uncertain prediction images
from the EYEDIAP dataset after performing GP personal-
ization. The ground truth and predicted gaze directions are
respectively shown with blue and pink colored arrows, and
the corresponding uncertainty of prediction is shown with
the green colored triangle.
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(a) Certain predictions for EYEDIAP dataset

(b) Uncertain Predictions for EYEDIAP dataset
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