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Prompt: Darth Vader dances Valz

Prompt: An astronaut jumps on moon surface.

Prompt: A cyborg moves to the left on a sandy beach.

Figure 1. LATENTMAN produces temporally consistent videos of animated characters using pre-trained Motion and Text-to-Image (T2I)
diffusion models given only a textual prompt.

Abstract

We propose a zero-shot approach for generating consis-
tent videos of animated characters based on Text-to-Image
(T2I) diffusion models. Existing Text-to-Video (T2V) meth-
ods are expensive to train and require large-scale video
datasets to produce diverse characters and motions. At
the same time, their zero-shot alternatives fail to produce
temporally consistent videos with continuous motion. We

strive to bridge this gap, and we introduce LATENTMAN
that leverages existing text-based motion diffusion models
to generate diverse continuous motions to guide the T2I
model. To boost the temporal consistency, we introduce
the Spatial Latent Alignment module that exploits cross-
frame dense correspondences that we compute to align the
latents of the video frames. Furthermore, we propose Pixel-
Wise Guidance to steer the diffusion process in a direction
that minimizes visual discrepancies between frames. Our
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proposed approach outperforms existing zero-shot T2V ap-
proaches in generating videos of animated characters in
terms of pixel-wise consistency and user preference.

1. Introduction
Generating visual assets of human characters is a prominent
task in the realm of image and video synthesis, with many
applications in movie production, art, and fashion. This task
aims to generate high-quality and diverse images/videos of
human characters that adhere to some given conditions, e.g.
textual prompts and human poses. Text-to-Image (T2I) dif-
fusion models [24–26] revolutionized this endeavor as they
can generate high-quality images of human characters con-
ditioned on user-provided textual prompts. ControlNet [36]
allowed further control over the generated images through
various conditioning signals such as depth maps, human
poses, and edge maps.

For generating videos of human characters, Text-to-
Video (T2V) diffusion models [2, 3, 11, 28] are evolving
rapidly, but there are several complexities associated with
them. For instance, learning the motion dynamics (e.g. the
human body), finding sufficiently large datasets, and fulfill-
ing their excessive computational needs. As an example, the
largest publicly available video dataset encompasses only
10 million videos [1], and it requires up to 48 A100-80GB
GPUs to train VideoLDM [3] on this dataset. Therefore, a
growing direction of research attempts to democratize this
task by leveraging T2I models to generate videos in few- to
zero-shot manner.

One category of approaches [8, 23, 32, 34] adopts a
Video-to-Video (V2V) scheme that relies on a reference
video to generate a target video with modified contents.
However, these approaches require the user to provide the
reference video, which can be difficult and inconvenient to
find. Alternatively, Text2Video-Zero [32] proposed to gen-
erate videos based only on a textual prompt where the mo-
tion dynamic is simulated by applying translation vectors
to the latent codes of the first frame. The temporal consis-
tency was achieved by converting the self-attention modules
of the T2I UNet, which encodes the visual style, to cross-
frame attention. This enforces the T2I model to generate
video frames that are visually consistent. Nonetheless, the
generated videos lack any motion continuity and only show
random variations of the same object. Moreover, a closer
look at the generated frames shows that the temporal con-
sistency is rather global, and fine details tend to change.

To illustrate this observation, we conduct a controlled
experiment where we render a SMPL human model [18] to
obtain a depth map of a human. We use this depth map and
a textual prompt as conditions for ControlNet to generate
a reference image. Then, we shift the depth map upwards
by 10 pixels to simulate a moving human in a video. We

replace self-attention modules with cross-frame attention as
in Text2Video-Zero to enforce the T2I model to generate
frames with the same style as the reference frame. Figure 2
shows that cross-frame attention successfully preserves the
overall style of the frames. However, the fine details of the
robot (shown in the insets) tend to change between frames.
We find that this is caused by the distributional shift in the
latent codes that are responsible for generating the character
in the scene as shown on the right of Figure 2.

To this end, we propose a zero-shot approach for gener-
ating consistent videos of animated characters based on T2I
diffusion models. To produce continuous motion dynam-
ics, we employ text-based human motion diffusion models
[31] to generate a sequence of SMPL models given a text
prompt. We render these SMPL models to generate a se-
quence of depth maps that can be used as conditional inputs
for ControlNet. This allows generating videos with realis-
tic and continuous animations, unlike Text2Video-Zero. To
boost temporal consistency, we compute cross-frame dense
correspondence based on DensePose [9], and we use it to
align the latent codes between video frames through our
Spatial Latent Alignment module. We also propose an addi-
tional Pixel-Wise Guidance strategy that steers the diffusion
process in a direction that minimizes the visual discrepan-
cies between frames.

To evaluate the temporal consistency of the generated
videos, we introduce the Human Mean Squared Error met-
ric that measures the pixel-wise difference of the animated
character between consecutive frames. Our proposed ap-
proach outperforms Text2Video-Zero on this metric by ∼
10% and was preferred by 76% of the users in a user study
that we conducted.
Our contributions can be summarized as follows:
• We introduce a zero-shot approach for generating videos

of animated characters.
• We employ Motion Diffusion Models to generate contin-

uous motion guidance based solely on text.
• We propose the Spatial Latent Alignment and Pixel-Wise

Guidance modules that boost temporal consistency.
• Our approach outperforms existing zero-shot approaches

in terms of the Human Mean Squared Error metric that
we introduce and in terms of user preference.

2. Related Work
We give a brief overview of existing approaches for human
video synthesis, Text-to-Video (T2V) diffusion models, and
human motion synthesis.
Human Video Synthesis Existing approaches for human
video generation are generally limited to specific domains
and datasets. For instance, several T2V approaches [19,
28, 35] train on the UCF-101 dataset [30] that includes
videos of humans performing 101 diverse actions. How-
ever, the generated videos based on this dataset are low res-
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Figure 2. Cross-Frame Attention (CFAttn) is adopted by multiple zero-shot T2V approaches to generate globally consistent video frames.
However, when the conditioning signal (the depth map) changes, e.g. shifted up, the fine details (shown in the insets) tend to vary between
frames. We find that this is caused by the distributional shift of the initial latent codes that are aligned with the character, as shown on
the plot to the right. Our proposed approach attempts to align the latent codes in a zero-shot manner, eliminating the distribution shift and
producing consistent images. *CN refers to ControlNet

olution and lack visual diversity. Another category of ap-
proaches focused on generating videos of fashion perform-
ers and is trained on fashion datasets [13, 17]. For instance,
Text2Performer [13] proposed a decomposed human repre-
sentation into pose and appearance in the latent space of a
variational autoencoder. This representation is used along-
side a diffusion-based motion sampler to generate consis-
tent high-resolution videos of fashion performers. Never-
theless, their approach can only generate videos of perform-
ers with standardized motions on a simple background.

Recently, several approaches [12, 20, 33] proposed diffu-
sion models for Image-to-Video (I2V) to animate a human
character given a subject image and a sequence of poses that
are provided by the user. Contrarily, we address the Text-to-
Video (T2V) problem that aims to produce diverse videos of
animated characters based solely on a textual prompt. It is
worth mentioning that the concurrent work [4] shares sim-
ilarities with our work as it attempts to generate consistent
videos given a sequence of UV maps by aligning the latent
codes. But we differ from them in that we only require tex-
tual prompts as input and that we follow a different strategy
for aligning the latents.
Text-to-Video Diffusion Models Text-to-Image (T2I) dif-
fusion models [24–26] excelled in generating highly real-
istic and diverse images based on textual prompts by har-
nessing large-scale image datasets [27]. With the lack of
similarly large video datasets to train T2V counterparts, a
growing direction of research attempts to exploit existing
T2I models to generate videos. VideoLDM [3] proposed to
transform a pre-trained Stable Diffusion model [25] into a
T2V model by introducing a temporal module and a video
upsampler that are trained on video data. Similarly, Make-

a-video [28] extended DALLE-2 [24] to a T2V model by
temporally aligning the decoder and the upsampler on video
data. However, these two approaches require excessive
GPU resources and large-scale datasets to train.

Tune-a-Video [32] adopts a one-shot paradigm and fine-
tunes a pre-trained T2I model to generate a video given a
single video/text pair. Nevertheless, this approach requires
a video as an input in addition to the text prompt, making
it more suitable for video editing or Video-to-Video tasks.
Text2Video-Zero [15] introduced a purely text-based zero-
shot T2V approach that injects motion dynamics into the
latents of a T2I diffusion model. Their approach exploited
the fact that the output of diffusion models varies under any
changes to the latent codes to generate variations of the
first frame. However, the generated frames from their ap-
proach lack any motion continuity or temporal consistency.
In contrast, our approach employs Motion Diffusion Mod-
els [6, 31] to generate continuous motion guidance and in-
troduces two strategies for boosting temporal consistency,
especially at fine details.
Human Motion Synthesis This task aims to produce an-
imated skeletons (standardized poses) of humans condi-
tioned on textual prompts. Several approaches for human
motion synthesis were proposed that benefited from the
large datasets for human motions, such as the HumanML3D
dataset [10] with approximately 15k diverse motions. T2M
[10] proposed a two-stage approach that learns a mapping
function between text prompt and motion length. After-
ward, a temporal variational autoencoder generates the mo-
tion given the predicted length. MDM [31] employed a dif-
fusion model to learn a conditional mapping between text
and motion sequences. MLD [6] learns a compact latent
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representation to train diffusion models in a more efficient
manner. GMD [14] incorporated spatial constraints into the
motion diffusion process to add more control over the gen-
erated motions. We employ any of these approaches to gen-
erate diverse and continuous motion signals to guide a pre-
trained T2I diffusion model.

3. Method
In this section, we first describe the existing pipeline for
zero-shot Text-to-Video (T2V) diffusion models that is
adopted by Text2Video-Zero [15] and MasaCtrl [5]. Then,
we explain our proposed approach for generating tempo-
rally consistent videos of animated characters.

3.1. Zero-Shot T2V Diffusion Models

The objective of the T2V task is to generate a sequence of N
video frames I := {I1, I2, . . . , IN}, given a text prompt T .
In the zero-shot setting, a pre-trained Text-to-Image (T2I)
diffusion model such as Stable Diffusion (SD) [25] is used
to generate each frame individually. For better control over
the contents of the generated frames, additional condition-
ing signals G := {G1, G2, . . . , GN}, such as human poses,
canny edges, and depth maps are incorporated through Con-
trolNet [36] or T2I-Adapters [21].

During inference, the diffusion process is carried out us-
ing a denoising model such as DDIM [29], where for each
frame i and denoising step t, we compute the previous latent
code xi

t−1 as well as, a noise-free sample prediction x̂i,t
0 :

x̂i,t
0 =

xi
t −
√
1− αt ϵ

t
θ(x

i
t, T , Gi)√

αt
, (1)

xi
t−1 =

√
αt−1 x̂

i,t
0 +

√
1− αt−1 − σ2

t ϵ
t
θ(x

i
t, T , Gi)+σtϵt ,

(2)
where αt, σt are pre-defined scheduling parameters, ϵtθ is
a noise prediction from a trained UNet, and ϵt is random
Gaussian noise. This process is computed for T ≥ t ≥ 0,
and the final image is reconstructed at t = 0 using the de-
coder of a variational autoencoder as Ii = D(x̂i,0

0 ). To pro-
mote visual consistency, the initial latent code xT is shared
among all frames, and the self-attention modules are re-
placed with cross-frame attention. We refer the reader to
[5, 15] for details on cross-frame attention. We use this
aforementioned pipeline as a baseline for our approach.

3.2. Zero-Shot Text-to-Animated-Characters

To generate videos of animated characters using T2I mod-
els, we need conditioning signals G to control the gener-
ated content. Existing methods [15, 32] extract these sig-
nals from a user-provided video. For example, a depth or
human pose detector is applied to a video to extract depth
maps or human poses. However, this approach has limited

control over the generated content and adds the burden of
finding a suitable video.

Instead, we propose to employ text-based motion diffu-
sion models [6, 31] to produce a sequence of length N of
human skeletons, given the text prompt T . Afterward, we
fit a customizable human body model such as SMPL [18]
to each of these skeletons, and we render N depth maps
from these models to produce conditioning signals Gdepth.
We also compute DensePose [9] for each frame to obtain
P := {P1, P2, . . . , PN}. This approach eliminates the need
for providing a reference video as in [5, 15, 32] and makes
the process purely text-driven. An overview of our proposed
approach is illustrated in Figure 3.

3.3. Cross-Frame Dense Correspondences

Since we obtained per-frame conditioning signals Gdepth,
we can directly generate the video frames. However, as
demonstrated in Figure 2, the output of SD varies under any
changes to the conditioning signal, causing the frames to be
temporally inconsistent. To alleviate this problem, the la-
tent codes during inference must be spatially aligned, i.e.,
each body part of the generated character needs to have the
same latent code in all frames. To achieve this, we need to
compute pixel-wise dense correspondences between frames
and use them to propagate the latent codes across frames.

Ideally, the UV maps for the SMPL models or Dense-
Pose can be used for this purpose. However, since they
need to be downsampled to the resolution of the latent
code, the correspondences are lost, and they need to be re-
computed. To tackle this issue, we set up a dense corre-
spondence problem between each two consecutive frames
based on the DensePose embeddings. We opt for Dense-
Pose rather than the UV maps as the former divides the hu-
man body into parts, making the correspondence problem
cheaper to solve. We denote the DensePose embedding for
frame i as Pi = [Li, Ui, Vi], where Pi ∈ P , Li has pixel-
wise labels for body parts in the range of [0, 24], and Ui, Vi

are UV-coordinates in the range of [0, 255]. For each body
part j, we define a set of pixels that belong to that part as
Qj

i := {q | Li(q) = j}. We form a feature vector for each
q ∈ Qj

i and we arrange them in the rows of matrix P̂ j
i :

P̂ j
i [q] =

[
U j
i (q) V j

i (q) Ej
i (q)

]
, (3)

where Ej
i [q] is the euclidean distance between pixel q and

the centroid of body part j. This term encourages the
matching of pixels that are spatially close.
For each two consecutive frames i and i− 1, we compute a
cost matrix C between P̂ j

i and P̂ j
i−1 as:

C[q, s] =∥ P̂ j
i [q]− P̂ j

i−1[s] ∥2 , (4)

where q ∈ Qj
i , s ∈ Sj

i−1, and Sj
i−1 := {s | Li−1(s) = j}.

Then, we find the correspondences by solving a linear as-
signment problem over C using the Hungarian algorithm
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Figure 3. An overview of our proposed approach. Given a text prompt T , a motion diffusion model [31] produces a sequence of human
skeletons that we use to obtain frame-wise depth maps and DensePose [9]. The former is used as guidance for ControlNet [36], while
the latter is used to compute cross-frame correspondences. These correspondences are employed by the Spatial Latent Alignment and
the Pixel-Wise Guidance modules to boost temporal consistency. The orange block shows an illustration of how we compute cross-
frame correspondences between two frames for the “torso” body part based on DensePose. The blue block shows how we employ these
correspondences to spatially align the latents to promote consistent synthesis.

[16], which assigns each pixel to the closest match based
on the UV coordinates and the spatial location. This pro-
duces an injective mapping for each body part j between
frames i and i− 1 as:

Mj
i,i−1 := {(q, s) ∀ q ∈ Qj

i , s ∈ Sj
i−1} , (5)

An illustration for this procedure is shown in Figure 3. Fi-
nally, All body parts are then combined into a total body
mapping asMi,i−1 = ∪j Mj

i,i−1.

3.4. Spatial Latent Alignment

To achieve temporal consistency, we aim to align the latents
between the video frames. We compute correspondence
mappings from Section 3.3 between each two consecutive
frames based on DensePose embeddings P that are down-
sampled to 64 × 64 to match the resolution of the latent
codes. For frames i and i− 1, the latent code xi

t is updated
with values from xi−1

t based on the computed mapping as:

xi
t[q] = xi−1

t [s] ∀ (q, s) ∈Mi,i−1 , (6)

This operation will copy some parts of the latent code from
frame i − 1 to the correct spatial location in frame i, pro-
moting temporal consistency. Note that we only apply this
operation at the first 40% of the diffusion steps that encom-
pass the generation of the main structures of the scene.

3.5. Pixel-Wise Guidance

The resolution of the latents in SD is 1/8 of that of the gen-
erated images. Consequently, even after spatially aligning

Algorithm 1 Zero-Shot Animated Characters Synthesis

Require: N,T ∈ N, δ ∈ R, text prompt T , A := [a1, a2],
B := [b1, b2] ControlNet (CN), DDIM (DDIM), Mo-
tion Diffusion Model (MDM), Spatial Latent Alignment
(ALIGN), Pixel-Wise Refinement (REFINE)

Output: I := {I1, I2, . . . , IN}
Gdepth,P ← MDM(T ) ▷ Depth maps, DensePose
xT ∼ N (0, I)
for i = 1, . . . , N do:

for t = T, T − 1, . . . , 0 do:
if i > 1 and t ∈ A then ▷ Spatial Latent Alignment

xi
t ← ALIGN(xi

t,P[i],P[i− 1])
end if
ϵtθ ← CN(xi

t, T ,Gdepth[i], t)
xi
t−1, x̂

i,t
0 ← DDIM(xi

t, ϵ
t
θ)

if i > 1 and t ∈ B then ▷ Pixel-Wise Guidance
ωi ← REFINE(x̂i,t

0 ,P[i],P[i− 1])
xi
t−1 ← xi

t−1 − δ ∇xi
t
ωi

end if
end for

end for

the latents in the Section 3.4, some high-resolution details
will vary between the video frames. To alleviate this prob-
lem, we propose a Pixel-Wise Guidance strategy inspired
by classifier guidance in diffusion models [22]. First, we
compute a mappingMi,i−1 from Section 3.3 between each
two consecutive frames i and i − 1. At a given diffusion
step t, we reconstruct the RGB predictions using the VAE
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Prompt: A robot jumps on a trampoline

Text2Vide-Zero OursReference Frame

Prompt: A man lifts dumbbells at the gym.

Prompt: A cyberpunk robot jumps off a grass pitch.

Prompt: An astronaut warms up on moon surface.

Prompt: Woody from Toy Story performing a jumpy dance.

Figure 4. A qualitative comparison between our proposed approach and the baseline Text2Video-Zero [15]. Our approach is able to
generate consistent shapes and textures compared to the baseline. The reference frame is the first frame of the video that defines the
appearance of the character.

decoder as Xi
t = D(x̂

i,t
0 ) and we compute the L2 difference

between all pixel pairs inMi,i−1:

ωi =
∑
q,s

(Xi
t [q]−Xi−1

t [s])2 ∀ (q, s) ∈Mi,i−1 , (7)

Finally, we compute the gradient of ωi with respect to xi
t,

and we use it to update xi
t−1:

xi
t−1 = xi

t−1 − δ ∇xi
t
ωi . (8)

where δ is a scaling factor. This steers the diffusion process
in the direction that minimizes wi.

Note that we apply this process on the resolution of 256 ×
256 rather than the full resolution of 512× 512 as the latter
would be computationally expensive using the Hungarian
algorithm with cubic complexity.

4. Experiments
We evaluate our approach based on two baselines that adopt
cross-frame attention. The first baseline is MasaCtrl [5],
which is an image editing method that can be used to gen-
erate a sequence of consistent images, and the second is
Text2Video-Zero [15], a zero-shot approach for video syn-
thesis. Note that Text2Video-Zero has two variations: a
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Text2Video-Zero [15] Ours

Prompt: “An astronaut jumps on the moon surface”

Prompt: “Ironman moves to the right”

Figure 5. Impact of motion guidance in our approach compared
to the motion dynamics in Text2Video-Zero [15]. Motion guid-
ance produces videos that adhere to the prompt in contrast to
Text2Video-Zero, which produces random variations of the scene.

condition-free version and a conditional one based on Con-
trolNet. We compare mainly against the latter, but we pro-
vide some examples for the former as well.

4.1. Implementation Details

For both baselines, we use a pre-trained Stable Diffusion
[25] version 1.5 with ControlNet [36] depth control to gen-
erate 512 × 512 video frames. For inference, we employ
the DDIM sampler [29] with a linear schedule. We use
T = 100 inference steps for Text2Video-Zero and T = 50
for MasaCtrl. We empirically choose the guidance factor
δ = 0.01 in Equation (8), A = [0, 39], B = [20, 69] for
Text2Video-Zero, and A = [0, 19], B = [20, 39] for Mas-
aCtrl in Algorithm 1. For motion synthesis, we use the of-
ficial implementation of Motion Diffusion Model (MDM)
[31] with some modifications for rendering and comput-
ing DensePose [9]. We conduct all experiments on a single
NVIDIA A100 GPU except for Gen-2 [7], where we use the
official demo. Our code will be made publicly available.

4.2. Qualitative Results

Zero-Shot Comparison Figure 4 shows a qualitative com-
parison between depth-conditioned Text2Video-Zero and
our proposed approach. The figure shows that cross-frame
attention adopted by Text2Video-Zero is not sufficient to
preserve the fine details of the generated characters. As
the conditional depth map changes, the object gets distorted
(e.g. the robot torso and legs in the first row), or the texture
changes (e.g. the pants in the second row become shorts).
On the other hand, our approach successfully maintains the
fine details of the generated characters across all frames.
Motion Guidance Significance To demonstrate the impact
of motion guidance produced by MDM, we compare our
approach against Text2Video-Zero with no depth condition-

HMSE ↓
User

Preference [%]

MasaCtrl [5] [ICCV23] 88.19 34 %
Ours 79.88 66 %
Text2Video-Zero [15] [ICCV23] 84.87 24 %
Ours 76.41 76 %
Table 1. Quantitative comparison between our proposed approach
and two baselines. The error reduction percentage is shown

ing, which produces video by injecting motion dynamics
into the latent codes. Figure 5 shows that Text2Video-Zero
produces random variations of the scene that do not adhere
to the motion in the prompt. For example, the astronaut in
the top row is just floating and not jumping, and Ironman
in the second row does not move but changes pose. On the
other hand, our approach produces consistent videos that
adhere to the motion in the prompt.
Trained T2V Comparison We also provide a comparison
against the trained T2V model, Gen-2 [7], in Figure 6.
In the first column, Gen-2 fails to produce a video of a
robot jumping on a trampoline, and the robot morphs into a
sphere. Our approach manages to produce a video for this
uncommon scenario as the generation of the motion and the
style are decoupled. In the second column, Gen-2 produces
a good video of a skier with rich video dynamics. However,
the skier loses his backpack after a few frames and deforms
by the end of the video. Our approach produces a consistent
video but with less background dynamics.

4.3. Quantitative Results

To numerically evaluate the generated videos, we intro-
duce a new metric for temporal consistency and perform
a user study. We denote the new metric as the Human Mean
Squared Error HMSE , and it compares the pixel-wise val-
ues of the generated characters in every two consecutive
frames. We employ the computed cross-frame dense corre-
spondencesM from Section 3.3, and we compute the mean
squared error (MSE) between corresponding pixels:

HMSE =
1

N

N∑
i=1

1

|Mi,i−1|
∑
q,s

(Ii[q]− Ii−1[s])
2

∀ (q, s) ∈Mi,i−1 (9)

where Ii, Ii−1 are the final generated frames in I.
We generated 10 videos of diverse motions and charac-

ters and we computed the proposed metric and performed
the user study on them. Table 1 shows that our approach
outperforms both baselines in terms of HMSE by ∼ 9 −
10%, which demonstrates that the generated characters are
temporally more consistent. For the user study, users are
asked to select between two videos; one is produced by the
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Prompt: “A robot jumps on a trampoline” Prompt: “A skier running on a snowy road”

Figure 6. A comparison against the trained T2V model Gen-2 [7].

HMSE ↓ Runtime (s)
Baseline 84.87 28
with SLA 78.90 (-7.0 %) 30
with PWG 82.73 (-2.5 %) 49
with LSA + PWG 76.41 (-10.0 %) 50

Table 2. An ablation study for different components of our pro-
posed approach. SLA: Spatial Latent Alignment in Section 3.4,
PWG: Pixel-Wise Guidance in Section 3.5. Runtime is reported
for generating a 8-frames video.

baseline and the other by our approach. Table 1 shows that
76% and 66% of the users (based on 23 users) preferred
the videos generated by our approach over Text2Video-Zero
and MasaCtrl baselines, respectively.
4.4. Ablation Study

We provide an ablation study in Table 2 to show the con-
tribution of each component in our proposed pipeline to the
overall performance. The Spatial Latent Alignment mod-
ule contributes the most to the overall improvement and im-
proves by 7.0% over the baseline. This indicates that align-
ing the latents plays a crucial role in achieving temporal
consistency. Pixel-Wise Guidance in Section 3.5 improves
over the baseline by 2.6% as it is mainly focused on the
fine details. The two components combined achieve a joint
improvement of 10 % compared to the baseline.

4.5. Limitations and Failure Cases

Since we employ ControlNet with depth conditioning for
generating the video frames, our approach is also bounded
by its limitations. For example, the top row of Figure 7
shows an example where ControlNet fails to produce a re-
alistic left arm and leg when they intersect in the depth
map. Another source of failure is mismatches when com-
puting the correspondence mapping in Section 3.3, which
can lead to some artifacts. It is also worth mentioning
that Pixel-Wise Guidance imposes high GPU memory us-

Figure 7. Examples of a failure case

age due to computing gradients with respect to the latent
codes. However, employing the Spatial Latent Alignment
solely still achieves remarkable improvement over the base-
line as shown in Table 2 with no GPU memory overhead.

5. Conclusion and Future Work
We introduced a new paradigm for generating consistent
videos of animated characters in a zero-shot manner. We
employed text-based motion diffusion models to provide
continuous motion guidance that we utilized to generate
video frames through a pre-trained T2I diffusion model.
This allowed generating videos of diverse characters and
motions that existing T2V methods struggled to produce.
We also demonstrated that our approach produces tempo-
rally consistent videos achieved through the proposed Spa-
tial Latent Alignment and Pixel-Wide Guidance modules.
These two modules can benefit other approaches that adopt
cross-frame attention and latent diffusion models in general.
For future work, the cross-frame dense correspondences can
be improved for better latent alignment. Furthermore, video
dynamics can be incorporated into the background for en-
hanced realism.
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