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Figure 1. MixSyn learns to generate semantic compositions and styles from multiple sources. Left - From mask (orange)
and image (purple) regions, novel compositions and images (green) are generated. Naive copy-paste is shown in red boxes.

Right - Each facade (green) is generated from multiple source images for each region in the given mask.

Abstract

Synthetic images created by generative models increase
in quality and expressiveness as newer models utilize larger
datasets and novel architectures. Although this photoreal-
ism is a benefit from a creative standpoint, expressiveness is
still limited by the training data. Most of these approaches
are built on the transfer between source and target pairs,
or they generate completely new samples based on an ideal
distribution, still resembling the closest real sample while
missing less frequent or non-existent compositions. We pro-
pose MixSyn (read as “ mixin’ ”) to learn novel fuzzy com-
positions from multiple sources and to create novel images
as a mix of image regions corresponding to the compo-
sitions. MixSyn not only combines uncorrelated regions
from multiple source masks into a coherent semantic com-
position, but also generates mask-aware high quality re-
constructions of non-existing images. We compare MixSyn
to state-of-the-art single-source sequential generation and
collage generation approaches in terms of quality, diver-
sity, realism, and expressive power; comparing region-wise
reconstruction and similarity scores. We also showcase in-
teractive synthesis, mix & match, design space exploration,
and edit propagation tasks, with no mask dependency.

1. Introduction

Image-based synthesis has been an interesting topic for
decades in both computer vision and graphics. Recent gen-
erative approaches set this task forth as conditional gen-
eration [4, 16, 21, 35, 37, 41, 42], image-to-image trans-
lation [7, 10, 11, 21, 22, 31, 34, 46], or style encod-
ing [12, 20, 23, 47]. The foundation of these approaches
has been learning the mapping between a source and a target
image, for modeling specific styles, segments, or domains.
Most of those approaches utilize semantic masks to condi-
tionally generate realistic images [33], to represent diverse
inter-domain images [11], and to replace the content or style
of specific parts seamlessly [50]. However, all of them op-
erate on given masks of source and target pairs. Some en-
able sequentially modifying regions with multiple targets,
but they need aligned segments with a constant mask.

Being able to incorporate style information through nor-
malization parameters accelerated conditional image gener-
ation research, which yields higher quality results [20] as
the details are retained deeper in the network. However this
constraint also increased the dependency on the input se-
mantic masks (also called maps or compositions). Observ-
ing the state of the art in semantic image synthesis, three
main limitations restrain the expressive power: (1) genera-
tion is restricted to source-target (pairwise) transfer of styles
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and regions, (2) semantic masks are mostly manually mod-
ified and they are neither novel, nor flexible, and (3) uncor-
related and unaligned regions are compositionally not co-
herent. For (1), [50] intakes per-region style images, how-
ever they pursue pairwise processing per region. This is a
serious limitation amongst most of the semantic image syn-
thesis approaches as the interactions and contributions from
multiple sources are dismissed. For (2), [33] provides a UI
for drawing semantic masks. However, the generation is
based on the label encoding and it is not possible to guide
the generation with a specific image, sweeping the mask de-
pendency under the hood. For (3), [16] learns mapping and
interpolation between masks, however our motivation to
transcend pairwise manipulation to multi-source synthesis
poses a different challenge. Moreover, the core maleficence
of deepfakes arises from impersonation, which comes by
default because of this source-target coupling, which raises
serious ethical debates. In an attempt to generate human
soups, MixSyn creates non-existing synthetic images by de-
sign, as an example of responsible deepfakes.

To overcome these limitations, we jointly learn composi-
tions and styles from multiple images. We tackle this prob-
lem by learning to generate fuzzy semantic compositions
from input masks and by learning to synthesize novel pho-
torealistic images from these compositions, preserving the
style of each input region from a different image. Although
humans comfortably edit existing semantic masks, manual
assembly of novel masks is challenging due to (i) non-exact
region boundaries, (ii) unassigned pixels, (iii) overlapping
regions, and (iv) misalignment. MixSyn takes as input mul-
tiple unaligned segments from several source images (i.e.,
eyes of A, mouth of B, and nose of C) and creates a new
coherent image (i.e., a new face) based on the learned se-
mantic maps (Fig. 1). Our approach
• learns to generate novel compositions, reducing the de-

pendency on exact semantic regions;
• couples structure and style fusion for image synthe-

sis, flexing spatial constraints on the style generation by
learned fuzzy masks; and

• allows combining multiple unaligned sources into a re-
alistic image, enabling style and structure blending, and
disabling impersonation for face generation.
We employ two generative architectures for generating

the composition (semantic) and the image (visual), encod-
ing structures and styles of images separately per region.
Structure generator (Fig. 3) learns feasible compositions
from as-is, random, and real samples. Style generator
(Fig. 4) learns to generate realistic images using region-
adaptive normalization on the novel compositions. The two
generators are trained jointly in order to couple structure
and style creation. We also introduce MS block (Fig. 4e)
with optional normalization and resampling layers.

We compare our results to single-source sequential edit-

ing and collage-based synthesis approaches in terms of sim-
ilarity, reconstruction, visual, and generative quality. We
train and test MixSyn on several datasets in two domains:
faces and buildings, with promising results for extension to
others. We conduct ablation studies on our semantic classes
and loss functions. Moreover, we implement applications of
MixSyn, such as edit propagation and combinatorial gener-
ative space exploration. The multi-source nature of MixSyn
also prohibits one-to-one impersonation, which is a positive
step towards privacy concerns [43], causing the shift to use
synthetic datasets [44].

2. Related Work
Patch-based Synthesis. Traditional approaches provide
semantically guided synthesis using patch similarity [2],
graph cuts exploiting repetitions [25], and guided inverse
modeling exploiting instances [13]. Their deep generative
counterparts flex similarity and repetition coercion, so the
synthesis can be much efficient [27], adaptive [45], com-
plex [39], yielding detailed results [38], due to simplistic
part-based similarity [48] and contrastive [34] losses. In-
spired by patch-based approaches, we propose a novel se-
mantic image synthesis method where patches are replaced
with fuzzy semantic regions, shifting our focus from patch
selection to patch composition.

Style Transfer. Recently, popular image manipulation
tasks emerge from applying style of a source image to a
target image by adaptive normalization [23], with explicit
domain labels [10], utilizing soft masks [47], transferring
segment by segment [37], for attribute editing [22], and in
multiple domains [11]. In particular for combining multiple
sources, [35, 46] blend features in GAN layers of multiple
images; however spatial regions and features are provided
manually. [36] conditions hair generation on multi-input;
however masks are kept constant. [5] can translate a collage
image to a photorealistic image, but there is no semantic
structure and the collage creation is a manual step.

Conditional Normalization. As semantic synthesis ap-
proaches and conditional GANs start to demand more ac-
curacy and realism, supplying masks only as an input to
the first layers did not suffice to preserve the contribution
of regions as the network grows deeper. Later, the qual-
ity of results has been significantly enhanced by inject-
ing style [20] and structure [33] information to adaptive
normalization layers. [50] took it a step further and intro-
duced region-adaptive normalization, which allows intro-
ducing per-region styles. Following this line of thought, we
introduce MixSyn blocks (MS-block), that contains a novel
shape and style aware semantic region adaptive normaliza-
tion, to broadcast styles per learned regions.

Semantic Editing. Semantic image manipulation tech-
niques modify or create some binary mask for inclu-
sion/exclusion [21, 32], manipulate the underlying mask [3,
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16], generate the mask only with label collections [9], re-
place foreground objects [6], learn binary compositions [1],
use encoder-decoder networks to learn the blending [31], or
infill with another image [14]. Although such approaches
provide control over semantic labels, (1) generation is not
controllable or guided by a certain image, (2) they mostly
do inpainting instead of synthesis, and (3) there is no multi-
source capability, i.e., all of them utilize source-target pairs.
Meanwhile, other approaches push image-to-image trans-
lation to mask-to-mask [26], sketch-to-sketch [8], or scene
graph [15] translation, where the new mask contains struc-
ture of the source and style of the target. Our approach
is conceptually similar, instead of user-defined masks, the
mask is also learned from multiple unaligned regions.

3. Multi-Source Composition Learning
In order to learn coherent fuzzy compositions from multiple
regions as in Fig. 2, first we define our compositions, then
we describe our architecture with a multi-encoder, single
decoder generator with a simple discriminator (Fig. 3).

Figure 2. Compositions. Faces: Orange regions (rij) generate ran-
dom composition M ′′ (green). Buildings: Respectively; molding,
window, facade, and balcony regions are combined for the fuzzy
mask (green). More samples are demonstrated in Supp. A.

3.1. Compositions

Let rai denote regions making up a source mask Ma =
{rai }, in a predetermined order for i ≤ N , where N is the
number of all possible regions. M corresponds to the list of
all S source masks M = {Ma,Mb, . . . ,MS}. We would
like to assemble a composition M ′

∗ = {ra0 , rb1, . . . , rcN}
where each region r∗i comes from a source mask M∗ in M .
It is important to note that a source mask can be selected
multiple times for different regions (a, b, . . . , S can repeat),
however a region can be selected only once (0, 1, . . . , N
is unique). Masks have sharp boundaries between regions,
whereas compositions combine fuzzy regions.

Needless to say, if all regions are from one source mask
(i.e., ∀∗ = a), we expect M ′

a = ∪ir
a
i to represent Ma. We

call this known composition M ′
∗ for each M∗. In contrast, if

each r∗i is selected from different M∗’s in the batch, we call
it random composition M ′′ (Fig. 2 and Supp. A). We se-
lect symmetric regions from the same source, e.g., left/right
eyes from one mask (Supp. H, symmetry coupling), keep-
ing random compositions consistent.

3.2. Structure Generator

There is no initial alignment between regions of random
compositions, so it does not make sense to put many ran-
dom regions into the same composition in image space.
However, we want to learn how they would transform and
blend to create realistic compositions, thus we encode each
r∗i with the specific region encoder Ei(r

∗
i ) = e∗i , producing

a 16×16×128 structure code. We use separate encoders, so
that the codes are disentangled and each region can be used
interchangeably. Then, we combine structure code e∗i ’s into
a composition code c∗ =

⊕
i e

∗
i of size 16× 16× 128×N

and pass it to the decoder C∗ (
⊕

corresponds to concate-
nation). C∗ learns to decode c∗ into novel composition M ′

∗.
Our structure generator forges soft borders (i.e., fuzzy com-
positions), which creates flexibility for our image generator
to produce better results. If a region j does not exist in a
composition, we set e∗j = [0].

The encoder-decoder structure constitutes our structure
generator GM (M∗) = C∗(

⊕
r∗i ∈M∗

Ei(r
∗
i )), which is

trained with our discriminator DM to create coherent and
realistic masks. The encoder, decoder, and discriminator
models use MS blocks (Sec. 4.2 & Fig. 4e) and layer details
are listed in Fig. 3 & Supp. B.

3.3. Training Objectives

During training, generator GM takes a mask Mx ∈ M and
learns to create known compositions M ′

x and random com-
positions M ′′ with an adversarial loss. The discriminator
DM (Fig. 3c, Supp. B) aims to classify real masks M , gen-
erated known compositions GM (M ′

x) and generated ran-
dom compositions GM (M ′′) (Fig. 3b, Supp. B). With batch
size ω, the discriminator processes ω reals and 2ω fakes,
thus, we balance the contributions with α.

LA =logDM (Mx)+ (1)
αlog(1−DM (GM (M ′

x)))+

(1− α)log(1−DM (GM (M ′′)))

For known compositions, we incorporate an L1 reconstruc-
tion loss LR = ||Mx − GM (M ′

x)||1, forming the final ob-
jective with hyperparameters λA and λR as:

min
GM

max
DM

λALA + λRLR (2)

4. Multi-Source Image Synthesis
Having fuzzy compositions, now we learn to create coher-
ent images with them, where styles per segments are pre-

7462



Figure 3. Structure Generator. (a) We train separate encoders for each region type, then (b) the structure codes for known and random
compositions are passed to the decoder. (c) The generator and the discriminator learns to create novel compositions.

served. To aid the reader, regions rai in a mask Ma are anal-
ogous to segments kai in an image Ia.

4.1. Style Segments

Let kai denote segments making up a source image Ia =
{kai }, with corresponding mask regions Ma = {rai }.
I corresponds to the list of all S source images I =
{Ia, Ib, . . . , IS}. We would like to assemble an image
I ′∗ = {ka0 , kb1, . . . , kcN} where each region r∗i corresponding
to the segment k∗i comes from a mask M∗ in M . The con-
cept can be observed in red copy-paste segments in Fig. 1.

Similar to the two types of compositions, now we have
three types of images we aim to generate: (1) Known image
Ia with initial mask Ma where {kai } correspond to {rai },
(2) approximated image I ′a with the generated known com-
position GM (M ′

a) where {k′ai } correspond to {r′ai },and
(3) generated random image I ′′ with the generated random
composition GM (M ′′) where {k′′i } correspond to {r′′i },
meaning that all regions and corresponding segments are
selected from different source masks and images.

We encode each k∗i with the specific segment encoder
Ei(k

∗
i ) = e∗i , producing a δ-length style code (Fig. 4b). We

expect ∪iEi(k
a
i ) to represent Ia, and ∪iEi(k

′a
i ) to approxi-

mate Ia. While these two segment generations ensure learn-
ing plausible photorealistic images from compositions, the
last one (∪iEi(k

′′
i )) is the actual novelty that brings out the

style blending from multiple source images, also depicted
as the main application in Fig. 5. We combine all style
codes to construct a style matrix ∆∗ =

⊕
i e

∗
i of size δ×N .

For encoders (documented in Fig. 4a and in Supp. B.), not
having shared parameters increases memory footprint, how-
ever, it enables (1) generating from a varying number of re-
gions, (2) handling non-existing region types, (3) portability
across datasets, and (4) better reconstruction that preserves
size/shape per region, as discussed by [50].

4.2. Image Generator

We use a full generator with adaptive normalization layers
for image synthesis GI(M∗,∆∗) = I∗ (Fig. 4c), which is
trained with our image discriminator DI (Fig. 4d) to create

realistic images. Supp. B delineates all architectures.

To selectively include normalization and sampling lay-
ers, we introduce our minimum computation unit: MS block
(Fig. 4e). MS is a configurable res block with a shortcut,
with optional downsampling (red layers in Fig. 3), upsam-
pling (blue layers in Fig. 4c), and normalization (purple
boxes in Fig. 4c) layers. Samplings are done with bilin-
ear interpolation and average pooling. For encoders and
structure decoder, instance normalization is enabled in MS
block. For broadcasting styles per learned region, we use
region-adaptive normalization with corresponding masks,
style matrices, and noise vectors. Layer order in MS block
follows pre-activation residual units in [11, 17].

4.3. Training Objectives

Adversarial Loss. Our image generator GI intakes
source images Ix and compositions Mx, GM (M ′

x) and
GM (M ′′), outputting known GI(Ix,Mx), approximated
GI(Ix, GM (M ′

x)), and random images GI(I∗, GM (M ′′)).
The discriminator DI (Fig. 4d and Supp. B) classifies these
images as real or fake using loss 3, balancing contributions
of real and three subsets of fake images by β and η.

LA =β logDI(Ix)+ (3)
(1− β) [η(log(1−DI(GI(Ix,Mx)))+

log(1−DI(GI(Ix, GM (M ′
x)))))+

(1− η) log(1−DI(GI(I∗, GM (M ′′))))]

Note that, initial r∗i s from different M∗s that are combined
in M ′′ are stored in order to evaluate the corresponding k∗i s
in I ′′. Although region-adaptive normalization layers need
∆, we push the extraction of the style matrix per composi-
tion, to better fill approximate masks.

Style Loss. We add loss 4 based on style matrix ∆∗ =⊕
i Ei(k

∗
i ) to ensure that the style is preserved for seg-

ments of approximated and random images that undergo
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Figure 4. Style Generator. (a) We train N encoders for each segment type, and (b) create a style matrix. (c) Style generator translates the
masks created by the structure generator into photorealistic images, using a region-adaptive normalization to broadcast the style matrix.
(d) Discriminator differentiates between four types of incoming images. (e) The MS Block is the unit of processing for all of our networks,
which is a res block with optional resampling and normalization layers.

some transformation.

LS =
1

2N
(||

⊕
i

exi −
⊕
i

Ei(GI(Ix, GM (M ′
x)))||+ (4)

||
⊕
i

e∗i −
⊕
i

Ei(GI(I∗, GM (M ′′)))||)

Reconstruction Loss. Similar to our structure generator,
we add a reconstruction loss for known and approximated
images, as they originate from the same image. Formulating
a piece-wise continuous local reconstruction loss (like [16])
for random images is left for future work.

LR =
1

2
(||Ix −GI(Ix,Mx)||1 + ||Ix −GI(Ix, GM (M ′

x))||1)
(5)

Overall, our training can be formulated as below, with
the corresponding hyperparameters for each loss term.

min
GI ,E

max
DI

λALA + λSLS + λRLR (6)

5. Results
We set 0.0001 and 0.0003 for the learning rates of GM , GI

and DM , DI , using ADAM [24] with β1 = 0 and β2 =
0.999 with a decay of 0.0001. Similar to other normaliza-
tion approaches [33, 50], we apply Spectral Norm [30] to
generators and discriminators. We use instance and region-
adaptive normalization for specified layers (see Supp. B).
We also add ℓ1 regularization for training stability [29] in
both structure and style generators. We balance the loss
contributions with α = 0.5 in Eqn. 1, λA = 1, λR = 0.25

in Eqn. 2, β = 0.25, η = 0.6 in Eqn. 5, and λA =
0.25, λS = 0.4, λR = 0.3 in Eqn. 6. Experiments are done
on an NVIDIA RTX 2080 with 4 GPUs, with one epoch
taking a few hours. We use 30000 images in CelebAMask-
HQ [26] for most of the experiments in face domain and
Helen [28] for cross-dataset evaluation. We use CMP Fa-
cade dataset [40] for the results in architecture domain.

Figure 5. Multi-Source Synthesis. MixSyn creates a composition
and an image (bottom right) from six regions (orange, top) and six
segments (mid). Copy/paste versions are also shown (bottom left).

5.1. Evaluation

Fig. 5 demonstrates our main motivation. If selected re-
gions (orange) are to be naively copy-pasted, bottom left
mask-image pair is obtained, which is not desirable. In con-
trast, our approach is able to combine six segments from
six images into a coherent composition and image (bottom
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right). More multi-source synthesis results can be observed
in Supp. K. Note that purple boxes are not exact, they only
outline the region which is actually represented with the or-
ange masks (e.g., box on a head represents all hair in or-
ange hair region). The copy-paste versions are only demon-
strated as reference, they are not used in MixSyn. Similarly,
Fig. 6 shows random compositions and random images by
MixSyn, where each mask region (and image segment) is
sourced from a different building.

Figure 6. MixSyn on Facades. Sample composition and image
pairs, where each region is selected from a different building.

We evaluate our method quantitatively in Tab. 1 with
different image similarity metrics applied per region. We
also document region-based scores in Supp. C-E, reveal-
ing that our bottleneck is to learn hair styles (highest FID).
MixSyn realistically generates frequent segments (eyes,
nose, mouth) with high SSIM and PSNR, however similar-
ity scores of rare ones (hat, glasses) are much lower.

Method SSIM RMSE PSNR FID
Pix2PixHD 0.68 0.15 17.14 23.69

SPADE 0.63 0.21 14.30 22.43
SEAN 0.7 0.12 18.74 17.66

MixSyn 0.95 1.89 31.32 14.41
MixSyn Structure 0.97 1.15 33.06 NA

MixSyn (H) 0.96 1.46 32.13 NA
MixSyn Structure (H) 0.98 0.92 36.00 NA

Table 1. Reconstruction Scores on CelebAMask-HQ and Helen
(H) datasets (trained on CelebAMask-HQ). Non-MixSyn scores
are trained with a single style image and are taken from [50].

Finally, we perform a cross-dataset evaluation by test-
ing MixSyn trained on CelebAMask-HQ on Helen (Tab. 1
(H)). High similarity indicates that MixSyn is generaliz-
able, creating multi-source faces from other datasets. Rel-
atively worse RMSE signals that we indeed create novel
masks with inexact reconstructions where multiple regions
adapt/blend. Supp. E declares all cross-dataset scores.

5.2. Comparison

As MixSyn is the first of its kind, we compare it to single-
source [11, 26, 33], sequential [16, 50], and collage [5]
approaches. We emphasize that they (i) cannot gener-
ate from multiple sources simultaneously, (ii) depend on
given/modified mask, (iii) cannot compose novel masks,
(iv) do not learn both structure and style end-to-end, and
(v) cannot generate from partial/fuzzy/incomplete masks.

Figure 7. Comparison. Output pairs in Fig. 5 bottom, are fed
to [16, 26, 33, 50]. None can generate from multi-source, non-
existing masks, or realistic results. See Supp. F for detailed scores.

We start with justifying these claims. For (i-ii), we feed
four combinations of (copy-paste/our) x (mask/image) pairs
in Fig. 5 as alternative inputs to SPADE [33], SEAN [50],
Mask Guided CGAN [16], and MaskGAN [26]. Although
results improve from copy-paste masks (Fig. 7, col. 1 &
3) to our generated masks (col. 2 & 4), quality of their
results are not close to ours (Fig. 5), supporting claims (ii-
iii). We also investigate how others reconstruct our result
image with our mask (col. 4). Because of claims (iv-v)
above, they simply cannot utilize fuzzy masks. We repeat
the exercise with blended copy-paste inputs in Supp. G.

In Fig. 8, we select a base mask (top left of Fig. 5) since
other approaches cannot blend regions (ii-iii). Then, we
swap segments as the sequential component transfer ap-
plications of [16, 50] (following claim (i)), shown in the
first two columns. Despite looking better than col. 1-4
in Fig. 7, it is akin to a blended copy-paste, creating the
zoomed-in artifacts (e.g., different neck and nose colors,
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and a shadow mustache), because they are not jointly com-
posing new masks (iv-v). For the third column, we use the
copy-paste image as collage input for [5]. Although visual
artifacts decrease, there are empty areas and inconsistent
hair style. Similarity scores prove that segments are not as
well-preserved, questioning [5]’s realism over fidelity.

Figure 8. Sequential*/Collage Comparison. Component trans-
fer distorts nose and neck for [16], and creates a ghost mustache
for [50]. Collage synthesis [5] creates color artifacts and empty
areas. Quantitative results also support this visual comparison.

Quantitative comparison of MixSyn also supports
and generalizes these claims. In Tab. 1, we list
SSIM [49], RMSE [19], PSNR [19], and FID [18]
scores of Pix2PixHD [41], SPADE [33], SEAN [50], our
structure generator, and overall MixSyn architecture on
CelebAMask-HQ dataset [26]. Although our reconstruction
is not as exact (worse RMSE), MixSyn has more generative
capability (better FID). We remark that from our composi-
tions to our images, similarity decreases (better SSIM and
PSNR for MixSyn Str) as expected, but our style genera-
tor exploits novel compositions and achieves a better FID.
We list same metrics for the example in Fig. 8, which are
also better than the SOTA. Detailed reconstruction scores
(Supp. C.) on faces and facades, region similarity scores
for random images (Supp. D), and scores of Fig. 7 (Supp.
F) are documented in the supplemental.

5.3. Experiments

Ablation Study. Fig. 9 demonstrates and documents the
contribution of each loss function. With only adversarial
loss, we generate some humans fitting to compositions, but
neither color, nor style, and not even the domain is pre-
served. Without reconstruction loss, we are able to mimic
the style, but the colors are off. Without style loss, patterns
per region are lost, e.g., curly hair is ironed. Finally, without
normalization, style of small regions are dominated (e.g.,
eyes). The dataset scores are computed similar to Tab 1, but
on the results generated with specific loss functions.

Region Types. Starting with 18 base region types of

Figure 9. Ablation Study. Samples of source and generated
known images with different losses, followed by dataset scores.

faces and their hierarchy [26] (Fig. 10), we couple left-right
indices in random compositions (blue), to enforce learning
correlation of symmetric regions. We experimentally vali-
date that it is better than putting them into the same channel.
Supp. H shows results without symmetry coupling on faces
and facades, shifting results to the uncanny valley. We also
try compact subtypes of face regions (6 yellows), expect-
ing style generator to fill in rare types. Instead, structure
network merged them to existing types, creating interest-
ing compositions (Supp. J). To decrease training time, in-
crease accuracy, and fit encoders in the memory, we intro-
duce meta-types by grouping. We intuit that finer granular-
ity regions are needed for better style transfer, but not for
synthesis. 15 final meta-types are marked in pink.

Figure 10. Region Types. Starting from MaskGAN [26] types, we
create meta-types (pink), and couple symmetries for random gen-
eration (blue). We also experiment with compact types (yellow).

Mask Dependency. Although MixSyn works best with
accurate semantic masks, they can be inexact during infer-
ence. We show 2 sets of generated mask/image pairs from
5 sources (not shown) using (a) original masks, (b) mask
bounding boxes, and (c) hand-drawn strokes in Fig. 11, ex-
cept hair. Face features get slightly larger for (b), which is
expected but negligible.

Number of Mask Regions. Finally, we experiment with
different number of regions, as not all regions exist in all
samples such as hat, jewellery, columns, or deco. Not all
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Figure 11. Mask Variations. Result mask/image pairs are not
significantly effected when using original, bbox, and hand-drawn
masks. Insets show sample mask version.

structure codes are needed while generating an image, e.g.,
there is no rcloth in input regions of Fig. 5, so e∗cloth = [0].
The fuzziness between hair/face regions in third and last
columns enables both generators to recover in a random
composition, placing cloth region in mask and cloth seg-
ment in image. Our style and structure GANs behave as
unconditional image generators if some input vectors are 0,
thus, the results are still photorealistic. Figs. 1, 7, 12, have
4 regions; 5 has 6 regions; Fig. 13 has several regions in-
crementally; Supp. A and Supp. K has 3, 4, 5 regions; and
Supp. J has conflicting regions. Quality is observed to be
independent of number of regions.

6. Applications
6.1. Combinatorial Diversity

Each row in Fig. 12 demonstrates combinations of different
regions (mouth, hair, etc.) from similar sets of reference
images (color-coded pairs), to create visually varying faces
(green). As we can create an exponentially diverse set of
combinations, we claim that such a combinatorial design
space enables interactive editing, simulations with synthetic
collections, and data augmentation for DNNs.

Figure 12. Design Space. Using varied regions from same set of
images (color-coded), design space grows exponentially (green).

Figure 13. Perpetual Edits. After first face (left) is created, each
segment is replaced by others from different faces. Bottom left
face is very similar to the first, because original face is swapped.

6.2. Edit Propagation

In Fig. 13, we start by generating an image given {mouth,
nose, eyel, eyer} regions. Then, we change one or more
segments with other known or suggested ones. Observe that
other segments are structurally and stylistically preserved at
each step, while the specified segments are changed accord-
ing to an unseen reference. In the last step, the face of the
initial image is chosen as input, creating a similar face, as
region features are preserved during edits.

7. Conclusion and Future Work

We introduce mixed synthesis (MixSyn) for generating pho-
torealistic images from multiple sources by learning seman-
tic compositions and styles simultaneously. We train struc-
ture and style generators end-to-end, while preserving de-
tails by adaptive normalization on learned regions. We in-
troduce a flexible MS block as the unit of processing for
semantic synthesis. We demonstrate our results on three
datasets and two domains, report our FID, SSIM, RMSE,
and PSNR scores, qualitatively and quantitatively compare
to prior work, and propose novel applications.

For improvements, we present hard cases with varia-
tions in illumination, semantics, resolution, pose, and cross-
dataset transfers in Supp. I. Some combinations cause edge
cases naturally, such as a face region from an image with
hair and hair region on the sides from a bald person (Supp.
J). An interactive editing system can aid in eliminating such.

We observe that controlled synthesis with multiple im-
ages brings a new dimension to expressive creation. Our ap-
proach helps create non-existing avatars or architectures. It
enables partial manipulation, region transfer, and combina-
torial design without mask editing. Anonymization and de-
identification are also facilitated by MixSyn. Finally, with
the proliferation of adaptive normalization, multi-source
synthesis will bloom, foreseeing MixSyn as a pioneer.
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