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Abstract
Diffusion models (DMs) can generate realistic images

with text guidance using large-scale datasets. However,
they demonstrate limited controllability on the generated
images. We introduce iEdit, a novel method for text-
guided image editing conditioned on a source image and
textual prompt. As a fully-annotated dataset with tar-
get images does not exist, previous approaches perform
subject-specific fine-tuning at test time or adopt contrastive
learning without a target image, leading to issues on pre-
serving source image fidelity. We propose to automat-
ically construct a dataset derived from LAION-5B, con-
taining pseudo-target images and descriptive edit prompts.
The dataset allows us to incorporate a weakly-supervised
loss function, generating the pseudo-target image from the
source image’s latent noise conditioned on the edit prompt.
To encourage localised editing we propose a loss function
that uses segmentation masks to guide the editing during
training and optionally at inference. Trained with limited
GPU resources on the constructed dataset, our model out-
performs counterparts in image fidelity, CLIP alignment
score, and qualitatively for both generated and real images.

1. Introduction

Significant progress has been made in developing large-
scale text-to-image generative models [29, 32, 33, 36], en-
abling artists and designers to create realistic images with-
out specialised expertise. Existing methods show limited
level of controllability, as they are sensitive to the guiding
prompt, i.e., a small change in the input text yields a sig-
nificantly different output image. Image editing with gen-
erative models increases controllability and help artists and
designers make their work personal, creative and authentic.
Recent methods for image editing [17, 28, 29, 35] incor-
porate various types of inputs (e.g., text, mask, stroke) to
facilitate the generation of more specific content.

In this paper, we propose iEdit, a framework based
on Latent Diffusion Models [33] (LDMs) for text-guided
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Figure 1. Our method can edit images with a textual prompt while
preserving image fidelity in the regions not related to the edit.

image editing: given a real or generated image and a user-
provided textual prompt for editing, we generate a new im-
age which includes targeted and localised modifications as
displayed in Fig. 1. Such editing tasks involve adding or
removing objects, changing the appearance of specific re-
gions, or modifying the overall composition of the image.
Text-guided image editing requires the ability to preserve
the fidelity of the shape, style and semantics for some parts
of the image, while synthesising realistic modifications that
are consistent with the edit prompt.To this end, we introduce
a method to automatically generate paired datasets specif-
ically suited for image editing, customise LDMs [33] with
the ability of performing editing by aligning the generated
images with the target text, and provide shape and location
awareness to the method by leveraging segmentation masks.

A supervised approach to train image editing models re-
quires a fully annotated dataset consisting of triples: source
image, edit prompt and target image. These datasets are ex-
pensive to collect and include several challenges, such as,
ambiguity due to vague annotation instructions or poten-
tial bias of too specific instructions. Hence, we follow the
weakly-supervised approach and propose a method to auto-
matically generate editing datasets by semantically pairing
images from existing image-caption datasets (e.g., LAION-
5B [37]) using multi-modal embeddings (e.g., CLIP [31])
to obtain pseudo-target images. Since captions poorly de-
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scribe images we propose to generate edit prompts by cap-
tioning the source image (e.g., BLIP [24]) and changing its
adjectives and nouns. The full process is automatic and en-
ables us to generate a potentially large number of triplets.

iEdit leverages the automatically-constructed dataset
to fine-tune LDMs for editing, in contrast with subject or
sample-specific training methods [2, 7, 14, 21, 28], which
use a set of user-provided images and target labels/attributes
to overfit the models to generate specific content. Hence,
they lack generalisation capabilities and scalability, i.e., a
specific model needs to be fine-tuned for each of the set of
target images or attributes. Moreover, iEdit embeds the
semantics of the edit prompt using a contrastive learning
loss [21, 31] to align the generated image and edit prompt.
To preserve the regions of the source image not mentioned
in the edit prompt and apply changes only on relevant re-
gions, we propose a loss function on masks automatically-
extracted with an off-the-shelf segmentation model.

To summarise, the contributions of our paper are the fol-
lowing. We present a method to automatically construct
paired datasets that are used during training in a weakly-
supervised way. We present a novel image editing method
that is trained to align source and pseudo-target images with
edit prompts, and can edit both generated and real images.
We introduce loss functions that use semantic masks to en-
able localised preservation and synthesis of semantics and
regions for editing. Our method can be trained in a light-
weight way by fine-tuning subparts of the network back-
bone. Qualitative and quantitative results demonstrate that
our method outperforms state-of-the-art counterparts.

2. Related Work
Text-guided Image Generation. DMs [16, 40] have be-
come the de-facto alternative to Generative Adversarial
Networks [13] (GANs) for image generation. Stable train-
ing allows to increase the capacity of DMs, such as DALL-
E 2 [32], GLIDE [29], Imagen [36], and to fairly com-
pare [9] with the GAN-based counterparts [11, 47]. LDMs
[33] address the computational limitation by working on a
latent low-dimensional latent space. Similarly, we provide
LDMs the ability of image editing, while keeping compu-
tational resources constrained (2 NVIDIA V100 GPUs), so
that training is more attainable by the research community.
Text-guided Image Editing with GANs. GANs were
adopted for image manipulation using text guidance. Some
studies [1, 30, 46] effectively combine StyleGAN [19] and
CLIP [31] latent embeddings. StyleGAN-NADA [12] pro-
poses a text-driven method for out-of-domain generation.
ManiGAN [22] proposes to train GAN models with mul-
tiple stages with text input. However, GANs are hard to
train in a stable way to perform localised editing with large
datasets and diversity of input types. To introduce local ed-
its, Text2Live [3] proposes to automatically learn an edit
layer that is then combined during image generation.

Text-guided Image Editing with DMs. DMs can be
adapted for text-guided image editing to deal with the chal-
lenges of GANs. Prompt-to-prompt [14] aligns patches us-
ing cross-attention without fine-tuning but requires inver-
sion [9] for real images and uses attention maps at lower
resolution than masks used in our method. SDEdit [28] uses
user guidance, like stroke painting, and can be conditioned
to edit prompts [7]. It is sensitive to the strength parameter
that can lead to over-preservation or forgetting the source
image. These conditional DMs modify the image globally,
undesirably changing regions that are not mentioned in the
edit prompt. Recent work focuses on fine-tuning on a sin-
gle image available [20] at test time, a small set of subject-
specific images [35] or specialises on attribute specific mod-
ifications [35]. However, this leads to high computation at
test time and limited scalability, since they need to fine-tune
a model for each image, set or attribute. In contrast, our
approach requires a single fine-tuning step on the dataset
automatically generated for editing.
Other methods, Imagen Editor [44], Repaint [27] and
Blended Diffusion [2], introduce the use of masks for im-
age editing. However, in Blended Diffusion and Repaint,
the masks are manually-provided and available only at test
time while Imagen Editor uses an object detector to ran-
domly mask objects whereas in our method the masks
are automatically extracted with regard to the target mod-
ification. DiffEdit [7] predicts masks at test time from
text-conditioned latent noise differences of the modifica-
tion in textual descriptions. In contrast, our method uses
automatically-extracted masks during training and option-
ally at test time to provide localised properties to the edit-
ing framework. Composer [17] decomposes images into a
set of factors, including masks, and recomposes back to im-
ages. Our method is lighter (1.1B vs 3B parameters) and
requires a smaller training set (200K vs 60M).
Target Data for Image Editing. While domain-specific
translation works use paired datasets with conditional
DMs [48] or Brownial Bridge DMs [23], there is no large-
scale dataset for generic text-guided image editing. In order
to automatically construct one, InstructPix2Pix [4] gener-
ates instructions from manually written caption-instruction
pairs using GPT-3 [5] and uses a pre-trained LDM [14] to
generate target images. In contrast, our dataset construction
method is based on retrieval and, therefore, lightweight be-
cause it does not require DMs to generate synthetic target
images. At the same time, we show that iEdit performs
well with the synthetic dataset from InstructPix2Pix.

3. iEdit
We describe here our process for constructing a dataset with
pseudo-target images for text-guided image editing. We
briefly review LDMs, introduce the proposed image editing
framework, and expand it to incorporate location awareness,
guiding the editing process during training and inference.
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3.1. Paired Dataset Construction
Most methods discussed in Sec. 2 are trained or fine-tuned
without a target image, i.e., a ground-truth image after the
edit has been applied to the source image. To train image
editing models in a weakly-supervised way, we propose a
method to automatically obtain pseudo-target images. An
optimal image editing dataset requires nearly identical im-
age pairs, differing only in a specific attribute or object,
and both source and target images should have captions
that highlight the differences between the pairs. Given the
absence of such an annotated dataset, and considering the
cost and labor involved in manual creation, we automati-
cally construct one using the publicly available LAION-5B
image-caption dataset [37].

The LAION-5B source captions, being extracted from
the web, are complex and noisy. Thus, we introduce a tech-
nique to convert these captions into a desired edit as de-
picted in Fig. 2. The first step is to generate a simplified
version of each image caption using the state-of-the-art im-
age captioning method BLIP [24]. In the second step, the
generated captions are manipulated by replacing an adjec-
tive or noun with its antonym or a random co-hyponym,
using the WordNet library [10], e.g., “a blue and orange
bus”→ “a blue and orange train”. The resulting text is our
edit prompt. In the final step, we need to obtain a pseudo-
target image, given the source image and the edit prompt.
To this end, we extract CLIP [31] embeddings of the source
image and the edit prompt. After qualitatively evaluating
the results of retrieving targets with solely text or image
embeddings, we opted for a weighted mean of both, empir-
ically set at 0.6 for text and 0.4 for image. Finally, we use
this weighted mean to retrieve the nearest-neighbour im-
age of each image-prompt pair. With this set of operations,
we constructed a dataset consisting of ∼200K image pairs
and edit prompts. Compared with the original captions in
LAION-5B, our edit prompts are simpler, shorter and con-
tain only essential information (e.g., the original caption for
the red dress in Figure 2 is “red spring and autumn female
short-sleeve princess dress puff skirt one-piece dress cos-
tume dress 90 - 135”). As we prepared our dataset by using
holistic image and caption representations, it includes the
retrieved pseudo-target images which may not closely align
with their source images. This is not ideal for our scenario
where a considerable part of the source image should re-
main unchanged. To mitigate this shortcoming of preparing
an in the-wild-dataset for image editing, we propose to in-
corporate masks as described in Sec. 3.4. We evaluate our
dataset in Sec. 4 and provide examples in Fig. 2 and more
in the Supplementary, including statistics of the dataset.

3.2. Background: Latent Diffusion Model
In the forward diffusion process of Denoising Diffusion
Probabilistic Models (DDPM) [16], the training data is cor-

Figure 2. Paired dataset construction. To construct a paired
dataset for training, we generate captions with BLIP. We manipu-
late these captions by replacing nouns or adjectives with antonyms
or co-hyponyms. We assign the pseudo-target image by using
CLIP embeddings of the edit prompt and the source image to re-
trieve nearest neighbours.

rupted by adding Gaussian noise and a neural network is
used to reverse this process. LDMs [33], use an auto-
encoder to operate in a lower-dimensional latent space to
reduce the computational complexity and increase the in-
ference speed of DMs. An encoder E compresses the in-
put image x to a latent vector z = E(x). Both diffusion
and denoising process happen in the latent space, and then
a decoder D reconstructs the image from the latent vector,
x = D(z). The denoising step can be conditioned with a
domain-specific encoder τθ projecting the conditioning in-
put to an intermediate representation that is exposed to the
denoising U-Nets [34]. The loss for conditional LDM is:

LLDM = EE(x),y,ϵ∼N (0,1),t[||ϵ− ϵθ(zt, t, τθ(y))||2, (1)

where ϵθ is a U-Net conditioned to the step t uniformly sam-
pled from {1, 2, ..., T}. The network parameters θ are opti-
mised to predict the noise ϵ1∼N (0, 1) that is used for cor-
rupting the encoded version of the input image. At inference
time, the trained model is sampled by iteratively denoising
z∼N (0, 1) using the deterministic DDIM [41].

3.3. iEdit with Weak Supervision

We present here our method to fine-tune the LDM [33] for
image editing using the dataset described in Sec. 3.1. Let x1

and x2 be the source and pseudo-target images, respectively,
and y2 the edit prompt of x2, derived from x1’s caption y1
as detailed in Sec. 3.1. We first obtain the noisy image zt by
adding noise ϵ1 to z1 := E(x1), the source image encoded
in the latent space:

zt =
√
αtz1 +

√
1− αtϵ1, (2)
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where ϵ1∼N (0, 1), and αt is the Gaussian transition se-
quence following the notation in [42]. We consider zt as the
noisy version of both the source and target image, since our
aim is to generate the target image from zt. We, then, calcu-
late the ground truth noise for reconstructing z2 := E(x2),
which is the target image encoded in the latent space:

ϵ2 =
zt −

√
αtz2√

1− αt
. (3)

Hereby, we modify the objective in Eq. 1 to minimise the
L2 loss between this ground truth noise, ϵ2, and the noise
predicted by the network, ϵθ, given the edit prompt:

Lpaired = EE(x),y2,ϵ2,t[||ϵ2 − ϵθ(zt, t, τθ(y2))||2] (4)

To further encourage the generated image to be aligned with
the edit prompt, we introduce a global CLIP loss [30] be-
tween the edit prompt and the generated image x̂1:

Lglobal(x̂1, y2) = DCLIP (x̂1, y2) (5)

where x̂1 is obtained with the decoder D as follows:

x̂1 = D(ẑ1) (6)

ẑ1 =
zt −

√
1− αtϵθ(zt, t, τθ(y2))√

αt
. (7)

With higher noise levels the reconstruction is more suc-
cessful and therefore Lpaired gives more reliable results.
On the other hand, CLIP loss gives more reliable results
on low noise levels as CLIP embeddings are ideal for noise-
free inputs. Thus, we set inversely proportional weights for
these losses based on the noise level t as (1− t

T )Lglobal +
t
T Lpaired, where T is the maximum number of noise steps.

3.4. iEdit with Location Awareness

As pointed out before in Sec. 3.1, the constructed dataset
has a misalignment issue. In our preliminary experiments,
we observed that it causes noisy results when the model is
optimised using Eq.4. Hence we propose to extend iEdit
to incorporate masks from images in order to enable lo-
calised image editing and better align source and pseudo-
target images. Specifically, we introduce the use of masks
during training to guide the learning process and optionally
during inference to generate localised edits. To obtain the
masks, we use CLIPSeg [26], a state-of-the-art method that
generates image segmentations conditioned to text prompts
at test time. We take the differences between the BLIP-
generated source caption and the edit prompt along with the
noun it describes in case it is an adjective. This difference
prompt ydiff1 (or ydiff2 ) and the corresponding image x1 (or
x2) are fed into the CLIPSeg model to obtain masks for both
source and target images, M1 and M2, respectively.
Training with Masks. In Figure 3, we visualise an

Figure 3. Proposed image editing framework. Our framework
takes as input the image pairs from the constructed dataset, their
corresponding masks and the edit prompt. We optimise ϵθ to pre-
dict the noises ϵ1 and ϵ2 for background and foreground. ⊙ de-
notes element-wise multiplication of the image and mask.

overview of our method for incorporating masks during
training. To enable localised edits, we modify the optimi-
sation process to predict the target noise, ϵ2, on the masked
region and the source noise, ϵ1, on the inverse mask region,
rather than optimising the network to predict only the target
noise. Specifically, Eq. 4 becomes:

Lmask = EE(x),y2,ϵ2,tL
fg
mask + EE(x),y2,ϵ1,tL

bg
mask (8)

where Lfg
mask and Lbg

mask represent the foreground and
background loss terms as follows:

Lfg
mask = [||ϵ2 ⊙M2 − ϵθ(zt, t, τθ(y2))⊙M2||2]

Lbg
mask = [||ϵ1 ⊙M1 − ϵθ(zt, t, τθ(y2))⊙M1||2]

(9)

where M i denotes the inverse of the mask, and ⊙ represents
element-wise multiplication. While localising the edit, the
incorporation of masks in this loss will also mitigate the
misalignment issue present in the constructed dataset, as
only the overlapping areas will serve as supervision by the
pseudo-target, while the rest of the image relies on the
source image, as in the original LDM loss (Eq. 1).

In addition to Lmask, we also employ two additional
losses, namely a perceptual loss [18] and a localised CLIP
loss, to better translate according to the edit prompt. The
perceptual loss is used to ensure that the edited image has
a similar visual appearance to the target image in their
masked regions. Specifically, we use a pre-trained VGG
network [39] V (·) to extract features from the edited image
x̂1 and the target image x2 and minimise the mean squared
error between their feature representations:

Lperc = Ex̂1,x2
[||V (x̂1 ⊙M1)− V (x2 ⊙M2)||2]. (10)
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The localised CLIP loss aims to ensure that the masked area
of the generated image is coherent with the difference of
the edit prompt with the source caption, ydiff2 , in terms of
semantic content. This loss is defined as:

Lloc(x̂1, y
diff
2 ) = DCLIP (x̂1 ⊙M1, y

diff
2 ). (11)

In summary, our final loss for fine-tuning iEdit is:

(1− t

T
)(Lloc + Lglobal) +

t

T
Lmask + λpercLperc. (12)

Inference with Masks. In SDEdit [28], during inference,
random noise is added to the input image, and this corrupted
image is denoised with the trained model to generate the
edited version. We extend this approach by incorporating
masks in order to generate localised edits while preserving
the visual content of the source image in the inverse mask
region. Given an input image, an edit prompt, and which
term in the edit prompt describes the edit area, we apply
Gaussian noise corruption to the input image for a certain
number of iterations defined by a sampling ratio. We vary
this hyper-parameter between 0.6− 0.8 throughout our ex-
periments for both SDEdit and our method, where 0.0 and
1.0 correspond to using the input image or a random Gaus-
sian noise as input. At each DDIM [42] sampling step, we
replace the pixel values of the reconstructed image (i.e., z̃t)
in the inverse mask region M with their corrupted version
of the input image, zt, at the given time step t, as

z̃t = M ⊙ zt +M ⊙ z̃t. (13)

The inference with this additive masking described above
helps to preserve the details of original latent input z1, pro-
gressively at each noise level t. Finally, we follow the de-
coding step as in Eq. 6 to obtain the final image x̂1.

4. Experiments
In this section, we perform a thorough comparison of
iEdit with state-of-the-art methods by quantitative and
qualitative analysis on generated and real source images.

4.1. Experimental Setup
Datasets. We fine-tune iEdit with the paired dataset con-
structed from LAION-5B [37] as described in Sec. 3.1.
For evaluation with generated images, we use LDM [33]
to construct 70 image-prompt pairs, with 20 distinct gener-
ated images. For evaluation with real images, we build 52
image-prompt pairs consisting of 30 distinct images from
COCO [25], ImageNet [8] and AFHQ [6]. Additional train-
ing details are provided in the supplemental material.
Comparison to Other Methods. We compare to the
SDEdit [28] extension of SD since we use a similar dif-
fusion process and to recent state-of-the-art methods, such

as DALL-E 21 [32], DiffEdit [7] and InstructPix2Pix2 [4].
For DALL-E 2, we manually provide ground-truth masks
for each image during evaluation.
Evaluation Metrics. In text-based image editing, we have
to evaluate with respect to: 1) how well the method synthe-
sises the regions of the image explicitly mentioned in the
edit prompt and 2) the quality of preservation of the rest
of the image not mentioned in the prompt. We adapted the
Structural Similarity Index (SSIM) [45] to capture this in-
tuition as: the SSIM score on the edited area (SSIM-M )
and on the rest of the image (SSIM-M ) by using man-
ually created ground-truth masks. In addition, we use
CLIPScore [15] to measure the alignment between the edit
prompt and the edited image by computing the cosine sim-
ilarity between their embeddings generated by the CLIP
model. CLIPScore has been shown in [44] to be reliable
due to its high agreement with human judgement. We com-
pute the Fréchet Inception Distance (FID) [38] to evaluate
the quality and fidelity of generated images.

4.2. Qualitative Evaluation
Editing Generated Images. Fig. 4 compares iEdit
(our method) and iEdit-M (with predicted masks at
inference) with SDEdit [28], DALL-E 2 [32], DiffEdit [7],
InstructPix2Pix [4] on the generated images of the evalu-
ation set (Sec. 4.1) along with heatmaps that visualise the
difference between the input and generated images. We
observe that SDEdit [28] often fails to perform the desired
edit, e.g., (“a heart-shaped candle” in col. 2, “latte art” in
col. 4). It also does not preserve fidelity, e.g., background
in col. 1 and attributes of the plate in col. 4. This is due
to SDEdit’s trade-off between preservation of the input
and editing according to the edit prompt. DALL-E 2 [32]
shows better fidelity to the edit prompt, but it ignores the
prior information regarding the object to edit from the
source image. It produces results that completely replace
the edited object with a visually different one (col. 1 and 2)
while also failing in some cases (col. 1, 4 and 5). The
user-provided masks in DALL-E 2 help localising the edit,
but its in-painting nature ignores the structure of the edited
region from the source images. This further causes the
cases that do not blend well with the general structure of the
image (col. 1). DiffEdit [7] relies on automatically detected
masks at inference time which are sensitive to input/output
prompts and model performance. Consequently, although
it does a good job in preserving the background it fails in
some cases to perform the manipulation, e.g. col. 1, 4 and
5. InstructPix2Pix3 displays fidelity to both source image

1Web UI accessed in March 2023: https://openai.com/
product/dall-e-2.

2Web UI accessed in March 2023: https://huggingface.co/
spaces/timbrooks/instruct-pix2pix.

3Note that our method is trained with limited resources and a batch size
of 1, while [4] uses a batch size of 1024.

7430

https://openai.com/product/dall-e-2
https://openai.com/product/dall-e-2
https://huggingface.co/spaces/timbrooks/instruct-pix2pix
https://huggingface.co/spaces/timbrooks/instruct-pix2pix


In
pu

t

“a vintage car” “a heart-shaped candle” “a yellow���XXXflower” “a cup of��HHtea coffee “a golden
dandelion” with butterfly latte art” “mouse robot”

SD
E

di
t

D
A

L
L

-E
2

D
iff

E
di

t
In

st
ru

ct
Pi

x2
Pi

x
i
E
d
i
t

i
E
d
i
t

-M

Figure 4. Comparison to state-of-the-art on generated images. Our method produces results with higher fidelity to the source image
and the edit prompt compared to SDEdit [28], DALL-E 2 [32], DiffEdit [7] and InstructPix2Pix [4].

and edit prompt except for some failure cases (col. 2 and 5),
however, it affects the whole layout in many cases, e.g.,
“a vintage car” in col. 1 produces a vintage-style image
(including background), and the image in col. 4 results
in coffee beans over the image. This is a limitation [43]
of InstructPix2Pix inherited from Prompt-to-Prompt [14],
used to generate the training set. It also fails when multiple
changes are requested at once, (“golden robot mouse” in
col. 5). Compared to these methods, iEdit performs more
successful localised edits, while preserving the background,
with small undesired changes. This is alleviated with the
use of predicted masks in iEdit-M at inference.
Editing Real Images. One of the main advantages of our
method is the ability to edit real images without inver-
sions [14, 43]. Fig. 5 shows a qualitative comparison on
the real images of the test set (Sec. 4). In accordance with
the observations on editing generated images, SDEdit [28]
achieves low fidelity to edit prompt (col. 3 and 4), or high
deviation from the source image (background in col. 2 and
4, and “bus” in col. 8). DALL-E 2 [32] yields results that
are inconsistent with the source or look unnatural (col. 1
and 3), and also fails in col. 6 and 8. As previously men-
tioned, DiffEdit [7] heavily relies on detected masks and
provided prompts. Results indicate increased challenges

with real images, leading to frequent failures in achieving
satisfactory outcomes in col. 2, 3, 4, 5, and 8. The limita-
tion of InstructPix2Pix [4] results do not comply with the
style of the source image (col. 2), look unrealistic (col. 1)
or affect the whole image (col. 3 and 4). iEdit shows
high fidelity to the source image and the edit prompt on real
images as well, where undesired background changes are
averted with the introduction of masks in iEdit-M .

4.3. Quantitative Evaluation
The left side of Table 1 shows a comparison of state-of-the-
art methods and iEdit for editing generated images in our
evaluation set. In terms of CLIPScore, iEdit and iEdit-
M outperform all compared methods, which means high
alignment and fidelity between the generated image and the
edit prompt. Note that CLIPScore is one of the main metrics
for editing, since it was shown to have high agreement with
human judgement [44]. We further measure FID, where our
method is only marginally outperformed by DiffEdit. As
SSIM-M measures the SSIM score of the edited area, its
high values do not imply a better result, because the edited
area could be too similar to that of the source image. In
editing, we want the SSIM-M to be a trade-off between
changing the source image accordingly to the edit prompt
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Figure 5. Qualitative Results on Real Images. iEdit outperforms compared methods showing high fidelity to the edit prompt and the
input image.

Method Generated Images Real Images

CLIPScore (%) ↑ FID↓ SSIM-M(%) SSIM-M(%) ↑ CLIPScore (%) ↑ FID↓ SSIM-M(%) SSIM-M(%) ↑

SDEdit [28] 62.58 171 82.44 50.64 65.84 180 74.36 64.60
DALL-E 2 [32] 65.44 143 82.45 94.76 65.46 162 74.41 93.97

DiffEdit [7] 60.31 95 89.31 78.14 64.39 100 82.06 91.88
InstructPix2Pix [4] 65.12 108 88.62 76.43 66.91 145 80.59 79.92
iEdit (iP2P dataset) 63.99 106 84.73 76.66 65.62 132 81.25 79.13

iEdit-M (iP2P dataset) 63.04 100 84.87 77.33 65.93 125 80.82 80.18
iEdit (ours) 65.76 158 82.70 52.02 67.02 166 74.59 70.09

iEdit-M (ours) 66.36 114 83.08 78.18 67.44 147 74.98 80.44

Table 1. Quantitative Results on Generated and Real Images. Best numbers are marked in bold, second best underlined.

and not drastically. So, we attribute the high SSIM-M of
InstructPix2Pix and DiffEdit to the fact that generated im-
ages are too similar to source images and might indicate that
the editing was not fully successful. The lower values for
iEdit(-M ) imply more changes in the foreground mask,
that combined with the higher CLIPScore and the qualita-
tive results in Fig. 4 and 5, we can conclude that the edit-
ing is preserving information from the source image while

considering the edit prompt correctly. In terms of preserv-
ing unrelated parts of images in the background, DALL-E
2 shows the best SSIM-M while iEdit-M has the sec-
ond best result. DALL-E 2 has an unfair advantage in our
experiments, since it uses manually-provided masks at in-
ference which tightly defines the manipulation area while
we use CLIPSeq masks generated by a prompt that consists
of ydiff or desired location in case of adding an object.
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Ablation Settings Scores
Losses Fine-tuning Dataset CLIPScore (%) ↑ FID↓ SSIM-M(%) SSIM-M(%) ↑

Lglobal + Lpairs LAION-caption-200K 65.95 158 78.84 55.14
Lglobal + LLDM+Lloc LAION-edit-200K 65.62 156 79.61 62.08

Lglobal + LLDM+Lloc+Lperc LAION-edit-200K 65.64 153 79.75 62.20
Lglobal + Lmask+Lloc+Lperc LAION-edit-200K 66.09 146 79.31 59.54

Lglobal + Lmask+Lloc+Lperc +Masked Inference LAION-edit-200K 66.97 128 79.65 77.99

Table 2. Ablation study of iEdit on our loss functions and datasets.

Input InstructPix2Pix iEdit (iP2P) iEdit-M (iP2P)
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Figure 6. Comparison of InstructPix2Pix and iEdit trained on In-
structPix2Pix dataset (iP2P).

On the right side of Table 1, we present a quantitative
evaluation of our method and compared methods on editing
the real images in our evaluation set. We observe a similar
trend to the results obtained on generated images.As before,
even without using masks at inference, our method pro-
duces results with higher fidelity to the edit prompt in terms
of CLIPScore. Conclusions similar to the case of generated
images can be drawn for FID, SSIM-M and SSIM-M . To
summarise, we conclude that our method is the best tradeoff
between preserving the fidelity of the source image consid-
ering both foreground and background (SSIM and FID) and
being more aligned with the edit prompt (CLIPScore).

In order to assess the utility of the proposed way to con-
struct our dataset, we trained iEdit using the dataset con-
structed in InstructPix2Pix (“IP2P”) with and without in-
tegrating masks during training. From Fig. 6, it’s evident
that certain limitations observed in InstructPix2Pix, such as
the production of artificial-looking images, manipulations
affecting the whole image (“an autumn tree”) and difficul-
ties in concurrently altering multiple aspects (“a blue pil-
low with car figure”), are also observed in our approach.
While the incorporation of masks does offer some miti-
gation, these challenges persist. This can be attributed to
the dataset’s construction via another generative method,
Prompt-to-prompt [14], leading to the inheritance of its
weaknesses. From the results of iEdit (IP2P) in Ta-

ble 1we can infer that better aligned paired dataset helps
preserving the background (low FID and high SSIM-M ),
but falls short in translation especially when editing real
images as supported by the low CLIPScore and SSIM-M
scores. This highlights the ongoing significance of learn-
ing from real data which further motivates the usefulness of
our dataset construction strategy and the applicability of our
method on both synthetic and real datasets.

4.4. Ablation Study
Table 2 shows an ablation study that validates the effective-
ness of each component of iEdit using the full evaluation
set (generated and real images). First, we compare LAION-
caption-200K (1st row) and LAION-edit-200K (2nd row).
LAION-edit-200K is the dataset constructed as described
in Sec. 3.1 and LAION-caption-200K is created in the same
way but using the original captions from LAION-5B instead
of the automatically-generated ones. We use the best ex-
perimental setup for LAION-caption-200K, which employs
Lglobal + Lpairs. This is the best setup because the dif-
ference between these noisy source and target captions of
LAION-5B are too high (even different languages some-
times) and often not grounded to images. This prevents
the use of masks in Lmask and of Lperc and Lloc. The 1st

and 2rd rows of Table 2 show the benefit of automatically-
generated prompts with higher CLIPScore and SSIM-M .
Moreover, we ablate our main losses and components form-
ing the masked image editing framework, by training only
with the localised CLIP loss Lloc (2nd row), by adding
Lperc (3rd row) and by switching LLDM in favour of
Lmask (4th row). The addition of Lperc marginally boosts
the performance in all metrics, while Lmask leads to a large
improvement in CLIPScore and FID. The final row of Ta-
ble 2 that uses predicted masks at inference shows a large
improvement in all metrics.

5. Conclusion
We presented iEdit, a novel method for text-guided im-
age editing based on LDMs. In addition, we proposed a
method to automatically create a dataset to train our model
with weak supervision. We introduced loss functions that
use masks to enable localised editing and preservation of fi-
delity. Our model is fine-tuned on the constructed dataset
by using only 2 16GB GPUs. iEdit achieves favourable
qualitative and quantitative results against state-of-the-art
methods on editing of generated and real images.
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