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Abstract

In the quest to bridge the gap between the burgeoning ca-
pabilities of text-to-image generative models and the prag-
matic demands of botanical classification, our study delves
into the untapped potential of synthetic images for identi-
fying and differentiating rare plant species. By rigorously
evaluating the efficacy of cutting-edge generative models,
including open-sourced and proprietary frameworks, we il-
luminate the advantages and inherent challenges of em-
ploying synthetic data in zero-shot and few-shot learning
scenarios. Our research demonstrates that the zero-shot
method sees a marked improvement of 29% over the pre-
trained weights, with an average increment of 12%. Fur-
thermore, the few-shot method improves the performance
by an additional 31%, with an average increment of 19%,
achieving new state-of-the-art classification results on rare
flora. Through a comprehensive analysis that spans diverse
species and models, we unravel the complexities of synthetic
data integration, proposing innovative strategies to harness
its full potential for the conservation and study of botani-
cal diversity. This investigation stands at the forefront of
combining advanced machine learning techniques with en-
vironmental science, paving the way for new advancements
in accurately identifying and preserving rare plant species.

1. Introduction

In recent years, the rapid advancement of deep learning
techniques has revolutionized the field of computer vision,
enabling machines to achieve human-like performance in
various image recognition tasks [14, 22, 50]. However, the
success of these techniques heavily relies on the availabil-
ity of large-scale, high-quality labeled datasets [4, 26]. In
many real-world scenarios, such as identifying and classi-
fying rare plant species, obtaining sufficient labeled data
remains a significant challenge [40, 55]. This scarcity of
data limits the applicability of deep learning models in these

domains, as they often struggle to generalize well to un-
seen examples [31, 47]. To address this issue, researchers
have turned their attention to generating synthetic data us-
ing advanced generative models, such as Generative Adver-
sarial Networks (GANs) [13, 20] and Variational Autoen-
coders (VAEs) [21, 42]. Synthetic data has shown promis-
ing results in augmenting limited datasets and improving
the performance of classification models in data-scarce set-
tings [28, 63].

Synthetic data generation for rare plant species classifi-
cation is a relatively under-explored area despite its poten-
tial to alleviate the data scarcity problem. Existing works
on synthetic data generation for plant classification have
primarily focused on common plant species, where ob-
taining labeled data is less challenging. For instance, [7]
used GANs to generate synthetic images of common plant
species and demonstrated improved classification perfor-
mance when augmenting the training data with the gener-
ated images. Similarly, Sood et al. [49] employed VAEs
to generate synthetic plant images and showed that the gen-
erated images could be used to train classifiers with lim-
ited real-world data. However, the effectiveness of these
approaches in the context of rare plant species classifica-
tion remains largely unknown, as the unique characteristics
and limited availability of rare plant images pose additional
challenges for generative models.

In this paper, we present a comprehensive study on us-
ing state-of-the-art text-to-image generation models to im-
prove the classification of rare plant species. We focus
on five primary rare plant species: Rafflesia Arnoldii,
Encephalartos Woodii (Cycad), Amorphophallus Ti-
tanum (Corpse Flower), Ghost Orchid, and Dracaena
Cinnabari (Dragon’s Blood Tree). By leveraging the
power of text-to-image generation [39, 45, 46], we aim to
generate high-quality labeled data that captures the intri-
cate details necessary to distinguish these rare species from
each other and similar-looking common plant species. Our
study is conducted using both open-source models, such as
OpenJourney [38], Latent Consistency Model [44], and Sta-
ble Diffusion [45], as well as closed-source models like
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DallE 3 [34] and Midjourney [30]. We investigate two
primary questions: 1) Can synthetic data from generative
models effectively improve classification models for rare
plant species? 2) Can synthetic data be a feasible source
for differentiating rare plants from similar-looking ordinary
plants? We focus on zero-shot and few-shot settings, as rare
plant species often have limited distinct images available,
and the impact of synthetic data is most pronounced in these
scenarios [48, 54]. Our investigations are built upon state-
of-the-art methods, including CLIP [39], MLLM [57], and
ViT Classifier [9], with feature extractors initialized using
large-scale pre-trained weights and kept frozen.

Our findings: Our first finding demonstrates that syn-
thetic data can significantly improve the classification re-
sults for the five diverse rare plant species studied in the
zero-shot setting, where no real-world data is available. We
observe an average increase of 2% in top-1 accuracy, with
the Dracaena Cinnabari (Dragon’s Blood Tree) showing
an impressive improvement of 73% when using the CLIP
model [39]. To further enhance the effectiveness of syn-
thetic data in this setting, we investigate strategies for in-
creasing data diversity, reducing noise, and enhancing re-
liability by designing diversified text prompts and measur-
ing the correlation between text and synthesized data using
CLIP features [16, 39]. Similar improvements are observed
for MLLM [57] and ViT Classifier [9], with an average per-
formance increase of 11% and 31%, respectively, and the
ViT Classifier achieving the highest accuracy of 83%.

In the few-shot setting, where a limited number of real
images are available, synthetic data provides benefits and
helps achieve state-of-the-art performance. However, we
observe that the domain gap between synthetic data and
downstream task data poses a challenge in further improv-
ing the effectiveness of synthetic data on classifier learn-
ing. To address this issue, we propose using real images
to guide the generation process, reducing domain gaps and
enhancing effectiveness. Our experiments show that using
a distance-based metric for guidance is crucial, as moving
too far from or too close to the real image can negatively
impact accuracy.

Finally, when differentiating rare plant species from
commonly occurring plant species, we observe that creat-
ing detailed descriptions of the rare plants, with the assis-
tance of advanced large language models such as Claude-
3 [1], GPT-4 [17], LLaMa [51], and Mistral [53], signifi-
cantly improves the distinguishing performance of the clas-
sifiers. This improvement is particularly evident in the few-
shot setting, where generating images with descriptive text,
rather than just the class name, results in more variations of
plant images that are closer to the rare plant species while
adding diversity to differentiate from similar-looking flow-
ers. We observe an average increase of 19% in the accuracy
of rare plant and ordinary plant classification in the zero-

shot setting and a 28% increase in the few-shot setting.

2. Related Works
Synthetic Data for Image Recognition. Synthetic data
has recently gained significant attention in image recog-
nition tasks and can be divided into two categories: syn-
thetic datasets created using traditional simulation pipelines
and synthetic images generated by generative models. Syn-
thetic datasets [8, 36, 43] are generated using a conven-
tional pipeline that relies on a specific data source, such as
2D renderings of 3D models or scenes from graphics en-
gines. However, this approach has limitations, including a
noticeable difference from real-world data, high storage and
transfer costs, and limited data diversity. In contrast, gener-
ative models offer a more efficient way to represent syn-
thetic data, producing high-quality, photorealistic images
that closely resemble real-world data while requiring less
storage space and potentially generating unlimited artificial
data. Recent studies have explored the use of synthetic data
from generative models for image recognition tasks, such as
using class-conditional GANs [2], leveraging StyleGAN’s
latent code [20, 59], and employing GAN-based gener-
ators for unsupervised contrastive representation learning
[18]. However, these studies focus on traditional GAN-
based models, while our work investigates the best-released
text-to-image generation model and its customization capa-
bilities for various downstream label spaces.

Researchers have explored various approaches to gener-
ate synthetic images, including 3D modeling, domain ran-
domization, and generative models [10, 19, 37, 52]. These
approaches have demonstrated the effectiveness of synthetic
data in object detection [52], improving model robustness
through diverse backgrounds and lighting conditions [37],
action recognition [19], and bridging the gap between syn-
thetic and real data [10]. However, most of these works fo-
cus on common objects and scenes, while the application of
synthetic data for rare and fine-grained categories, such as
plant species, still needs to be explored. Sun et al. [15] stud-
ied the readiness of synthetic data from generative models
for image recognition tasks, highlighting current limitations
and future directions. Our work builds upon these findings
and focuses explicitly on the challenges and opportunities
of synthetic data for classifying rare plant species.

Text-to-Image Diffusion Models. Text-to-image diffu-
sion models have recently emerged as a powerful approach
for generating high-quality synthetic images from textual
descriptions. Dhariwal and Nichol [6] introduced the con-
cept of diffusion models for image generation, achieving
impressive results in image fidelity and diversity. Nichol
et al. [32] further improved the performance of diffu-
sion models by introducing a hierarchical architecture and
a new objective function. Ramesh et al. [41] proposed
the DALL·E model, which combines a transformer-based
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language model with a diffusion model to generate im-
ages from textual prompts. Saharia et al. [46] introduced
the Photorealistic Text-to-Image Diffusion Models (Ima-
gen), which generate high-resolution images from textual
descriptions well. Other notable text-to-image diffusion
models include Stable Diffusion [45], OpenJourney [38],
Midjourney [30], and DALL·E 3 [34]. These models have
achieved unprecedented synthesis quality, largely facilitat-
ing the development of the AI-for-Art community. How-
ever, their potential utilization for high-level tasks, partic-
ularly in rare plant species classification, remains largely
unexplored. Our work aims to bridge this gap by investi-
gating the effectiveness of synthetic images generated from
state-of-the-art text-to-image diffusion models for improv-
ing plant species classification.

Synthetic Data and Machine Learning in Plant Clas-
sification. The application of machine learning techniques
for plant species classification has gained significant atten-
tion in recent years, with various studies focusing on au-
tomated identification methods [55], benchmarking algo-
rithms on large-scale datasets [12], deep learning-based ap-
proaches using leaf images [23], and convolutional neural
networks for herbarium specimen identification [3]. How-
ever, these works primarily focus on common plant species
with abundant labeled data, while the classification of rare
plant species remains challenging due to the scarcity of la-
beled examples. To address this challenge, recent works
have explored synthetic data, such as generating synthetic
leaf images using GANs for data augmentation [5] and em-
ploying style transfer techniques to generate synthetic im-
ages of rare plant species [62]. While these works demon-
strate the potential of synthetic data for plant species classi-
fication, they are limited regarding the diversity and realism
of the generated images and the range of plant species con-
sidered. Our work advances the state-of-the-art by lever-
aging powerful text-to-image diffusion models to generate
high-quality synthetic images for a diverse set of rare plant
species and by proposing strategies to effectively utilize
these synthetic images for improving classification perfor-
mance in data-scarce settings.

3. Can Synthetic Data Improve Plant Recogni-
tion Performance?

In the following sections, we explore whether synthetic data
can benefit recognition tasks and investigate strategies for
effectively using synthetic data to address the classification
of rare plants. Our exploration is carried out through the
lens of two basic settings with three tasks: synthetic data for
improving classification models in the data-scarce setting
(i.e., zero-shot and few-shot) (see Sec. 3.1 and Sec. 3.2).

Dataset: Due to the scarcity of standard datasets for rare
plant species, we curate a custom dataset by collecting im-
ages from various sources, including stock photo websites

like Pexels and botanical agencies that provide free pho-
tographs. The dataset consists of 250 images in total, with
50 images for each of the five rare flora classes: Rafflesia
Arnoldii, Encephalartos Woodii, Amorphophallus Titanum,
Ghost Orchid, and Dracaena Cinnabari. This dataset serves
as the test set for evaluating the performance of our classifi-
cation models. For the few-shot classification task, we cre-
ate a separate dataset with 5 images per class, resulting in
a total of 25 images. This dataset is used to investigate the
effectiveness of our proposed methods in scenarios where
only a limited number of real-world examples are available
for each rare plant species. Figure 1 presents a sample of the
real images from our dataset, showcasing the visual charac-
teristics of each rare flora class. This data is made publicly
available along with the code

Figure 1. Sample Images of the Real Data collected for Testing.

Common Experimental Setup: For each of the data-
scarce setups (zero-shot and few-shot), we present results
on three types of classifications: 1) rare-rare (Task 1) -
in which we classify the five rare plant species shortlisted
for this paper from one another. 2) rare-common (Task
2) - in which we individually classify each rare plant from
its corresponding similar-looking common plant. The list
of common plants is selected from the Oxford 102 Flowers
dataset [33]. The similarity of the flowers is determined
using the average cosine similarity on the features extracted
by ResNet-50 [14] from the common flowers and the rare
flowers (The final set of flowers is shown in Table 1). 3)
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mixed (Task 3) classification is the experiment when we
randomly prompt the model with any task from either (1)
or (2). Since (1) is a 5-class classification and (2) is a 2-
class classification, we exclude the results of this from ViT
classifiers which require a fixed set of classes.

Rare Plant Similar Flower
Rafflesia Arnoldii (RA) Hibiscus
Encephalartos Woodii (EW) Sword Lily
Amorphophallus Titanum (AT) Sweet William
Ghost Orchid (GO) Petunia
Dracaena Cinnabari (DC) Cautleya Spicata

Table 1. Rare plants and their similar common flowers from the
Oxford-102 dataset.

Model Setup for Data-scarce Image Classification:
As CLIP [39] and Multimodal Large Language Models
(MLLM) [25, 27, 29, 57] are the state-of-the-art approaches
for zero-shot learning, we conduct our study for zero-shot
and few-shot settings upon pre-trained CLIP and MLLM
models, aiming to understand synthetic data upon strong
baselines better. There have been a few attempts at bet-
ter tuning pre-trained CLIP for data-scarce image classi-
fication, such as CoOp [61], CLIP Adapter [11], and Tip
Adapter [58], where the image encoder is frozen for bet-
ter preserving the pre-trained feature space. We present the
results with the Tip-Adapter methodology, which provided
both easy implementation and the best results in combina-
tion with the contrastive training methodology. We use the
default qLoRA adaptation script supplied by the model au-
thors of MLLMs with their default values for fine-tuning
MLLM models.

CLIP and MLLM allow us to classify the data into any
number of unspecified classes; hence, it is easier to perform
mixed classification experiments on these models. How-
ever, the average performance of the models cannot beat
the performance of the classifiers with a fixed number of
class labels. Hence, for the test to be complete, we also in-
cluded the results of the experiments with ViT models [9]
after pretraining them on the Oxford 102 Flowers dataset.

Here, we adopt a simple inferencing method for classi-
fiers, a baseline method introduced in Wortsman et al. [56].
Concretely, for a k-way classification, we input the class
names C = {c1, ..., ck} with prompt si = “a photo of a {ci}”
into the text encoder h of CLIP to obtain the text features
h(si). Then, the text features h(si) could be used to con-
struct classifier weights W ∈ Rd×k, where d is the dimen-
sion of text features. Finally, we combine the image encoder
g with the classifier weights W to obtain a classification
model f(x) = g(x)T ·W . This is a standard approach where
we primarily select the class whose text feature aligns very
closely with the image feature. In the case of MLLM, we

use prompt engineering where we simply include the im-
age along with all the options of class prompts si, and ask
the model to select one class. Due to the simplicity of the
modeling in MLLM in the form of prompts, we can also in-
clude SoTA visual question-answering (VQA) models like
BLIP-2 [24] in the loop as well.

3.1. Zero-Shot Image Recognition with Synthetic
Images from Generative Models

We aim to investigate how synthetic data benefit zero-shot
tasks and explore strategies for better leveraging synthetic
data for zero-shot learning.

Zero-shot Image Recognition. We study the induc-
tive zero-shot learning setting where no real training im-
ages of the target categories are available. CLIP models
are pre-trained with large-scale image-caption pairs, and the
similarities between paired image features (from an image-
encoder g) and text features (from a text-encoder h) are
maximized during pre-training. The pre-trained feature ex-
tractor can then be used to solve zero-shot tasks, where
given an image, its features from g are compared with text
features of different classes from h, and the image is further
assigned to the class that has the most significant similarity
in the CLIP text-image feature space. In the case of MLLM,
we explicitly ask the model to output the name of an indi-
vidual class. If the name is not returned, we will perform
text cleaning and assign it the best matching label. For ViT
Classifiers, this class determination is relatively trivial as
we already set the number of classes during classifier ini-
tialization. Hence, the output of the model is the predicted
class.

Synthetic Data for Zero-shot Image Recognition.
Though CLIP models exhibit zero-shot solid performance
thanks to the large-scale vision-language dataset for pre-
training, there are still several shortcomings when the model
is deployed for a downstream zero-shot classification task,
which may be attributed to unavoidable data noise in CLIP’s
pre-training data or the label space mismatch between pre-
training and the zero-shot task. Hence, we study whether
synthetic data can be used to better adapt CLIP models for
zero-shot learning with a given label space for a zero-shot
task. Similarly, the noise in the training set of MLLM can
also hinder its ability to classify images, and we investigate
if its ability to classify rare flora and distinguish it from its
common counterparts is enhanced with synthetic data. In
the case of the ViT classifier, we tap into the ability of syn-
thetic data to fine-tune the classifier, which has been pre-
trained on a similar domain (Oxford Flowers) [33].

Generating Synthetic Data. Given a pre-trained text-
to-image generation model to synthesize novel samples, the
primary (P) strategy is to use the label names of the target
categories to build the language input and generate a corre-
sponding image. Then, the paired label names and synthe-
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Models Rare-Rare (Task-1) Rare-Common (Task-2) Mixed (Task-3)
w/o SYN +SYN w/o SYN +SYN w/o SYN +SYN

CLIP Models
RN50 0.20 0.57 (+0.37) 0.47 0.63 (+0.16) 0.35 0.63 (+0.28)
RN101 0.24 0.60 (+0.36) 0.51 0.69 (+0.18) 0.39 0.74 (+0.25)
RN50x4 0.20 0.58 (+0.38) 0.48 0.65 (+0.17) 0.32 0.64 (+0.32)
RN50x16 0.23 0.61 (+0.38) 0.50 0.66 (+0.16) 0.35 0.66 (+0.31)
RN50x64 0.26 0.64 (+0.38) 0.51 0.69 (+0.18) 0.38 0.72 (+0.34)
ViT-L/14 0.21 0.55 (+0.36) 0.49 0.62 (+0.13) 0.31 0.65 (+0.34)
ViT-B/16 0.22 0.57 (+0.35) 0.49 0.64 (+0.15) 0.33 0.69 (+0.35)
ViT-B/32 0.25 0.60 (+0.35) 0.52 0.72 (+0.20) 0.38 0.75 (+0.37)
MLLM
llava-v1.6-vicuna-7b 0.24 0.45 (+0.21) 0.47 0.66 (+0.19) 0.31 0.58 (+0.27)
llava-v1.6-mistral-7b 0.25 0.52 (+0.27) 0.53 0.69 (+0.16) 0.35 0.61 (+0.26)
deepseek-vl-7b-chat 0.19 0.34 (+0.15) 0.48 0.62 (+0.14) 0.22 0.49 (+0.27)
blip-2-vqa-base 0.30 0.62 (+0.32) 0.56 0.64 (+0.08) 0.30 0.58 (+0.28)
ViT Classifiers
vit-base-patch16-224 0.42 0.76 (+0.34) 0.52 0.81 (+0.29) - -
vit-base-patch16-384 0.46 0.78 (+0.32) 0.55 0.83 (+0.28) - -
vit-base-patch32-384 0.45 0.69 (+0.24) 0.54 0.81 (+0.27) - -
vit-large-patch16-224 0.44 0.75 (+0.31) 0.56 0.83 (+0.27) - -
vit-large-patch16-384 0.48 0.74 (+0.26) 0.57 0.85 (+0.28) - -
vit-large-patch32-384 0.45 0.71 (+0.26) 0.57 0.79 (+0.22) - -

Table 2. Performance (Accuracy) of all the models for the tasks defined in experimental setup in zero-shot data-setting. Results presented
here include Enhanced Description (ED) and Feature Filtering (FF) for generating synthetic data.

sized data are employed to train the classifier with 50% of
the feature extractor frozen.

Enriching Diversity. Only using the label names as in-
puts might limit the diversity of synthesized images and
cause bottlenecks in validating the effectiveness of synthetic
data. Hence, we leverage an off-the-shelf text-generation
LLM model Claude-3 [1] (OPUS) to increase the diver-
sity of language prompts and the generated images, namely
Enhanced Description (ED), hoping to unleash the poten-
tial of synthesized data better. Concretely, we input the la-
bel name of each class into the LLM model, which gen-
erates diversified sentences containing the class names as
language prompts for the text-to-image generation process.
For example, if the class label is “Rafflesia Arnoldii,” then
the enhanced descriptive prompt from the model could be
“Rafflesia flower in full bloom surrounded by huge thick,
fleshy oval lobes with pointed tips, entire flower is a deep
red-brown, speckled with white spots, giving it a speckled
appearance, set in a lush green rainforest, Vibrant colors,
Macro lens, f/4 aperture, ISO 200, naturally diffused light”.
The enhanced text descriptions introduce rich context de-
scriptions for more variants of the image.

Reducing Noise and Enhancing Robustness. It’s un-
avoidable that the synthesized data may contain low-quality
samples. This is even more severe in the setting with lan-
guage enhancement as it may introduce undesired items into

language prompts. Hence, we introduce a Feature Fil-
ter (FF) strategy to rule out these samples. Specifically,
CLIP extracted feature distance is used to assess the qual-
ity of synthesized data, and the low-confidence ones are re-
moved. We define a normalized distance parameter α based
on which the images with a distance more than α are filtered
out. This α parameter is hyperparameter tuned to find the
optimal value. (see Figure 7, 8, 9 in supplementary)

Significant Results: 1) zero-shot classification results
on the three tasks mentioned previously; 2) study of syn-
thetic data diversity; 3) study of synthetic data reliability;
4) study of the effect of distance parameter (α) on the accu-
racy of the model.

Synthetic data can significantly improve the perfor-
mance of zero-shot learning. Our main studies in zero-
shot settings are conducted with CLIP-RN50 (ResNet-50)
[14] and CLIP ViT-B/L (Visual Transformer) [9], LLaVa
[27], Blip-2 [24], and ViT-B/L-16/32 [9] family of models,
and we report results with our best strategy of ED+FF. The
image generation model used for these results is the Stable
Diffusion XL (SDXL) model since it is open-sourced, effi-
cient in image generation (see Supplementary Section 8 for
ablation), and the experiment will be easy to replicate. As
shown in Table 2, on diverse zero-shot rare flora image clas-
sification, we achieve a remarkable average gain of 38% for
CLIP, 27% for MLLM, and 34% for ViT-Classifier family
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in terms of top-1 accuracy.

Flora w/o SYN +SYN
Rafflesia Arnoldii 0.45 0.64 (+0.19)
Encephalartos Woodii 0.18 0.35 (+0.17)
Amorphophallus Titanum 0.12 0.54 (+0.42)
Ghost Orchid 0.26 0.38 (+0.12)
Dracaena Cinnabari 0.00 0.70 (+0.70)

Table 3. Zero shot Image classification accuracy improvement of
CLIP ViT-B/16 on Task (1) Rare-Rare classification with ED+FF

If we observe the improvement of the performance of the
CLIP classifier on different flora from Table 3, we achieve
the most significant performance boost of 70% for Dragon’s
Blood Tree in top-1 accuracy. We notice that the per-
formance gain brought by synthetic data varies differently
across flora, which is mainly related to SDXL’s training data
distribution. The training data distribution of the text-to-
image generation model SDXL would exhibit bias and pro-
duce different domain gaps with different flora.

Flora CLIP P ED ED+FF
RA 0.33 0.51 (+0.18) 0.43 (+0.10) 0.66 (+0.33)
EW 0.54 0.59 (+0.05) 0.61 (+0.07) 0.63 (+0.09)
AT 0.57 0.62 (+0.05) 0.61 (+0.04) 0.64 (+0.07)
GO 0.46 0.53 (+0.07) 0.60 (+0.14) 0.69 (+0.23)
DC 0.51 0.55 (+0.04) 0.57 (+0.06) 0.62 (+0.11)

Table 4. Zero shot classification accuracy improvement of CLIP
ViT-B/16 on Task (2) (ablation study of Primary Strategy (P), En-
hanced Description (ED) and Feature Filtering (FF) )

By introducing more linguistic context into the text
input, ED helps increase the diversity of synthetic data.
As shown in Table 4, ED can achieve additional perfor-
mance gains upon P in most cases, demonstrating ED’s effi-
cacy and the importance of synthetic data diversity for zero-
shot classification. Enhanced Description (ED) achieves
performance gain over P in most cases (2% ↑ for Cycad
(EW) and 7% ↑ for Ghost Orchid (GO) ).

Reliability matters. While ED could help increase the
diversity of synthetic data, it also introduces the risks of
noisy samples. Observed in Table 4, ED sometimes even
brings performance drops compared with P (8% ↓ for Raf-
flesia (RA) and 1% ↓ for Corpse Flower (AT) ), which
may be attributed to the noise introduced by enhanced lan-
guage prompts, e.g., the sentence extended from the class
name word may contain other class names or confusing ob-
jects. Fortunately, with FF to filter out unreliable samples,
ED+FF yields consistent improvement.

The optimal distance for feature filtering is nearly
consistent. We prove this from the empirical results in
Figure 2 that the optimal distance for filtering the synthetic

Figure 2. Average Accuracy improvement of different model fam-
ilies with varying filtering distance parameter (P+ED+FF)

dataset to achieve optimal accuracy remains nearly consis-
tent. We use the 1 - cosine-similarity as a normal-
ized distance metric. Based on the results, we observe that
the value of α = 0.3 yields the best average accuracy im-
provement in nearly most of the family of models (The av-
erage accuracy improvement in the image denotes the im-
provement in accuracy of all the five rare flora averaged
weighted on their sample size).

Summary. Current synthetic data from text-to-image
generation models could bring significant performance
boosts for a wide range of zero-shot image classification
tasks and is readily applicable with carefully designed
strategies such as large-scale pre-trained models. Diver-
sity and reliability matter for synthetic data when employed
for zero-shot tasks. A fixed hyper-parameter tuned distance
metric for filtering yields optimal performance.

3.2. Few-Shot Image Recognition with Synthetic
Images from Generative Models

Here, we explore the effectiveness of synthetic data for few-
shot tasks and investigate how synthetic data impacts per-
formance as more shots are included. Additionally, we de-
sign effective strategies to leverage synthetic data better.

Few-shot Image Recognition. We adopt CLIP, MLLM,
and ViT as the models for few-shot image recognition due
to their state-of-the-art performance [39]. However, for the
following experiments, we make use of the CLIP RN50x64,
LLaVa-Mistral-7B, BLIP-2, and ViT-L/16@224 models,
since these models have the best performance in their family
from Table 2. We study how to tune the classifier weights
with synthetic data. In an N-way M-shot case, we are given
M real images of each test class, where M ∈ {1, 2, 3, 4, 5}
in our experiments. With N×M training samples, we hope
to achieve good performance on a test set of the N classes.

Synthetic Data for Few-shot Image Recognition.
While there have been a few attempts to study how to better
adapt CLIP models for few-shot tasks [58, 60, 61], they all
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focus on the model optimization level, and very few have
explored from the data level. Here, we systematically study
whether and how synthetic data can solve few-shot image
recognition tasks. With the experience from synthetic data
for zero-shot tasks, we adopt the best strategy (i.e., ED+FF)
as the primary strategy (P) in the zero-shot setting. Fur-
ther, as the few-shot real samples can provide helpful infor-
mation on the data distribution of the classification task, we
propose two new strategies leveraging the in-domain few-
shot real data for better using synthetic data: 1) Real Fea-
ture Filtering (RFF): given synthetic data of one class c,
we use the features of few-shot real samples to filter out
synthetic images whose features are far from the real sam-
ple features by at least distance parameter α (we use the
cosine similarity here as well). Since both the real data and
synthetic data are in the image format, for feature extrac-
tion, we make use of Resnet-101 [14] instead of CLIP; 2)
Real Image Guided Generation (RIGG): we use the few-
shot real samples as guidance to generate synthetic images
where the few-shot real samples (added noise) replace the
random noise at the beginning of the generation to guide the
diffusion process (see Supplementary Section 9 for imple-
mentation). We also use the Stable Diffusion XL (SDXL)
model for the following experiments.

Significant Results: 1) few-shot classification results on
the three classification tasks; 2) ablation study of training
strategy; 3) ablation study of synthetic data generation strat-
egy; 4) ablation study of distance parameter α.

Figure 3. Performance (Accuracy) of the classification models on
the Few-shot image recognition Task-1 (Rare-Rare Classification).

Synthetic data can boost few-shot learning, and the
positive impact of synthetic data will gradually dimin-
ish with the increase of real data shots. Figure 3,
4 and 5 present the result of the model fine-tuned with
P+ED+RFF+RIGG. As shown in Figure 3, with only a few
shots of real images for training, our fine-tuned models have
significantly improved performance compared to their zero-
shot counterparts. Figures 4 and 5, which denote the results

Figure 4. Performance (Accuracy) of the classification models on
the Few-shot image recognition Task-2 (Rare-Common Classifi-
cation).

Figure 5. Performance (Accuracy) of the classification models on
the Few-shot image recognition Task-3 (Mixed Classification).

of the fine-tuned models on Task-2 and Task-3, show simi-
lar results. With the help of generated synthetic data, mod-
els achieve noticeable performance gains upon pre-trained
weights, and ViT-L/16@224 achieves a new state-of-the-art
few-shot learning performance across different flora with
almost perfect prediction accuracy of 98% for Task 1. We
argue that synthetic data could help address the problem of
insufficient data to boost performance for data-scarce few-
shot classification. However, we notice that the boost from
synthetic data gradually diminishes as the real shot num-
ber increases for other models like CLIP, BLIP, and LLaVa.
Due to the relatively low variety of images present in the
dataset of rare plant species, the correlation among the real
data is high, and it is also transferred to the RFF+RIGG
generated synthetic data. We thus observed a good boost in
performance, which slowly died down with increased shots.

Mix Training fits few-shot learning with synthetic
data. Now that we have two parts of data, i.e., few-shot real
data and synthetic data, we could either 1) phase-wise train
on each part of data with two training phases or 2) adopt
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M-shot Phase-wise Mix
trainingsyn→ real real→ syn

1 0.61 0.63 0.65
2 0.64 0.67 0.69
3 0.68 0.70 0.73
4 0.71 0.72 0.77
5 0.72 0.75 0.78

Table 5. Mix training works better for few-shot classification on
Task 2 (rare-common classification) with CLIP model.

mix training that simultaneously utilizes two parts of data to
update the model in each iteration. We provide the results
in Table 5: we study the Task 2 (Rare-Common Classifi-
cation) performance and use synthetic data generated from
the RIGG method; under different shot number settings,
mix training performs consistently better than two phase-
wise strategies. Mixed training could help learn better clas-
sifiers since each part could function as a regularization for
the other: synthetic data help alleviate instabilities brought
by limited real samples, and real data help address synthetic
data’s noise and domain gap.

Flora P+ED RFF RFF+RIGG
RA 0.64 0.76 (+0.12) 0.83 (+0.19)
EW 0.68 0.75 (+0.07) 0.81 (+0.13)
AT 0.65 0.66 (+0.01) 0.72 (+0.07)
GO 0.54 0.79 (+0.25) 0.85 (+0.31)
DC 0.61 0.72 (+0.11) 0.78 (+0.17)

Table 6. Few shot classification accuracy improvement of CLIP
ViT-B/16 on Task (2) Rare-Common classification (ablation)

Employing real data as guidance can alleviate do-
main differences and boost performance. We compare
three strategies of synthetic data generation for few-shot
tasks. As shown in Table 6, both RFF and RIGG provide
performance gains upon P, the primary strategy in the zero-
shot setting. This demonstrates the importance of utilizing
domain knowledge from few-shot images to prepare syn-
thetic data. Further, RIGG significantly outperforms RFF,
yielding the best performance. This shows utilizing real
data as guidance for the diffusion process helps reduce the
domain gap. Combining RFF and RIGG yeilds the best
performance as from results in Table 6.

Stability of the distance parameter (α) holds for the
few-shot setting. Lastly, we investigate the distance param-
eter (α) for our few-shot settings with synthetic data. As
shown in Figure 6, for mixed data (Real + Synthetic), the
α value remains consistent for all the models and is slightly
different from the zero-shot value (α = 0.43). Thus, we
can empirically conclude that the availability of few-shot
real data is a characteristic of distance parameter α.

Figure 6. Average Accuracy improvement of different models with
varying filtering distance parameter (P+ED+RIFF+RIGG)

Summary. Synthetic data from text-to-image generation
models could readily benefit few-shot learning and achieve
a new state-of-the-art few-shot classification performance
with the strategies we present in this paper. However, the
positive impact of synthetic data will diminish as more shots
of real data are available. We also show that the distance
parameter remains consistent across the model families with
the availability of real data.

4. Conclusion

This study explores synthetic images generated from text-
to-image diffusion models to improve the classification of
rare plant species in both zero-shot and few-shot learning
scenarios. We evaluate the efficacy of synthetic data gen-
erated using diffusion models, focusing on five rare plant
species. In the zero-shot setting, synthetic data significantly
improves classification accuracy, with the proposed strate-
gies to increase data diversity, reduce noise, and enhance
reliability. Similar improvements are observed for MLLM
and ViT classifiers. Synthetic data helps achieve state-of-
the-art performance in the few-shot setting, but the domain
gap between artificial and real data poses a challenge. We
propose using real images to guide the generation process
and demonstrate that creating detailed descriptions of rare
plants using language models significantly improves classi-
fication performance. The study highlights the potential of
combining machine learning with environmental science to
enhance the conservation and research of botanical diver-
sity, offering a novel approach to improving model robust-
ness when real-world data is limited. Our study demon-
strates that synthetic data from text-to-image generation
models can readily benefit zero-shot and few-shot learning
for rare plant classification. However, the positive impact of
synthetic data diminishes as more real data becomes avail-
able. We also show that the optimal distance parameter for
filtering synthetic data remains consistent across models.
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